
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 157 – 163

157
IJRITCC | November 2017, Available @ http://www.ijritcc.org

Implementation of Banker’s Algorithm Using Dynamic Modified Approach

Mrinal Gaur

M.Tech Scholar,

CGI Bharatpur

E-Mail: iammrinnal@gmail.com

Dushyant Singh

Assistant Professor,

CGI Bharatpur

Abstract: Banker’s algorithm referred to as resource allocation and deadlock avoidance algorithm that checks for the safety by simulating the

allocation of predetermined maximum possible of resources and makes the system into s-state by checking the possible deadlock conditions for

all other pending processes.

It needs to know how much of each resource a process could possibly request. Number of processes are static in algorithm, but in most of system

processes varies dynamically and no additional process will be started while it is in execution. The number of resources are not allow to go down

while it is in execution.

In this research an approach for Dynamic Banker's algorithm is proposed which allows the number of resources to be changed at runtime that

prevents the system to fall in unsafe state. It also give details about all the resources and processes that which one require resources and in what

quantity. This also allocates the resource automatically to the stopped process for the execution and will always give the appropriate safe

sequence for the given processes.

__*****___

1. Introduction

1.1 Deadlock

A set of processes is deadlocked if each process in the set is

waiting for an event that only another process in the set can

cause. Usually the event is release of a currently held

resource. None of the processes can run and release

resources.

In an operating system, a deadlock occurs when a process or

thread enters a waiting state because a requested system

resource is held by another waiting process, which in turn is

waiting for another resource held by another waiting

process. If a process is unable to change its state indefinitely

because the resources requested by it are being used by

another waiting process, then the system is said to be in a

deadlock [1].

1.1.1 Conditions for Deadlock

Deadlock can arise if four conditions hold simultaneously

(i) Mutual exclusion condition: Only one process at a

time can use a resource (non-shareable resource). Each

resource is assigned to a process or is available.

(ii) Hold and wait condition: A process holding at least

one resource can request for additional resources.

(iii) No preemption condition: A resource can be released

only voluntarily by the process holding it. That is

previously granted resources cannot be forcibly taken

away.

(iv) Circular wait condition: There exists a set

{P0,P1,…,P0} of waiting processes such that P0 is

waiting for a resource that is held by P1, P1 is waiting

for a resource that is held by P2,…,Pn–1 is waiting for

a resource that is held by Pn, and P0 is waiting for a

resource that is held by P0.

1.2 Methods for Handling Deadlocks

Generally speaking there are three ways of handling

deadlocks:

1. Deadlock prevention or avoidance - Do not allow the

system to get into a deadlocked state.

2. Deadlock detection and recovery - Abort a process

or preempt some resources when deadlocks are

detected.

Ignore the problem all together - If deadlocks only occur

once a year or so, it may be better to simply let them happen

and reboot as necessary than to incur the constant overhead

and system performance penalties associated with deadlock

prevention or detection. This is the approach that both

Windows and UNIX take.

1.3 Banker's Algorithm

For resource categories that contain more than one instance

the resource-allocation graph method does not work, and

more complex (and less efficient) methods must be chosen.

The Banker's Algorithm gets its name because it is a method

that bankers could use to assure that when they lend out

resources they will still be able to satisfy all their clients. A

banker won't loan out a little money to start building a house

unless they are assured that they will later be able to loan

out the rest of the money to finish the house.

When a process starts up, it must state in advance the

maximum allocation of resources it may request, up to the

amount available on the system.

When a request is made, the scheduler determines whether

granting the request would leave the system in a safe state.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 157 – 163

158
IJRITCC | November 2017, Available @ http://www.ijritcc.org

If not, then the process must wait until the request can be

granted safely.

The banker's algorithm relies on several key data structures:

(where n is the number of processes and m is the number of

resource categories.)

 Available[m] indicates how many resources are

currently available of each type.

 Max[n] [m] indicates the maximum demand of each

process of each resource.

 Allocation[n] [m] indicates the number of each

resource category allocated to each process.

 Need[n] [m] indicates the remaining resources

needed of each type for each process. Note that

Need[i][j] = Max[i][j] - Allocation[i][j] for all

i, j.)

For simplification of discussions, we make the following

notations / observations:

 One row of the Need vector, Need[i], can be treated

as a vector corresponding to the needs of process i,

and similarly for Allocation and Max.

A vector X is considered to be <= a vector Y if X[i] <= Y[i]

for all i.

1.4 An Illustrative Example

 Consider the following situation:

Figure 1.1:Process, Allocated Resources, Max Resources

and Needed Resources

 And now consider what happens if process P1

requests 1 instance of A and 2 instances of C. (

Request[1] = (1, 0, 2)

Figure 1.2: Process, Allocated Resources, Needed

Resources and Available Resource

What about requests of (3, 3, 0) by P4? Or (0, 2, 0) by P0?

Can these be safely granted? Why or why not?

2. Literature Review

In 2014, Pankaj Kawadkar, Shiv Prasad, Amiya Dhar

Dwivedi in their research "Deadlock Avoidance based on

Banker’s Algorithm for Waiting State Processes" proposed

an algorithm for deadlock avoidance used for Waiting State

processes.

They proposed that if process is going to waiting state then

the consideration of number of allocated resources and/or

number of instances as well as need of resources in order to

select a waiting process for the execution will make

Banker’s Algorithm more efficient. But they didn't give any

solution when the system is in unsafe state [15].

In 2013, Smriti Agrawal, Madhavi Devi Botlagunta and

Chennupalli Srinivasulu in their research titled “A Total

Need based Resource Reservation Technique for Effective

Resource Management” and proposed an approach for Total

Need Based Resource Reservation (TNRR) that suggests

reserving some resources so as to ensure that at least one

process will complete after it. The simulation results

indicate that the frequency of deadlocks has reduced by

approximately 75% for higher load (above 80%) as

compared to the Deadlock Recovery technique, while for

lower load it tends to be zero. The turnaround time of the

TNRR is approximately 9% better than the existing

Banker’s algorithm. But in case of insufficient resources

when there is no safe sequence is possible they didn’t

provide details for resources and processes that causes the

deadlock if executed or no safe sequence [4].

In 1999, Sheau-Dong Lang in his research titled “An

Extended Banker’s Algorithm for Deadlock Avoidance”

proposed an approach for safety in banker’s algorithm

assuming that the control flow of the resource-related calls

of each process forms a rooted tree, they

proposed a quadratic-time algorithm which decomposes

these trees into regions and computes the associated

maximum resource claims, prior to process execution. This

information is then used at runtime to test the system safety

using the original banker’s algorithm. But this approach was

unable to recognize patterns of resource-related calls in real-

time system and the practicality was also not proven [16].

3. Motivation

Many research has been done for the improvement of

Banker’s Algorithm. Most of the researchers has worked on

the limitations of waiting time and resource allocation to

improve the performance or minimizing the deadlocks. But

if at the end when system is not in safe state and traditional

Banker’s algorithm cannot be applied then what? We do not

have any information about the process or resources due to

which the system was in unsafe state. This specific problem

leads us towards this approach. Proposed approach gives the

details about all the resources and processes who require

resources in what quantity. This also allocates the resource

automatically to the stopped process for the execution and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 157 – 163

159
IJRITCC | November 2017, Available @ http://www.ijritcc.org

will always give the appropriate safe sequence for the given

processes.

4. Proposed Approach

Banker's algorithm was originally designed to check

whether the allocation of resources leave the system in safe

state or not and if it is in safe state then it gives the safe

sequence of processes and allocate the resources.

In banker's algorithm when, a new process enters the

system, it must declare the maximum number of instances of

each resource type that it may need. This number may not

exceed the total number of resources in the system.

When a user requests a set of resources, the system must

determine whether the allocation of these resources will

leave the system in a safe state. If it will, the resources are

allocated; otherwise, the process must wait until some other

process releases enough resources.

Steps for Banker’s Algorithm

1. Let Request[n][m] indicate the number of

resources of each type currently requested by

processes. If Request[i] > Need[i] for any process

i, raise an error condition.

2. If Request[i] > Available for any process i, then that

process must wait for resources to become available.

Otherwise the process can continue to step 3.

3. Check to see if the request can be granted safely, by

pretending it has been granted and then seeing if the

resulting state is safe. If so, grant the request, and if

not, then the process must wait until its request can

be granted safely. The procedure for granting a

request (or pretending to for testing purposes) is:

a) Available = Available – Request

b) Allocation = Allocation + Request

c) Need = Need - Request

Several data structures must be maintained to implement the

banker's algorithm. These data structures encode the state of

the resource-allocation system.

In this research an approach for Dynamic Banker's

algorithm is proposed which allows the number of resources

to be changed at runtime that prevents the system to fall in

unsafe state.

Proposed Algorithm

Proposed algorithm that provides a safe sequence. It

depends upon need (i)=1,2…n,

Allocation (i) =1, 2…n and Available resources.

It works as follows:

After the Resource-Request-Algorithm if process is going

to waiting state then these steps must be followed:

Step.1- Need (i) is compare to Need(i+1 to last).

Step.2- Take the process with minimum Need and

maximum Allocation.

Step.3- If Available<Need (i) then Execute process. Set

state is executed.

Step.4-Available=Available + Allocation (i)

Step.5- Repeat step 1 to 4 until all the process is going to

executed state.

Whenever a process requests for instance of resource it

checks the availability and demand of instance of resource.

If availability is more than demand then instance of resource

is allocated to process according to the priority of which

process free the most number of resources.

It checks for the needed availability to execute the process.

Return the information about the instance of resource

needed to system along with associated process.

5. Performing Banker’s Algorithm with Existing

Approach

Here in the first experiment of this research, implementing

the original Banker’s Algorithm having 3 types of different

resources and 5 processes. Here some resources are already

allocated to the processes and there is also given the

maximum demand and remaining needs of these processes.

After implementing the Banker’s Algorithm results are

evaluated to determine the safe sequence.

Here in this experiment there are five processes (p0 to p4)

are used and three types of resources are used with different

number of instances as A-10, B-5 and C-7.

TABLE 5.1

AVAILABLE RESOURCES

Available

A B C

10 5 7

Table 5.1 shows the number of resources available for the

process allocations. These are having several instances of

same type.

TABLE 5.2

RESOURCES ALLOCATIONS

Allocations

 A B C

p0 0 1 0

p1 2 0 0

p2 3 0 2

p3 2 1 1

p4 0 0 2

Table 5.2 displays the resources allocated to the number of

processes with different types of instances. These resources

are already allocated to the processes and processes are

executing on these resources.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 157 – 163

160
IJRITCC | November 2017, Available @ http://www.ijritcc.org

TABLE 5.3

MAX DEMAND

Available

 A B C

p0 7 5 3

p0 3 2 2

p2 9 0 2

p3 2 2 2

p4 11 3 3

Table 5.3 shows the max demand of the processes for the

resources. It also shows that which resource is having in

what number of instances of which type of resource. Max

demand also containing the allocated resources so here it is

must to calculate the remaining needs of the process for the

execution of the Banker’s Algorithm.

TABLE 5.4

REMAINING NEED

Remaining Need

 A B C

p0 7 4 3

p1 1 2 2

p2 6 0 0

p3 0 1 1

p4 11 3 1

Table 5.4 shows the remaining needs of the processes for the

resources. It also shows that which resource is having in

what number of instances of which type of resource.

Remaining need is calculating through the max demand and

allocation of the resources. The formula which is used to

calculate the need is given below.

Need = maximum resources - currently allocated resources

Processes (possibly needed resources):

After calculating the need for the processes then need to

check the execution of the processes that these are in safe

state or not.

Now to check whether above state is safe sequence in which

above requests can be fulfilled. After evaluating the

Banker’s Algorithm shows that it is not in the safe state

because any of the process needs for more resources which

are not available to fulfill the requirements. Here Banker’s

Algorithm does not show that particular process which

needs more resources of what type. It just shows that it is

not in the safe sequence, so it is very difficult to say that

which resource is needed to which process so the problem

can be solved.

A state is considered unsafe if it is not possible for all

processes to completing executing. Since the system does

not know when a process will finish termination, or how

many resources it requested by then, the system assumes

that all processes will not able to acquire their stated

maximum resources and terminated. This is a reasonable

assumption in most of the cases the system is not

particularly concerned with how long each process runs.

Also, if a process terminates without having its maximum

resources it only makes it simpler on the system. A safe

state is considered as to be the decision maker if it is going

to process ready queue. Any state where such set exists is a

safe state.

5.1 Performing Modified Banker’s Algorithm with New

Approach

Here in the second experiment of this research,

implementing the modified Banker’s Algorithm having 3

types of different resources and 5 processes. Here some

resources are already allocated to the processes and there is

also given the maximum demand and remaining needs of

these processes. After implementing the modified Banker’s

Algorithm results are evaluated to determine the safe

sequence.

Here in this experiment there are five processes (p0 to p4)

are used and three types of resources are used with different

number of instances as A-10, B-5 and C-7.

TABLE 5.5

AVAILABLE RESOURCES

Available

A B C

10 5 7

Table 5.5 shows the number of resources

available for the process allocations. These are

having several instances of same type.

Available

A B C

10 5 7

TABLE 5.6

RESOURCES ALLOCATIONS

Table 5.6 displays the resources allocated to the number of

processes with different types of instances. These resources

are already allocated to the processes and processes are

executing on these resources.

Allocation

 A B C

p0 0 1 0

p1 2 0 0

p2 3 0 2

p3 2 1 1

p4 0 0 2

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 157 – 163

161
IJRITCC | November 2017, Available @ http://www.ijritcc.org

TABLE 5.7

MAX DEMAND

Max Demand

 A B C

p0 7 5 3

p1 3 2 2

p2 9 0 2

p3 2 2 2

p4 11 3 3

Table 5.7 shows the max demand of the processes for the

resources. It also shows that which resource is having in

what number of instances of which type of resource. Max

demand also containing the allocated resources so here it is

must to calculate the remaining needs of the process for the

execution of the Banker’s Algorithm.

TABLE 5.8

REMAINING NEED

Remaining Need

 A B C

p0 7 4 3

p1 1 2 2

p2 6 0 0

p3 0 1 1

p4 11 3 1

Table 5.8 shows the remaining needs of the processes for the

resources. It also shows that which resource is having in

what number of instances of which type of resource.

Remaining need is calculating through the max demand and

allocation of the resources. The formula which is used to

calculate the need is given below.

Need = maximum resources - currently allocated resources

Processes (possibly needed resources):

After calculating the need for the processes then need to

check the execution of the processes that these are in safe

state or not.

Now to check whether above state is safe sequence in which

above requests can be fulfilled. After evaluating the

Modified Banker’s Algorithm shows that which process

needs what instance of resource in what quantity? After

knowing that which instance of resources need to be added

more, then it is very easy to add the more resources for the

process. Here modified Banker’s Algorithm shows that

particular process which needs more required resources of

what type. It also shows that it is not in the safe sequence, so

it is very easy to find out & add which resource is required

to the process so the problem can be solved by this

approach.

TABLE 5.9

REQUIRE RESOURCES

Require Resources

 A B C

p0 4 1 1

Table 5.9 displays the require resources of the process. It

shows after calculating that which resources is not available

for the process. Then it is easy to add more resources further

and then calculate the new safe sequence. It ensure that it

will always give the safe sequence which never lead to

deadlock.

After adding more resources in the system then calculate the

safe sequence as follow P0, p1, p2, p3, p4.

Finally evaluating the results of both experiments it is very

clear to say that original Banker’s algorithm gives only

assumption that the execution of the processes are in safe

state or not in safe state.

Banker’s Algorithm does not show that particular process

which needs more resources of what kind of type. It just

shows that it is not in the safe sequence, so it is very

difficult to say that which resource is needed to which

process so the problem can be solved.

Modified Banker’s Algorithm shows that which process

needs what instance of resource in what quantity? After

knowing that which instance of resources need to be added

more, then it is very easy to add the more resources for the

process. Here modified Banker’s Algorithm shows that

particular process which needs multiple required resources

of what type. It also shows that it is not in the safe sequence,

so it is very easy to add which resource is needed to the

process so the problem can be solved by this approach.

6. Results

Performance is calculated through executing several

examples which prove that new approach of Banker’s

Algorithm is capable to solve more number of problems

than existing approach of Banker’s Algorithm.

Here is result comparison of both algorithms.

TABLE 6.1

PERFORMANCE ANALYSIS

No. of

Experiments

Banker's

Algorithm

New

 Approach

20 7 16

Table 6.1 displayed the total 20 experiments were performed

with different problems (set of process and resources) out of

which Banker's algorithm was able to solve 6 problems, on

the other hand improved banker's algorithm was able to

solve 16 out of the 20 problems.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 157 – 163

162
IJRITCC | November 2017, Available @ http://www.ijritcc.org

Performance Chart

20

15

10

5

0

Banker's Algorithm New Approach

Figure 6.1 Performance Chart

Figure 6.1 defines that the total number of experiments were

performed with different problems. Out of which traditional

banker's approach was able to inform about no deadlock in

35% problems. The modified banker's algorithm was able to

avoid deadlock in 80% of total experiments. Thus the

performance of improved algorithm was 45% better than the

banker's approach.

7. Conclusion & Future Work

7.1 Conclusion

This research shows the Banker’s Algorithm working,

problem in original algorithm to identify the reason for

failing the process execution. Here Dynamic Banker’s

algorithm solve the existing problem of the original

Banker’s algorithm.

Results prove that modified Banker’s Algorithm shows that

particular process which needs more resources of what type.

It also shows that it is in the safe sequence or not, so it is

very easy to add which resource is needed to the process so

the problem can be solved by this approach.

7.2 Future Scope

The present and future of this area is bright, and full of

opportunities and great challenges as it processes high

demands.

In future it can be used for the auto added process and

killing the undesired process.

REFERENCES

[1] Goswami, Vaisla and Ajit Singh, “VGS Algorithm: An

Efficient Deadlock Prevention Mechanism for

Distributed Transactions using Pipeline Method”

International Journal of Computer Applications (0975 –

8887) Volume 46–No.22, May 2012

[2] William Stallings, “Operating Systems: Internal and

Design Principles”, Fifth Edition, Pearson Publications,

2008.

[3] N. Ramasubramanian, Srinivas V.V., Chaitanya V,

“Studies on Performance Aspects of Scheduling

Algorithms on Multicore Platforms,” International

Journal of Advanced Research in Computer Science and

Software Engineering, Vol 2, Issue 2, February 2012.

[4] Smriti Agrawal, Madhavi Devi Botlagunta and

ChennupalliSrinivasulu, "A Total Need based Resource

Reservation Technique for Effective Resource

Management", International Journal of Computer

Applications (0975 – 8887), Volume 68– No.18, April

2013

[5] H. S. Behera, RatikantaPattanayak, PriyabrataMallick,

“An Improved Fuzzy-Based CPU Scheduling (IFCS)

Algorithm for Real Time Systems,” International Journal

of Soft Computing and Engineering (IJSCE) (2231-

2307), Volume-2, Issue-1, March 2012

[6] SarojHiranwal, Dr.K.C.Roy, “Adaptive Round Robin

Scheduling using Shortest Burst Approach Based on

Smart Time Slice,” International Journal of Data

Engineering (IJDE), Volume 2, Issue 3 2012.

[7] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating

Systems Concepts, 6th edition, Addison-Wesley,

Reading, Mass, pp. 204, 243, 244, 266, 2002.

[8] G. Nutt, Operating Systems, a Modern Perspective, 2nd

edition, Addison-Wesley, Reading, Mass, Pages.150-

279, 2000.

[9] B Madhavi Devi, Smriti Agrawal, Ch. Srinivasulu, “An

Efficient Resource Allocation Technique for Uni-

Processor System” International Journal of Advances in

Engineering & Technology (IJAET) Volume 6 Issue 1,

March 1, 2013.

[10] H. Wu, W. Chin, and J. Jaffar, “An Efficient Distributed

Deadlock Avoidance Algorithm for the AND Model,”

IEEE Trans. on Software Engineering, vol.28, no.1, pp.

18-29, Jan. 2002.

[11] W. Lin and D. Qi, “Research on Resource Self-

Organizing Model for Cloud Computing,” in Proc. IEEE

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 11 157 – 163

163
IJRITCC | November 2017, Available @ http://www.ijritcc.org

International Conference on Internet Technology and

Applications, pp. 1–5, 2010.

[12] X. Nan, Y. He, and L. Guan, “Optimal resource

allocation for multimedia cloud based on queuing

model,” in IEEE MMSP. pp. 1–6, Oct. 2010.

[13] Nan, Xiaoming,” Optimal resource allocation for

multimedia cloud in priority service scheme “, in IEEE

International Symposium on Circuits and Systems

(ISCAS), 2012.

http://www.ijritcc.org/

