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1. Introduction:

In 1982,Hamilton [11] introduced the notion of Ricci flow to find a canonical metric on smooth manifolds. Then Ricci
flow has become a powerful tool for the study of Riemannian manifolds,especially for those manifoldswith positive
curvature.Perelman [15]used Ricci flow and its surgery to prove Poincare conjecture. The Ricci flow is an evolution equation for
metrics on a Riemannian manifold defined as follows:

2
5: 8ij () = —2Ry.

A Ricci soliton emerges as the limit of the solutions of the Ricci flow.A solution to the Ricci flow is called Ricci solution if it
moves onlyby a one parameter group of diffeomorphism and scaling. A Ricci soliton (g,V,1) on a Riemannian manifold (M,g) is a
generalization of an Einstein metric such that

Lyvg(X,Y)+ 2S(X,Y) +2xg(X,Y) = 0,(1.1)

where S is a Ricci tensor, L is Lie-derivative operator along the vector field VV on M andA is a real number. The Ricci solitonis
said to be shrinking, steady and expanding according as 4 is negative,zero or positiverespectively. During the last two decades, the
geometry of Ricci solitons has been the focus of attention ofmany mathematicians.In particular,it has become more important after
Perelman applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904.In 2008, Sharma studied the Ricci
solitons in contact geometry [18].Thereafter Ricci solitons incontact metric manifolds have been studied by various authors such
as Bagewadi et. Al ([1],[2]),Bejan and Crasmareanu [3],Blaga[5],Chandra et. AI[6]Chen and Deshmukh[7],Deshmukh
et.al[10],He and Zhu[13],Nagaraja and Premalatta[14]andmany others.

On the other hand, the study of manifolds with indefinite metrics is of interest from the stand point of physics and
relativity. Manifolds with indefinite metrics have been studied byseveral authors. In 1993,Bejancu and Duggal [4] introduced the
concept of (€)-Sasakianmanifolds and Xufeng and Xiaoli [20] established that these manifolds are real hyper surfacesof indefinite
Kahlerian manifolds. De and Sarkar[8]introduced (e€)-Kenmotsu manifolds and studied some curvature conditions on it.
Singh,Pandey,Pandey and Tiwari [19] established the relation between semi-symmetric metric connection and Riemannian
connection on (€)-Kenmotsu manifolds and have studied several curvature conditions.

Motivated by these studies, we study Ricci solitons in (€)-Kenmotsu manifolds.In this
paper, we have studied Ricci solitons in ( €)-Kenmotsu manifolds satisfying R( & X ).H=0,S( & ,X). H=0,P (&X).H
=0 and H(, X). P = 0,where H is a conharmonic curvature tensor,Pis a pseudo-projectivecurvature tensor.
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2. Preliminaries

An n-dimensional smooth manifold (M", g) is called an (¢)-almost contact metric manifold

if
"X = =X +n(Xg 2.1)
n@® =1, (2.2)
eg(X,8) =nX) (2.3)
€=g(9) (2.4)
9(¢X, $Y)=9(X,Y)— en(X)n(Y), (2.5)

wheree is 1 or -1 according as ¢ is space-like or time-like vector field and rank ¢ is n-1. It is important to mention that in the
above definition¢ is never a light-like vector field.

If
(X, Y) = g(X, ¢Y) (2.6)
for every X,Y € TM", then we say that M" is an (€)-contact metric manifold.
Also,
¢& = 0 and no¢p = 0. (2.7)
If an ( €)- contact metric manifold satisfies
(V) () = —g(X, $Y)& — en(Y) X, (2.8)
where V denotes the Riemannian connection of g, then M" is called an (¢) — Kenmotsu
manifold [8]. An (€)-almost contact metric manifold is an (€)-Kenmotsu manifold
if
Vy & = e(X=n(X)9). (2.9)
In an (¢) — Kenmotsu manifold, the following relations hold [8]

(Vxn)(V)=9(X,Y)—en(X)n(Y),(2.10)

R(X, V)& =n(X)Y — n(V)X, (2.11)

R(E XY =n()X — eg(X, V)&, (2.12)

R(X, V)OZ = $R(X, Y)Z + €{g(Y, 2)oX — g(X, Z)$Y + g(X, ¢2)Y — g(Y, $Z)X }, (2.13)
NRX,NZ) = €[g(X, 2)n(Y) — g¥, ZnX)], (2.14)

Let (9,V,A) be a Ricci solitons in an (€)-Kenmotsu manifold. From equation(2.9),we have

(Leg) X, Y) = —2[eg(X, Y) —n(X)n(V)]. (2.15)

In view of equations (1.1) and (2.15),we have
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S Y) = (e =MgX, Y) = nX)n(Y). (2.16)

The above equation yields that

QX = (e - MX - en(X)§ (2.17)
S(X,.9)=-1g(X, §), (2.18)
r=n(e—X1) —c. (2.19)

The conharmoniccurvature tensor Hof type (1,3) on a Riemannian manifold (M", g) of dimensionnis defined by [9]
H(X,Y)Z =R(X,Y)Z (H%Z) [S(Y, )X — S(X, )Y + g(Y, Z)QX — g(X, Z)QY]. (2.20)

Taking inner product of above equation with & and using equations (2.15),(2.16) and (2.17), the conharmonic curvature tensor on
(€)-Kenmotsu manifold takes the form

(e=2))
(n-2)

n(HX,Y)Z) =[e + 1[g(X, 2n(Y) — g(Y, Zn(X)]. (2.21)

Putting X=§ in equation (2.20)and using equations (2.2),(2.3),(2.12),(2.16),(2.17) and (2.18),

we obtain
HEY)Z =[1 - = + —]M(@Z)Y — eg(Y, Z)E]. (2.22)
By putting Y=¢ in equation (2.20) and using equations (2.2), (2.3), (2.12)(2.17), (2.18)

and (2.19), we get

e 1

n—1+2(n—1)][€ g(X,2)§ —m(DX] + MgX, 2)Y —n(2)X].(2.23)

H(X.8)Z =[1+

Again by putting Z=¢ in equation (2.20) and using equations (2.2), (2.3), (2.11), (2.17) and

(2.18), we get

2Xe
n—2

HOX,Y)E =1+ —— — Z5][n(X)Y — n(Y)X].(2.24)
Pseudo projective curvature tensor Pis defined by [16]
P (X,Y)Z=a R(X,Y)Z+b[ S(Y.Z)X-S(X,2)Y] — = [~ + b [g(¥, Z)X — g(X, Z)Y]. (2.25)
Putting X=¢ in above equation and using equations (2.12),(2.16)and (2.18),we get
P& Y)Z=lathch + (-5 4+ b) (@)Y — eg(Y, 2)E] + bleg(Y, 2)s ~n(n(2)E].  (2:26)
Also by virtue of equation (2.25),we obtain
P (X, )&=[a-bre += (T1 + b)][n(X)Y —n(MXI. (2.27)
Using equation (2.16) in equation (2.25),we get
N(P(X,Y)2)= [ae-(¢ = b+ = (== + b)][g(X, Z)n(Y) — g(Y, ZIn(X)]. (2.28)

Example: Consider 3-dimensional manifold M={(x,y,z)eR?;Z# 0}, where (x,y, z)
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are the standard coordinates in R3.

Let {e, e; e5} be linearly independent given by

e_Zae_Za ey = Za
17 %gx 2727 %gy 03 7 oz

Let g be the Riemannian metric defined by g(e;, e3)=g(e,, e3)=0(e1, €;)=0,
d(es, e1)=g(ez, e2)=9g(es3, e3)=€,
where € = + 1, Let  be the 1 — form defined by n(Z) = €g(Z, e3) for any ZETM".
Let ¢ be the (1,1) — tensor field defined by
d(e1) = —ey, ¢(ey) = eq,(e3) = 0.
Then using the linearity property of ¢ and g we have
n(es) = 1,¢°Z = ~Z +n(2es,
9(9Z, W)=9(Z,W)-n(Z)n(W),
for any vector fields U,W € TM".
Let V be the Levi — Civita connection with respect to metric g, we have
[e1,e2]=0, [eje;]=ce;, [ey, e3] = ee,.
The Riemannian connection V of the metric g is given by Koszul’s formula
29(Vx Y, Z)=X(9(Y,2))+Y(9(Z.X))-Z(9(X,Y))-9(X,[Y.Z])-9(Y.[X,.Z])+9(Z,[X,Y]),

and by virtue of it we have

Vel €3 = Eel,Vez €3 = €€y, Vege?, = 0,
Ve1 e3 = O, Vez e, = —eeg3, VE3 e3 = 0,
Ve1 e = _e3, Vel e = 0, Ve3 e = O,

for £&=e;. Hence the manifold under consideration is an (¢) — Kenmotsu manifolds of
three —dimension.
3. Ricci solitons in an () — Kenmotsumanifoldsatisfying R(E, X).H =0.
Let (R(§ X).H)(Y,2)U=0, then we have

R(& X) H(Y,Z)U- H(R(E X)Y,Z2)U- H(Y,R(& X)Z)U- H(Y,Z2)R(& X)U=0. (3.2)
By virtue of equations (2.12)and (2.20), above equation reduces to
nH(Y, U)X — eg(X, H(Y,2)U)E —n(YIH(X,2)U + eg(X,Y) H (& Z)U - n(Z) H(Y,X)U

+eg(X,2) H (Y,&U-n(U)H(Y,Z2)X + eg(X,U) H (Y,Z2) = 0. 3.2)

Taking the inner product of above equation with £ and using equations (2.2) and (2.3),
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we get
eg(X, H(Y,2)U)=en(X)n(H(Y, 2)U) — n(Y)n(H(X,Z)U)+eg(X,Y)n(H (£ Z)V)
—en(Z)n(H (Y, X)U)+eg(X,Z2)n(H(Y,HU)-n(U)n(H(Y,2)X)

+g(X,Un(H (Y,2)8).
In view of equation (2.21), above equation takes the form
eg(X, H(Y,Z)U)= K[eg(Y, UnX)n(Z) — eg(Z, Un(Xn(Y) + g(Z, Un(Xn(Y)

— (e=2M)
where K=[¢ + —(n_z)].

By virtue of equation (2.20),above equation gives

€

€R(Y,Z U)X - oD [€S(Z, Wg(X,Y) — eS(Y, U)g(X, Z) + eg(Z, U)S(X, Y) eg(Y, U)S(X, Z)]
= K[eg(Y, UnX)M(Z) — eg(Z, UnX)n(Y) + g(Z, UnX)n(Y)
—eg(X, )g(Z, U)--g(Y,UmX)m(Z) + €g(Y,U)g(X.2)].
where K=[e + %].

Putting X=U=¢; and taking summation over i,1 < i <n, we get
€S(Y,2)=0,
which on using equation (2.16) and by putting Y=Z=¢, gives
A=0.
This shows that A is steady.Thus we can state as follows-
Theorem (3.1): A Ricci soliton in an (€) — Kenmotsu manifold with& as space — like vector
field or time — like vector field satisfying R(§, X).H =0, is steady.
4. Ricci solitons in an () — Kenmotsumanifoldsatisfying S(§,X).H =0
Let S(&,X).H =0, which gives
(S(X,8). H)(Y,.2)U=((XA; OH) (Y, Z)U
=(XAs E)(H(Y, Z)U + H((XA £)(Y,Z)U)

+ H(Y, (XA )Z)U + H(Y, Z)(XA &)U,
where the endomorphism (XAgY) is defined by

(XAsY)Z = S(Y,Z)X — S(X, Z2)Y.
Now, from equations (4.1) and (4.2), we get

(SOX,E). H)(Y,Z)U = S(& H(Y, Z)U)X - S(X, H (Y, 2)U)E + S(& Y) H(X, Z)U)
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—S(X,Y) H(E, Z)U + S(§,Z) H(Y,X)U — S(X, Z) H(Y, &)U

+S(§ U) H(Y, Z)X — S(X, U) H (Y, Z)¢&.
Assuming (S(X, &).H)(Y,Z)W = 0, then above equation reduces to

S(& H(Y, Z)U)X —S(XH (Y, Z)U)E + S(& Y)H(X, Z)U — S(X, Y)H(E Z)U
+S(& Z)H(Y, X)U — S(X, Z)H(Y, )U+S(E UH(Y, V)X
—S(X, UH(Y, Z)¢ = 0. (4.4)
Taking inner product of above equation with & we get
en(X) S(§ H(Y, Z)U)- S(X,H(Y,Z)U)+S(E Y)n(H(X, 2)U) — S(X, YIn(H(E 2)U)
+S(& Zn(H®Y, X)U) — S(X, Z(H(Y, OU) +S(E Un(H(Y, 2)X)

—=SX, Un(H(Y,Z)¢) = 0.

In view of equations (2.16)and (2.18),above equation reduces to
(€ =2) g(X,H(Y,2)U)=(1-AX)m(H(Y, Z)U) —in(Y)n(H(X,2)U)+n(XIn(Y)n(H(E 2)U)
—e(Z)H(Y, X)U) + nX)n(ZnH(Y, OU) — en(Un(H(Y, Z)X)
AXOnUINCH(Y, 2)€)-(e = W{g(X,Y)nH(E 2DU)  + g(X, Zn(H(Y, V)
+8(X, Un(H(Y, 2)8) =0,
which on using equation (2.21)gives
(e =21) g(XH(Y,Z)U)=K[(2 — & = k) {g(Y, Un(XIn(Z) — g(Z, UnX)n(V)}
—{gX, Y)n(Z)n(U) - g(Z, X)n(Y)n(U)}

—(e =M {gX Y)@U) - g(Z Xm(¥)nU)}],

(e=21)
(n-2)

where K=[e + ].

Now by use of equation (2.20), above takes the form

(=) gXR (Y, 2)U) - =5 [S(Z, U)g(X, Y) = S(Y, U)g(X, 2)

+g(Z, U)S(X,Y) — g(Y, U)S(X, 2)]
=K[(2 = 2 = 2){g(Y, UmX)n(2) — g(Z, UnX)n(V)}
—{8X, Y)n(Z)n(U) — g(Z, Xn(Y)n(U)}
—(e—=M{g(Y, X, 2) — g(X, V)g(Z, U)}],

Using equation (2.16) in above equation, we get

(= HR(Y.ZU)X) - =5 [(e = D{g(Z V)g(X, Y) — g(¥, V)g(X, 2)

+8(Z, U)g(X, Y) — g(Y, U)g(X, 2)} — g(X, Y)n(Z)n(U)
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+g(X, Zn(NnU) - g(Z, UMEMY) + g(Y, Un(X)n(2)]
=K[(2 =2 = 2){g(Y, Un(Xn(Z) — g(Z, Un(Xn(Y)}
—{gX, Y)n(Z)n(U) - g(Z, Xm(n(U)}
—(e =M {g(Y,Dg(X,Z) — (X, Y)g(Z, U)}].
Putting X=U=e; and taking summation over i,1 < i <n, we get
(e=2)S(Y,Z) =0,

which on using equation (2.16),gives

(e =M =VgY,Z) —m(Y)n(2)] = 0.

Putting Y=Z=&in above equation,we get
either =00or 1 = %
Now,if & is space — like vector field in an (€) — Kenmotsu manifolds, then from above
equation (4.12), we obtain
either A=0o0r A >0,
which shows that either A is steady or expanding .

Thus we can state as follows-

(4.9)

(4.10)

(4.11)

(4.12)

Theorem (4.1): A Ricci Soliton in an (€)-Kenmotsu manifold with & as space — like vector field satisfying condition S(§,X).H =

0, is either steady or expanding.
Again, if we assume vector field  as time — like vector field in an (¢) — Kenmotsu manifolds,
then in view of equation (4.12), we obtain

eitherA=00ri <0,

which shows that either is steady or shrinking.

Thus we can state as follows-

Theorem (4.2):A Ricci soliton in an (€)-Kenmotsu manifold with & as time — like vector field

satisfying condition S(§, X). H = 0, is either steady or shrinking.

5. Ricci solitons in an (¢) — KenmotsumanifoldsatisfyingP (g, X).H=0.

LetP(& X).H =0, where P is pseudo-projective curvature tensor.

Then we have

(P(&X).H)(Y.2)u=0,

which gives

P (& X)H(Y,Z)U-H(B(E X)Y,Z)U-H(Y, P(E X)Z)W-H(Y,Z) B( X)U=0. (5.1)
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Using equation (2.26) in above equation, we get
Ki[n(H(Y, 2)U)X — eg(X, H(Y,2)U)E —n(VH(X, Z)U + eg(X, Y)H(E 2)U
—N(Z)H(Y X)U +eg(X,2)H(Y,EU-n(U)H(Y,Z)X+eg(X,U)H(Y,2)¢]
+b[eg(X, H(Y, 2)U)E — nX)n(H(Y, Z)U)E + eg(X, Y)H(E Z)U

—NXONMHE 2)U + eg(X, HY, U —nX(DHY, HU

+eg(X, DH(Y, Z)§ —n(X)n(U)H(Y, Z)E]= 0, (5.2)
where K; = [a +ieb + %(n% + b)].
Taking the inner product of above equation with & we get
Ky [en(XOn(H(Y, 2)U) — eg(X, H(Y,Z)U)—n(In(HX, 2)U) + eg(X, Y)n(H(E 2)U)
—N@HEY,X)U) +eg(X,ZMH(Y.HU)-n(Un(H(Y,Z)X)+eg(X,Un(H(Y,2)5)]
+b[eg(X, H(Y, Z)U) —n(XMH(Y, Z)U)E + eg(X, Y)n(H(E, 2)U)
—nON(NHE Z)U) + +eg(X, Z(HY, OU) —nXn(Z)n(H(Y, HU)
+eg(X, Un(H(Y, 2)&) — nX)mU)n(H(Y, 2)E)] = 0. (5.3)
In view of equation (2.21), above equation reduces to
e(K; — b)g(X, H(Y, 2)U) = K; Kz [(e — D{g(Y, UnX)n(Z) — g(Z, UnX)n(Y)}
+e{g(X, ZIn(Yn(U) — g(X, Y)g(Z, U)}
+K;b(e — DI[gX, Z(Y)n(U) — gX, In(Un(D)] = 0, (5.4)

which on using equation (2.21), gives

(Kl—b)E

e(Ky — b)R(Y, Z, U)X — [S(Z, U)S(X,Y) — S(Y, g(X, Z) + g(Z, U)S(X, Y)

—g(Y, U)S(X, 2)] = K; Kz [(e = D{g(Y, UnXOn(Z) — g(Z, UnX)n(Y)}
+e{gX, Zn(n(U) — g(X, V)g(Z, U)}
+K;b(e — D[gX, Zn(Yn(U) — gX, Y)n(Un(2)] = 0. (5.5)
Usingequation (2.16) in above equation, we get

(K1—b)€

(K1 = b)eR(Y,Z, U)X — [2(e = M{g(Z, U)gX,Y) — g(Y,U)g(X, Z)

+8(Z, D)gX, Y) — g(Y, U)g(X, 2)} — (X, Y)n(Z)n(U)
+g(X, Zn(Vn(U) = gZ UnEXm(Y) + g(Y, Un(X)n(2)]
= K; Kz [(e = Dig(Y, UnX)n(Z) — g(Z, Un(Xn(Y)}
+e{g(X, Zm(n(V) — g(X, Y)g(Z, U)}

+K;b(e — D[gX, Zn(YIn(U) — gX, Y)n(Un(2)] = 0. (5.6)
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Putting X=U=e; and taking summation over i,1 < i <n, we get
e(Ky —Db)S(Y,Z) = 0. (5.7)
Using equation (2.17) in above equation, we get
(K1 = b)e[(e = Mg(Y,Z) —n(Y)n(2)] =0, (5.8)
Putting Y=Z=¢ above equation, we get
either A = O or (K; —b) = 0,(5.9)
Now, suppose is space like vector fields in an (¢) — Kenmotsu manifolds, then from
above equation (5.9), we obtain,
eitherh =00rA <0,
which shows that A is either steady or shrinking. Thus we can state as follows-
Theorem (5.1):A Ricci soliton in an (€)-Kenmotsu manifold with & as space — like vector
field satisfying condition P(&, X).H = 0, is either steady or shrinking.
Again if we assume vector field & as time — like vector field in an (¢€) — Kenmotsu manifolds,
then in view of equation (5.9), we obtain
A=0o0rA>0,
which shows that A is a either steady or expanding.
Thus we can state as follows-
Theorem(5.2): A Ricci soliton in an (¢) — Kenmotsumanifold admitting & as time like vector
fieldsatisfyingP(&, X).H =0, is either steady or expanding.
6. Ricci solitons in an (€ ) — Kenmotsumanifold satisfyingH(E , X).P=0.
The condition H(E, X). P = 0, implies that
(HEX).P)(Y,2)U =0,
which gives
H (& X)P(Y,Z)U-P (H(& X)Y,Z)U-P (Y, H(E X)Z)U-P (Y,Z) H(E X)U=0, (6.1)
Using equation (2.22)in above equation,we get
NPY,2)U)X — eg(X,P(Y,2)U)é — n(Y)P(X,Z)U + eg(X, Y)P(§, 2)U
—n(Z)P(Y, X)U+eg(X,Z)P(Y,E)U-n(U)P(Y,Z)X+eg(X,U)P(Y,Z)E]= 0, 6.2)

1

where K=[1 - %+ =

Taking the inner product of above equation with &, we get
en(X)M(P(Y, V) — eg(X, P(Y,2)U)-n(YIn(P(X, 2)U) + eg(X, YIn(P(E 2)V)
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—n@M(P (Y. X)U)+eg(X.Z)n(P (Y.HU)-n(Un(P(Y.2)X)
+eg(X,Um(P (Y.2)§)]=0. (6.3)
In view of equation (2.28) above equation reduces to
€g(X, P(Y,2)U)=K[eg(X, 2)g(Y, U) — eg(X, Y)9(Z, V)], (6.4)
which on using equation (2.25) gives

eag(X,R(Y,2)U) + b[S(Z, V)g(X, Y) — S(Y, U)g(X, 2)]
- rn—G [n%al +b] [9(Z, U)g(X, Y) — g(Y, Vg (X, 2)]

= K[g(Y,Um(2) - 9(Z, Un(M)]. (6.5)
Using equation (2.16) in above equation, we get
€ag(X,R(Y, 2)U) + eb[(e — M{g(X, Y)9(Z,U) — g(Y,U)g(X, 2)}

—9(X, YIn(@n) +g(X, Dn(Y)nU)]

2[5+ b] 92, WG V) - 9V, VX, D)
= K[g(Y,Um(2) — g(Z, Un(M)]. (6.6)
Putting X=U=¢; and taking summation over i,1 < i <n, we get
€aS(Y,2) = K[g(Y,e)n(2) — 9(Z,epn(Y)], (6.7)
which on using equation (2.16), gives
ea[(e = Mg(Y, 2) —n(Y)(@D)]= Kg(Y,enn(2) — 9(Z,edn(Y)]. (6.8)
Putting Y=Z=¢ in above equation, we get
A=0,

which shows that A is steady.
Thus we can state as follows-
Theorem (6.1):A Ricci soliton in an (€)-Kenmotsu manifold with & as space — like vector
field satisfying condition H(E, X).P = 0, is steady.
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