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Abstract—This paper presents an approach to increasing the capability of scientific computing through the use of real-time, partially 

reconfigurable hardware accelerators that implement basic linear algebra subprograms (BLAS).  The use of reconfigurable hardware accelerators 

for computing linear algebra functions has the potential to increase floating point computation while at the same time providing an architecture 

that minimizes data movement latency and increase power efficiency.  While there has been significant work by the computing community to 

optimize BLAS routines at the software level, optimizing these routines in hardware using reconfigurable fabrics is in its infancy.  This paper 

begins with a comprehensive overview of the history and evolution of BLAS for use in scientific computing.  In the reviews current successes in 

using reconfigurable computing architectures achieve acceleration.  It then presents an investigation of an accelerator approach with a 

granularity at the logic circuit level through real-time, partial reconfiguration of a programmable fabric with static accelerator cache memory to 

minimize data movement.  Empirical data is presented for a study on a single-FPGA. 
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I. INTRODUCTION 

Computer-based numerical analysis and visualization 
enables our science and engineering communities to tackle 
some of the most complex problems facing society.  
Performing linear algebra on large sets of data is at the core of 
scientific computing. Advances in the underlying device 
technology to perform linear algebra has enabled scientific 
computing to impact a wide range of fields including biological 
and physical sciences, geosciences, finance, medicine, energy 
and defense. Increasing the computational infrastructure 
available to researchers is a key priority of numerous federal 
agencies [1], [2], [3], [4].  In a 2012 budget request to congress, 
the National Science Foundation (NSF) stated that deploying a 
comprehensive cyberinfrastructure "has the potential to 
revolutionize every science and engineering discipline as well 
as education [5]."  In order to continue to enhance the 
capability of the nation's cyberinfrastructure, novel computer 
architectures and technologies are needed that overcome 
obstacles identified by numerous researchers [6], [7], [8] that 
will prevent continued scaling of scientific computing clusters.  
To overcome these obstacles, innovations must be made that 
exploit massive parallel computation resources, minimize the 
latency of large data movement, and maximize power 
efficiency.  The underlying engine of scientific computing is 
the execution of basic linear algebra subprograms (BLAS).  
These subprograms represent the most primitive operations 
needed for numerical linear algebra and are used for the 
majority of scientific computing algorithms today.  Targeting 
innovations to improve the execution efficiency of BLAS will 
provide the greatest gain in computing performance. 

In this paper, we propose an architecture for an FPGA-
based hardware accelerator for BLAS that exploits real-time, 
partial reconfiguration.  We assert that this approach will 
significantly increase computation of BLAS by reconfiguring 
the hardware during run-time to implement the BLAS primitive 
being executed.  This provides the most efficient resource 
utilization by using the FPGA solely for the BLAS primitive 
being executed and the exact primitive argument size.  This is 

an improvement over implementing large sets of BLAS on an 
FPGA in which only portions are used at any given time.  This 
is also an improvement over creating oversized BLAS 
primitives that are not properly matched to the current 
argument size.  The ability to dynamically create the optimized 
BLAS primitive makes our approach more than a simpler 
schedule but a true real-time hardware resource manager. 

We also assert that this approach will reduce data 
movement by leaving the data within the memory of the FPGA 
and reconfiguring the hardware around it.  This is an 
improvement over a complete FPGA reconfiguration in which 
the data is lost and must be reloaded.  The approach of leaving 
the argument data in FPGA memory promises to scale across 
multiple FPGAs with a linear performance increase.  This is an 
improvement over fixed size caches that must be swapped 
and/or reloaded as the design extends beyond a single device. 

II. A BRIEF HISTORY OF SCIENTIFIC COMPUTING 

A. Basic Linear Algebra Subroutines  

 The most computationally expensive part of scientific 

computing is performing numerical linear algebra [9], [10], 

[11].  These computations include solving linear systems of 

equations, linear least squares problems, eigenvalue problems 

and singular value problems.  At the core of numerical linear 

algebra are floating point operations on large sets of data.  

Increasing the efficiency of these low-level operations has the 

largest impact on improving performance of scientific 

computing.  In the 1970s a group of researchers (Larson, et al) 

developed a set of low-level subprograms for the basic 

operations of numerical linear algebra [12], [13], [14], [15].  

This package, known as Basic Linear Algebra Subprograms, 

has become the underlying engine for the majority of scientific 

computing algorithms in use today.  BLAS are divided into 

three levels, depending on the type of array argument the 

operation is performed on.  The Level 1 BLAS perform vector-

vector operations (e.g., 1D/1D).  The Level 2 BLAS perform 

matrix-vector operations (e.g., 2D/1D).  The Level 3 BLAS 
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perform matrix-matrix operations (2D/2D).  The rationale for 

the partitioning of the subprograms into three levels is to give 

an indication for how much optimization can be accomplished, 

primarily with regards to minimizing memory access latency.  

Level 2 and Level 3 BLAS consume the most memory, thus, 

they have the most room for optimization based on the 

architecture of the underlying computer system [16].  

Numerous packages were developed to provide higher-level 

numerical functionality based on BLAS.  The LINPACK 

library, based on Level 1 BLAS, was developed in the late 

1970s to provide solvers for linear equations and linear least 

squares [17].  The EISPACK library was also developed in the 

1970s to provide numerical computation of eigenvalues and 

eigenvectors of matrices [18].  These original numerical 

packages were designed for sequentially executing computers.  

Thus, as computer technology advanced and parallel and 

distributed resources became available, these packages became 

highly inefficient as they ignored multi-layered memory 

hierarchies.  As a result, they spent a considerable amount of 

time moving data instead of performing floating point 

operations.  

 In the 1990s the LAPACK library was developed, which 

consolidated the operations from LINPACK and EISPACK in 

addition to adding support for matrix factorizations (e.g., LU, 

Cholesky, QR, SVD, and Schur) [19].  The original goal of 

LAPACK was to optimize the operations from LINPACK and 

EISPACK for use on shared memory and parallel processors.  

The LAPACK library was designed to exploit the Level 3 

BLAS, executed on multiple machines with an inherent 

memory hierarchy.  While the LAPACK library presented the 

foundation for increasing the performance of scientific 

computation through scaling resources, it did not efficiently 

support heterogeneous resource scaling.  As a result, the Basic 

Linear Algebra Communication Subprograms (BLACS) was 

developed to create a linear algebra oriented message passing 

interface across a large range of distributed computing 

platforms [20].  Finally, ScaLAPACK was developed in the 

late 1990s to accomplish the original goals of LAPACK, but 

using distributed, heterogeneous computers while overcoming 

machine dependencies [21].  Any machine with BLAS, 

BLACS and LAPACK installed can be utilized as a resource 

for computation using the ScaLAPACK libray.  Improvements 

to the BLAS package have also been released to optimize 

functions for distributed computation and support for sparse 

matrix operations [22], [23].  Furthermore, BLAS has been 

augmented with support for direct parallel operation through 

the Parallel BLAS (PBLAS) package [24]. 

B. Software Tuning of BLAS Kernels 

 The history of numerical linear algebra packages just 

described would lead some to believe that most of the 

technical issues of scaling scientific computing capability have 

been solved and all that remains is adding computing 

resources.  However, the ability to exploit massive amounts of 

parallel computation and storage resources has introduced 

some of the most complicated issues in computer science.  The 

rapid evolution of computer hardware has further complicated 

the problem by continually adding more sophisticated, yet 

heterogeneous resources to growing computing clusters.  In 

the past decade, a considerable amount of research has been 

focused on tuning the BLAS software for the computer 

architecture it is deployed on.  In 2008, Goto et al. [25] 

presented the details of how to hand-tune Level-3 BLAS 

matrix-matrix operations for a variety of existing computing 

architectures.  The authors showed how proper tuning can 

achieve increased performance across a variety of platforms.  

This work demonstrated the potential for performance 

improvement through proper kernel optimization, but also 

highlighted the complexity and time consuming nature of 

hand-tuning.  Compilers provide an inherent level of 

optimization, but rely on simple analytical models of the 

hardware to compute machine-dependent parameters such as 

tile sizes and loop unrolling factors [16].  These model-driven 

optimizations often do not capture all of the complexities of 

modern architectures [26].  In 2008, a performance study by 

Soliman [27] of BLAS executed on an Intel Xeon multi-core 

system demonstrated how complex this problem is.  The 

performance of BLAS varied widely depending on input 

argument sizes and how they mapped into the available 

processor cores and memory hierarchy.  This study highlighted 

how having parallel, multi-core resources often does not 

improve performance if the software cannot exploit them 

efficiently.  An example was shown where a two-core system 

outperformed a four-core system even when using fewer 

threads for the computation due to L2 cache latency [27]. 

 As an improvement to model-driven optimization, 

researchers have been exploring the use of empirical hardware 

searches to determine machine-dependent parameters and then 

use them to automatically generate optimal BLAS libraries.  In 

2005, Demmel et al. [16] presented a comprehensive overview 

of the work in this area and indicated that the primary factor 

dominating BLAS kernel performance is the effective use of 

the machine's memory hierarchy.  Other factors also contribute 

to performance and must be considered such as functional unit 

structure, the number of registers, and pipeline topologies.  

Due to the rapid advancement in computer hardware, it is 

impractical to optimize the machine-dependent kernel 

implementation through hand-coded programming efforts.  

Further, the effort to create machine-tuned compilers for such 

a narrowly focused application was deemed too large of a task 

to be justified, particularly with new hardware architectures 

continually being introduced.  Instead, the authors proposed 

automatic tuning systems to empirically determine key 

operating parameters of the underlying hardware.  These 

systems effectively generate a large set of BLAS kernels with 

different operating parameters and then measure the 

performance on the actual hardware.  Once key parameters are 

determined, the system then generates the most optimal BLAS 

kernel code to be compiled. Demmel et al. presented two 

systems. The first is called Automatically Tuned Linear 

Algebra Software (ATLAS) and is targeted for dense matrix 

operations.  ATLAS performs a comprehensive, empirical 

analysis of the computer hardware to select the optimal 

operating parameters.  The second is called Optimized Sparse 

Kernel Interface (OSKI).  OSKI uses a similar search 

algorithm as ATLAS but takes advantage of the regularity of 

sparse data structures to reduce the tuning time.  Both systems, 

and their variants, provide an improvement over static 

heuristics or profile counts that are often stated with metrics 

that do not directly represent the actual architecture 

performance.   

 Research into tuning the BLAS kernels to optimize for the 
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underlying computer hardware continues to this day.  In 2008, 

Reddy et al. [28] proposed a new package specifically for 

tuning across heterogeneous, parallel hardware called 

HeteroPBLAS.  In 2008/09, Seik et al. [29] and Belter et al. 

[30] presented optimization that considers a sequence of 

BLAS operations instead of just a single BLAS computation.  

In 2010, Jessup et al. [31] presented a graphical interface in 

order to set tuning parameters based on either heuristics or the 

results of a machine search.  In 2013, Duchateau et al. [32] 

proposed generating the kernel code directly from linear 

algebra equations in order to create the most efficient 

implementation.  While each of these recent contributions 

produced incremental advancement to BLAS kernel 

optimization, they are still focused on extracting machine-

dependent parameters for the generation of the BLAS kernel 

software. 

C. Hardware Optimization for BLAS Computation 

 In the last decade, there has been a parallel thread of 

research investigating how to best create computer hardware 

to execute the BLAS kernels.  In this approach, the hardware 

is architected to accommodate the low-level BLAS.  Bell et al. 

[7] and Szalay et al. [33] described in 2006 and 2008 

respectively how Petascale and Exascale computing systems 

for use in numerical analysis need to be architected with 

balance between computational units, memory hierarchy, and 

I/O bandwidth if they are to be realistically scaled.  In 2012, 

Pedram et al [34] presented a design approach for multi-core 

systems based specifically on computing Level-3 BLAS that 

promised to deliver increased computation while conserving 

energy.  In 2012, Intel released a high-performance computing 

(HPC) accelerator [35] with a similar architecture to those 

discussed in [7], [33], [34] that provides abundant cores (up to 

80 on a single chip) that are dedicated to only computation.  

All of this work has been focused on developing architectures 

with abundant, general-purpose, multi-core processors and 

ignores the use of more customized, heterogeneous computing 

resources.   

 Graphics Processing Units have received recent interest 

for use in scientific computing as they offer increased amounts 

of parallel computation over multi-core processors and have 

already been optimized for low-level arithmetic operations 

[36].  GPU accelerator cards have been developed for use in 

clusters to provide heterogeneous computing resources with 

promising results.  In 2008, Volkov and Demmel [37] 

presented a benchmarking study of dense, Level-3 BLAS 

executed on a variety of NVIDIA GPUs.  In particular, they 

demonstrated LU, QR and Cholesky factorization rates at over 

300 GFLOPS.  Numerous other studies in the last 3 years have 

shown how GPUs can be used to accelerate scientific 

computing [38], [39], [40], [41], [42].  The primary drawback 

of GPU acceleration is the difficulty in the programming 

model, which borrows much of its abstraction from graphics 

applications [37].  To achieve the maximum efficiency from a 

GPU, it requires the developer to have an intimate knowledge 

of the underlying architecture and how the libraries exploit the 

parallel resources. 

D. Reconfigurable Computing Platforms for BLAS 

Computation 

Reconfigurable computing is an area that promises to 

provide the most improvement in scientific computing, not 

only in terms of computation, but also in power efficiency.  

The theory of reconfigurable computing is that the hardware 

can be changed at run-time to implement the exact algorithm 

being executed.  This is as opposed to mapping the software 

into fixed hardware.  The primary technology in use today for 

reconfigurable computing is the Field Programmable Gate 

Array.  An FPGA contains abundant, programmable logic 

elements that are connected through a programmable 

interconnect system.  While the overhead associated with the 

programmability of an FPGA does impact system 

performance, FPGAs are extremely attractive for scientific 

computing due to the promise of massive parallelism.  Figures 

1 and 2 show the theoretical computation rates of a single 

FPGA device (64-bit and 32-bit) compared to state-of-the-art, 

multi-core system released during the same year [43].  These 

rates are accomplished by exploiting the abundant parallel 

resources on the FPGA without the need for cache swapping 

as in a multi-core CPU.  Theoretical computation rates for a 

Virtex-6 FPGA (in 2010) reach 116 GFLOPS compared to the 

only 72 GFLOPS and 110 GFLOPS from the latest Intel and 

AMD multi-core CPUs respectively [44]. 

FPGA technology also promises to deliver improved energy 

efficiency.  FPGAs are a widely-used technology, thus they 

have sufficient volume to warrant the most recent process 

nodes.  Modern FPGAs are being fabricated in the 20 nm 

process node resulting in over 4M logic resources on a single 

device [45].  Using the latest process node and having the 

ability to optimize the hardware for the exact algorithm 

provides significant improvements in energy efficiency.  

FPGAs have been shown to consume 84% less energy per 

computation than GPUs implemented on the same node [46] 

and as much as an order of magnitude less power consumption 

compared to CPUs implemented on the same node [47].  The 

parallelism and energy efficiency of FPGAs has made them 

highly competitive with general purpose processors in fields 

such as scientific computing [48], [49], [50], imaging 

applications [51], [52], cryptology [53], and communication 

[54], [55]. 

Recently, FPGA technology has advanced to the point 

where their use as hardware accelerators within traditional 

CPU-based system is feasible.  In this use-model, FPGAs are 

 

Figure 1. Predicted Opereron Processor vs. Virtex FPGA 64-Bit Performance 
[44].  
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programmed to execute some of the most computationally 

expensive operations of an algorithm.  The host CPU off-loads 

the computation to the FPGA when these operations are 

needed.  In scientific computing applications, the FPGAs are 

most often programmed to compute linear algebra, particularly 

BLAS.  In 2008, Zhuo & Prasanna [56] presented a design 

trade-off study of FPGAs as hardware accelerators for 

performing linear algebra based on the state-of-the-art at the 

time (e.g., a Xilinx Virtex-II).  The authors showed how 

FPGAs could outperform general-purpose processors (e.g., 2.2 

GHz AMD Operton) for operations such as matrix 

multiplication and matrix factorization, achieving computation 

nearing 4 GFLOPS.  They also showed how FPGAs promised 

to scale more efficiently than increasing general-purpose CPU 

nodes because they do not suffer from the memory hierarchy 

issues.  Instead, multiple FPGAs can be connected together to 

scale the computation resources directly.   

Several high-performance computers were introduced circa 

2008 by commercial vendors that used FPGAs as hardware 

accelerators.  These systems represented the first steps by 

industry into reconfigurable computing.  In 2008, El-Ghazawi 

et al. [57] presented an overview of three early commercial 

reconfiguration computer systems, the Cray XD1 [58], the 

SRC-6 [59], and the SGI Altrix/RASC [60].  Each of these 

systems contains general-purpose processors with FPGA 

hardware accelerators.  These systems were benchmarked 

using a variety of scientific computing applications such as 

molecular dynamics, bioinformatics, and cryptanalysis.  In 

each application, these systems showed significant speedup 

compared to a general purpose AMD Opteron processor 

implementation.  In some cases, as much as four orders of 

magnitude improvement in performance, up to three orders of 

magnitude reduction in power consumption, and two orders of 

magnitude savings in cost and size were achieved by 

performing the computation on the FPGA hardware 

accelerator [57]. 

 

 The study of FPGA performance for accelerating linear 

algebra also continues to this day.  In 2010, Kestur et al. [61] 

presented a new comparison of the performance of BLAS 

between FPGAs, CPUs, and GPUs.  This compared the 

performance of Level-2 BLAS on a Xilinx Virtex-5 FPGA, a 

3.15 GHz Intel Core 2, and a Nvidia 9500 GT.  The results 

showed that the FPGA was able to achieve performance on par 

with the other systems (>3 GFLOPS) while achieving 

significantly better power efficiency (>2k iterations per Joule).  

In 2012, Chungz et al. [62] demonstrated 6.4 GFLOPS 

performance on a single Xilinx Virtex-6 FPGA for a matrix 

multiplication.  Also in 2012, Jovanovic et al. [63] 

demonstrated 4.5x better performance on a matrix 

multiplication compared to state-of-the-art 4-core processors 

(Intel Core2Quad and AMD Phenom X4, both at 2.8GHz).  

And in 2013, Cappello & Strenksi [64] presented a 

performance evaluation on a Xilinx Virtex-7 FPGA, which 

demonstrated a matrix multiplication at 180 GFLOPS when 

using the built-in DSP slices within the FPGA. 

E. Our Contribution  

 While the promise of exploiting FPGAs as hardware 

accelerators for scientific computing is immense, one of the 

practical barriers to implementation is in creating a real-time, 

reconfigurable system that dynamically brings accelerators 

online when needed.  The first component of such a system is 

abstracting this reconfiguration from the user through a 

hardware operating system [Agne 2014 and Andrews 2014].  

The second component is understanding how the hardware 

reconfiguration impacts system efficiency both in terms of 

latency and power consumption.  Our work aims to provide 

insight into the second component of such a system.  This 

paper presents empirical data on the impact of real-time 

reconfiguration of an FPGA on both computation and power 

efficiency when bringing BLAS accelerators online. 

III. EVALUATION OF A PROTOTYPE RC BLAS SYSTEM 

 In order to prove the viability of a reconfigurable system 

that can dynamically bring on FPGA-based BLAS 

accelerators, our team implemented a prototype system to 

compute level 1 BLAS operations for a variety of vector sizes.  

The system was designed to mimic an HPC consisting of a 

general-purpose processor augmented with hardware 

accelerators.  In order to provide a fair performance 

comparison between different processing nodes often 

encounter in a typical HPC (i.e., the GP processor and 

accelerator hardware are implemented in different fabrication 

processes), the system was designed to contain both the host 

processor and the accelerators on a single FPGA. Figure 3 

shows a graphical depiction of the potential improvements that 

can be gained by using a hardware accelerated system.  The 

improvement in power efficiency comes from behavior that 

while the instantaneous power consumption is higher in the 

accelerated system, the time of the computation is much less 

than a GP system.  This means the overall energy used is less.  

The improvement in performance comes from the behavior 

that the computation in the accelerated system takes less time 

compared to the GP system, even after considering the latency 

of dynamically bringing on the accelerator tile.  The latency in 

this system is labeled “PR Operation”, referring to the partial 

reconfiguration of the FPGA to instantiate the accelerator. 

 

 

Figure 2. Predicted Opereron Processor vs. Virtex FPGA 32-Bit 
Performance [44].  
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A. Prototype Architecture 

 The prototype developed consisted of a Virtex-6 

(LX130T) FPGA that contained the reconfigurable fabric.  The 

Virtex-6 contains a MicroBlaze soft processor (32-bit RISC) 

that represents the primary host processor.  This processor 

takes approximately 15% of the available resources of the 

Virtex-6 leaving the rest for reconfigurable accelerator tiles.  A 

separate Xilinx Spartan-6 FPGA controlled the partial 

reconfiguration of the accelerator tiles on the Virtex-6 FPGA. 

 Two types of hardware accelerator tiles were implemented 

for the preliminary study.  The first was a simple floating point 

unit (FPU) that can compute the individual operations of L1 

BLAS one at a time. The FPU accelerator allows faster 

computation than running the operations on the MicroBlaze by 

itself, but is not optimized for vector operations.  This 

represents a very basic approach to hardware acceleration.  

The second accelerator that was implemented is a true L1 

BLAS tile that implements a basic set of vector operations.  In 

our study, the MicroBlaze processor performing the vector 

operations (one at a time) sets the baseline for the analysis for 

both computation and power consumption.  The FPU was then 

dynamically brought online and the operations were performed 

again using the accelerator.  Finally, the FPU was disabled and 

the L1 BLAS accelerator was brought online to perform the 

same computations for a third time.  Key parameters such as 

configuration latency, computation speedup, and power 

consumption were recorded for this experiment.  Figure 4 

shows the prototype system developed for this experiment and 

the associated floorplan.  For this experiment, the accelerators 

were developed prior to run time (instead of dynamically 

during run time).  The accelerators were brought online by 

partially reconfiguring a portion of the Virtex-6 FPGA.  The 

accelerators were disabled by programming the corresponding 

region of the Virtex-6 FPGA with a bitstream containing data 

corresponding to an un-configured FPGA state. 

 The L1 BLAS vector operations that were implemented 

for this study were double scalar vector product (DAXPY), 

double product of magnitudes (DASUM), double dot product 

(DDOT), double vector scalar product (DSCL), index of 

vector maximum (IDAMAX), and index of vector minimum 

(IDAMIN).  On the MicroBlaze processor, these BLAS tasks 

were performed using routines written using basic double 

arithmetic instructions inherent to the processor instruction set.  

The instructions used were double addition (ADDD), double 

subtraction (SUBD), double multiplication (MULD), double 

 

Figure 3. Graphical Depiction of Potential Performance Improvement of 
Accelerator. 

 

Figure 4. Prototype System Developed to Evaluate FPGA-Based BLAS 
Accelerators. 
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division (DIVD), and compare (CMP).  Each of these scalar 

operations were then implemented in hardware for the FPU 

accelerator. 

B. Experimental Results 

The first experiment performed was to evaluate the 

reconfiguration time, reconfiguration power consumption, and 

computation power consumption for each of the three systems 

in this work (MicroBlaze, MicroBlaze+FPU, and 

MicroBlaze+BLAS).  Figure 5 shows the results of this 

experiment.In this plot, the power of the Virtex-6 FPGA was 

measured as it ran the BLAS operations continuously in each 

of the three test conditions (labeled 1, 2, and 3 in the plot) and 

also as the FPGA was reconfigured.  The reconfigurations 

included a full FPGA configuration in addition to every 

possible accelerator configuration.  In this plot the “1.0V V6 

Power” is the internal core power for the Virtex-6 while the 

“3.3 V Power” is the Virtex-6 I/O power.  During a 

reconfiguration (full or partial), the core power drops to its 

quiescent state while the I/O power increases as the bitstream 

is driven in.  This experiment showed a variety of both 

intuitive and non-intuitive items.  First, the operating power 

consumption was as expected with the MicrBlaze 

configuration consuming the least (1) and the 

MicroBlaze+FPA (2) and MicroBlaze+BLAS (3) 

configurations consuming the most. Also shown is a 

MicroBlaze+FPU+BLAS configuration.  Note that the 

MicroBlaze+FPU+BLAS was not a valid operating mode but 

just measured as a validity check of the experiment setup.  The 

second, less intuitive item of note was that the power 

consumption during partial reconfiguration was significantly 

higher (10% to 15%) than during operation.  This indicates 

that there will be a breakeven point with respect to power 

efficiency for the proposed architecture in order to overcome 

the increased power consumption associated with partial 

reconfiguration.  The final item of interest was the 

reconfiguration time of the accelerator tiles.  This was 

measured nominally at 233 ms.  Again, this non-negligible 

amount indicates that there will be a breakeven point with 

respect to computation performance for the proposed 

architecture in order to overcome this latency. 

 Table 1 shows the time and the power consumption during 

the reconfiguration procedures for the Virtex-6 FPGA.  The 

size of the PR tiles in this experiment are all approximately 

33% of the fabric.  The time to perform PR consists of the time 

to read from an SD card that contains the PR bitstream files 

plus the time to write to the FPGA.  The time to perform a full 

configuration of the FPGA consists of the time to read from 

the Xilinx platform flash memory device plus the time to write 

to the FPGA.  There is not a linear mapping between the PR 

size and the percentage of the FPGA that is programmed.  For 

example, the PR of ~33% of the FPGA takes 233ms; however, 

the full configuration of the FPGA does not take 3*233ms 

(i.e., 100%).  This is due to the programming for PR being 

accomplished using a parallel interface in our system while the 

full configuration uses a serial interface. 

 
TABLE1. FPGA Configuration Time and Power. 

 Time (sec) Power (W) 

Full Configuration 2.139 0.119 

Partial Reconfiguration (PR) 0.233 0.089 

 

 Table 2 lists the power consumption while computing the 

BLAS operations for each of the three architectures studied in 

this work.  Also provided for reference is the power 

 

Figure 5. Prototype Empirical Results for Power Consumption and Reconfiguration Latency. 
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consumption of the FPGA when unprogrammed.  Note that the 

FPU and BLAS tiles are mutually exclusive under normal 

operation.  When not in use, the tile resources are configured 

back to their original, unconfigured state to reduce power. 

TABLE 2. Computation Power Consumption 

 Power (W) ∆ Power (W) 

Un-programmed FPGA 410 m - 

MicroBlaze only 900 m + 490 m 

MicroBlaze + FPU Tile 950 m + 50 m 

MicroBlaze + BLAS Tile 970 m + 70 m 

 

 The primary analysis of interest when considering power 

efficiency is comparing how much energy it takes for each of 

the systems to compute the same number of BLAS operations.  

We setup an experiment to perform the BLAS operations 

mentioned above on a set of data that was swept in size.  We 

defined the variable N as the number of operations computed 

in order to average the computation time across a set of 

different BLAS primitives.  We then measured the time for 

each system to complete the computation.  The first set of 

computations was performed by the MicroBlaze using its 

inherent instruction set.  Next, the FPGA was partially 

reconfigured to bring on the FPU accelerator and the same 

operations were performed but with the assistance of the 

accelerator.  At the end of the operations, the accelerator tile 

was unprogrammed and the time for the computation was 

recorded.  Using this empirical approach, the partial 

reconfiguration time in addition to the communication time 

with the accelerator was accounted for.  Finally, the L1 BLAS 

accelerator was brought online to perform the same operations.  

This allowed a comparison between the three configurations to 

be recorded in a single run.  This was repeated for a sweep of 

vector sizes.   

The computation time for the general purpose, MicroBlaze 

system is denoted as tGP and the power usage is denoted by 

PGP(taken from table II).  The total energy used by the 

MicroBlaze system to complete N operations is then found by 

multiplying the power (W=J/s) by the computation time (s) to 

find the total number of Joules used.  Equation 1 gives the 

calculation of MicroBlaze energy based on the power 

consumption and computation time. 

𝐸𝐺𝑃 = 𝑃𝐺𝑃 ∙ 𝑡𝐺𝑃  (1) 

 The energy used by the accelerated systems needs to 

consider additional procedures.  First, the movement of data 

from the host processor to the accelerator after instantiated is 

included in the computation time measurement (tACC).  Second, 

the energy required for partial reconfiguration is simply the 

power used (PPR) multiplied by the reconfiguration time (tPR).  

This quantity is a constant and independent of N.  Equation 2 

gives the calculation of the accelerated energy usage. 

𝐸𝐴𝐶𝐶 = 𝑃𝐴𝐶𝐶 ∙ 𝑡𝐴𝐶𝐶 + 𝑃𝑃𝑅 ∙ 𝑡𝑃𝑅  (2) 

 Figure 6 shows the energy usage comparison of the three 

systems as the number of operations is swept.  This plot 

illustrates that for a small number of operations, the 

MicroBlaze system has better energy efficiency than the 

accelerated configurations.  This is because for a small number 

of operations, the higher power consumed by the accelerators, 

plus the additional power used during partial reconfiguration 

and data movement, dominates their overall energy usage.This 

plot shows an inflection point around 90,000 operations where 

the accelerated systems become more energy efficient than the 

MicroBlaze system.  This occurs when the reduced time of the 

accelerated computation outweighs the cost of using a higher 

power computational element even after including PR power.   

 The next analysis that was performed was calculating the 

speedup that was achieved by the accelerators.  The speedup is 

the ratio of the baseline system’s computation time (tcomp-old) 

over the accelerated system’s computation time (tcomp-new).  A 

speedup less than 1 indicates a loss of performance and a 

speedup ratio greater than 1 is an improvement in system 

performance. The baseline system’s computation time is tGP.  

The accelerated computation time is the actual computation 

and data movement time (tACC) plus the PR time to bring on 

the accelerator (tPR).   Equation 3 gives the calculation of 

speedup.  

 

Figure 6. Energy Usage vs. the Number of Operations between the MicroBlaze baseline and Two Accelerator Configurations. 



International Journal on Recent and Innovation Trends in Computing and Communication                           ISSN: 2321-8169 
Volume: 5 Issue: 1                    227 – 236 

_______________________________________________________________________________________________ 

234 

IJRITCC | January 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑐𝑜𝑚𝑝 −𝑜𝑙𝑑

𝑡𝑐𝑜𝑚𝑝 −𝑛𝑒𝑤
=

𝑡𝐺𝑃

𝑡𝐴𝐶𝐶  +𝑡𝑃𝑅
(3) 

 Figure 7 shows the speedup achieved by the accelerators 

versus the total number of operations.This plot clearly shows 

the inflection point between where the accelerator 

performance is dominated by data movement and the partial 

reconfiguration time and where the increased computational 

ability of the accelerators becomes dominant.  This inflection 

point occurs around 100,000 operations.  This plot also shows 

how the BLAS accelerator achieves a higher speedup 

compared to a simple scalar accelerator (i.e., the FPU).  This 

improved performance is due to the optimal hardware 

configuration of the BLAS tile when performing the vector 

operations.  This improved performance also only occurs for 

large enough vectors in which the improvement outweighs the 

reconfiguration latency. 

IV. FUTURE WORK 

 One of the pressing issues in modern computation is the 

latency of data movement between memory and the actual 

processing hardware.  In the study presented in this paper, all 

data was transferred to memory within a single FPGA device.  

This set an upper bound on the size of the maximum dataset 

that could be evaluated in addition to only providing latency 

numbers for on-chip data movement.  In order to more fully 

understand the potential impact that real-time, reconfigurable, 

BLAS accelerators can have on scientific computing, 

experiments must be conducted on datasets that span large 

numbers of FPGA-based accelerator cards.  This will provide 

more insight into how chip-to-chip and card-to-card data 

movement latency impacts the computation.  It is also 

important that this study be conducted empirically since 

theoretical calculations often don’t consider all of the 

implementation details that impact performance. 

V. CONCLUSION  

 This paper presented the motivation for creating BLAS 

hardware accelerators as real-time, reconfigurable tiles on 

Field Programmable Gate Arrays.  By dynamically bringing on 

custom BLAS accelerators, the optimal hardware 

configuration can be obtained for the computation and the 

massive parallelism of FPGA hardware can be exploited.  We 

presented a prototype system that implemented BLAS 

accelerators as on-chip, partially reconfigurable tiles.  For this 

system, we measured and presented information on the 

reconfiguration time and power consumption, power 

efficiency, and speedup compared to a traditional, general-

purpose computation.  Our empirical data showed that the 

power consumption of the partial reconfiguration was 

considerable and impacted the inflection point for the power 

efficiency comparison.  Our experiment also demonstrated that 

BLAS accelerator approach achieved a significant speedup 

compared to a general-purpose system, even when augmented 

with a hardware floating-point-unit. 
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