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Abstract—The application of Independent Component Analysis (ICA) has found considerable success in problems where sets of observed time 

series may be considered as results of linearly mixed instantaneous source signals. The Independent Components (IC’s) or features can be used 

in the reconstruction of observed multivariate time seriesfollowing an optimal ordering process. For trend discovery and forecasting, the 

generated IC’s can be approximated for the purpose of noise removal and for the lossy compression of the signals.We propose a moment-

preserving (MP) methodology for approximating IC’s for the reconstruction of multivariate time series.The methodologyis based on deriving the 

approximation in the signal domain while preserving a finite number of geometric moments in its Fourier domain.Experimental results are 

presented onthe approximation of both artificial time series and actual time series of currency exchange rates.  Our results show that the 

moment-preserving (MP) approximations of time series are superior to other usual interpolation approximation methods, particularly when the 

signals contain significant noise components. The results also indicate that the present MP approximations have significantly higher 

reconstruction accuracy and can be used successfully for signal denoising while achieving in the same time high packing ratios. Moreover, we 

find that quite acceptable reconstructions of observed multivariate time series can be obtained with only the first few MP approximated IC’s. 
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I.  INTRODUCTION 

The application of Independent Component Analysis (ICA) 

has proved to be quite successful in problems where observed 

multivariate time series may be considered as results of 

linearly mixed instantaneous source signals [1,2]. This is due 

to the fact that ICA can generateindependentcomponents(IC’s) 

that represent the true sources of the observed time series (see 

survey in [3]). ICA has also shown great promise in  trend 

discovery and forecasting [4,5] of time series through the use 

of IC’s in the reconstruction of observed data. In this 

reconstruction process, optimal ordering of IC’s is requiredand 

several algorithms have been proposed for such ordering [4,6, 

7]. 

For applications to trend discovery and forecasting, there is 

a need for approximating the generated IC’s for the purpose of 

noise removal and for the compression of the signals to reduce 

redundancy.For this purpose, usual approximations in the 

signal space can be used where the values of the 

approximating function at selected nodal points are taken to be 

the same as the original function at those points. Such values 

can then be joined using some interpolation technique subject 

to a certain error minimization criterion.However, a more 

precise approximation method approaches the problem by 

deriving the approximation in the signal domain while 

preserving a finite number of geometric moments that are 

related to its Fourier domain.This moment-preserving (MP) 

method has been applied to piecewise linear 

approximations[8] and has also been extended to higher order 

polynomials for approximating 1-D and 2-D signals [9, 10]. 

In the present paper, we propose a moment-preserving 

(MP) method for approximating IC’s generated by ICA of 

multivariate time series. We also investigate the efficiency of 

applying such approximated IC’s for the reconstruction of the 

observed time series. Experimental results are presented on the 

MP approximation of artificial 1-D signals and IC’s of 

multivariate time series as well as the reconstruction of actual 

financial multivariate time series using approximated IC’s. 

The paper is organized as follows: section II introduces the 

MP approximation methodology; section IIIgives results on 

the application of MP approximation to simulated 1-D signals; 

section IV presents results on applying the MP method to 

multivariate financial time series; section V presents the 

method for reconstruction of observed seriesusing MP 

approximated IC’sand finally section VI presents the summary 

and conclusion of our work.   

II. MOMENT-PRESEVING APPROXIMATION 

METHODOLOGY 

A. General 

Consider a function f(x) specified at a finite set of discrete 

points {xi , i = 0 ,1 , .. N}. The objective of an approximation 

method is to seek an approximating function g(x) defined at a 

set of distinct nodal points {zj  , j = 0 ,1 ,…., M}, where 

generally M < N. For a nodal points sampling rate R, the nodal 

points will be located at zj = x0 + j R d , where d is the x 

sampling interval. In the usual approximation in the signal 

space, the values of the approximating function at the nodal 

points are taken to be the same as the original function at those 

points, i,e., g(zj) = f(zj). Such values can then be joined using 

some interpolation technique subject to a certain error 

minimization criterion. 
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A more precise approximation method approaches the 

problem by deriving the approximation in the signal domain 

while preserving a finite number of geometric moments that 

are related to its Fourier domain [9,10]. Such approach can be 

realized by considering the function f(x) to be characterized by 

a PDF p(x) so that its k
th

 geometric moment Skisgiven by: 

 

       (1) 

 

The characteristic function (j  )  represents the Fourier 

transform of p(x): 

 

 (2) 

 

If such characteristic function has a Taylor-series expansion 

valid in some region about the origin, it is uniquely determined 

in this interval by the geometric moments since, 

 

      (3) 

 

Therefore, the moments Sk do uniquely determine the 

characteristic function as well as the PDF p(x). It follows that 

a moment-preserving approximation to the function p(x) in the 

x-domain will also serve as an approximation constraint in the 

-domain. 

 

B. Moment-Preserving Approximation 

LetSk(i,j) = Ex[x
k
]i,jbek

th
 moment of the variable x over the 

finite interval (i,j) of the function f(x). Also, let  be a scale 

reduction factor so that x = y and hence we may define a 

scaled moment as: 

 

    (4) 

 

With the function f(x) specified by a finite set of discrete 

points {xi , i = 0 ,1 , .. N}, the scaled moment k is the sum 

over all (N) segments (i, i+1) covering the above domain: 

 

 (5) 

 

 On the other hand, if we seek an approximating function 

g(x) defined at a set of distinct nodal points {zj  , j = 0 ,1 ,…., 

M}, then over the interval between two nodal points (p,q) we 

obtain scaled moments k(p,q) whose sum over the nodal 

intervals gives the scaled moments k.For the moment 

preserving approximation, we require that: 

 

  (6) 

 

The above moment-preserving constraint leads to a system of 

M+1 equations:  

 

E . G      (7) 

 

where Eis an M+1 by M+1 square matrix of coefficients 

depending on the approximating polynomial, and Gis a 

column vector representing the approximations g(zj) to the 

function f(x) at the nodal points {zj  , j = 0 ,1 ,…., M}. 

 

C. Moment-Preserving using Quadratic Approximation 

Following our previous work [10], we present here the 

method for estimating the moment-preserving values of the 

approximations g(zj) to the function f(x) at the M +1 nodal 

points using a quadratic approximation. For this purpose, we 

assume that between the nodal points zpand zq the function is 

piecewise quadratic, and we use equally spaced nodal points 

with an internal point zr between the points zpand zq. In this 

case we may use Lagrange’s classical formula to obtain the k
th
 

scaled moment over that region: 
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Following the work in [10], the total scaled moment can be 

expressed as a vector  with elements: 

 

     (9) 

 

 

Notice that in the above equations, the values of yj represent 

the scaled coordinates of the nodal points. When the scaled 

coordinates of the actual function points are used, then we 

obtain the actual scaled moments vector . Accordingly, 

moment preservation ( =   ) leads to the system:   

    

     (10) 

 

where the elements of the square matrix E  are given by  e(k,j) 

= Cj(k,y). 

 

III. EXPERIMENTS ON 1-D SIGNAL 

APPROXIMATION 

A. The Simulated 1-D Signals 

For verification of the above moment-preserving (MP) 

method, we have applied it to obtain piecewise approximations 

for 1-D signals f(x)for which the nodal points {zj, j = 0,1,…., 

M}were chosen to be evenly spaced across the x-space. The 

vector of approximants Gat those points was computed using 

the quadratic method outlined above to obtain an 

approximation g(x) to the function. For comparison, an 

approximation h(x) was also obtained using the original 

function values f(zj)at the selected nodal points.We have used 

the mean-squared error (MSE) as a measure of the error norm 

between f(x) and each of the approximations g(x) and h(x). 

For the piecewise approximation, a signal sequence f(x) of 

length NT is divided into nbblocks of equal length. In a given 
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block, nk = M+1 nodal points are selected such that their 

sampling rate is R = NT/( nb M). A block will therefore contain 

nf =N+1 function points located at xi , i = 0 ,1 , .. N, with xi =x0 

+ i d , where d is the x sampling interval .and N = R M – 1. 

Of these function points, the M +1 nodal points will be located 

at zj  , j = 0 ,1 ,…., M, with zj = x0 + j R d. 

 

As an example, we have used a simulated series f(x) given 

by: 

 

f(x) = 2sin(0.2 x) + 5cos(0.3 x) + w r         (11) 

 
where rrepresents an additive random noise and w is an 
amplitude factor.  
 

B. The MP Approximation Algorithm 

 

The algorithm for obtaining the MP approximations at the 

nodal points is summarized in the following steps: 

 Input sequence f(x) of length NT 

 Select number of blocks nband number of nodal 

points per block nk = M+1 

 Compute nodal points sampling rate R and the 

number nf =N+1= R Mof function points per block 

 Set the starting point x0 and the x sampling interval 

(d) 

 Repeat for each block: 

1. Obtain locations of nodal points zj , j = 

0,1,…., M  in the block 

2. Obtain f(xi) at xi for i = 0 ,1 , .. N 

3. Set a scale reduction factor   (e.g.  = xN) 

4. Compute scaled nodal point locations yj 

relative to start of block 

5. Compute scaled moments vector  at the nk 

nodal points and the E matrix (nk xnk) 

6. Compute vector of MP values G = E
-1

 *  at 

the nodal points 

7.  Obtain vector of MP approximated f(x) in 

block by quadratic interpolation 

8. Set start of next block 

 Join blocks to obtain final MP approximated g(x) 

 

C. Experimental Results 

The above algorithm has been applied to the 1-D signal 
example given by the function (11). For that example, we have 
used an x-domain with 1152 function points at a sampling 
interval d = 0.03. For more accuracy and to reduce the need for 
reconditioning the matrices in the inversion process, we have 

used a scale factor    = xN over the block. 
To illustrate how MP approximations differ from original 

function values at the nodal points, Fig. 1 shows examples of 
the results obtained for nb = 12 blocks and nk = 5 nodal points 
per block, yielding a nodal points sampling rate R = 24 (i.e. one 
nodal point every 24 function points). Fig. 1a and Fig. 1b show 
the results for blocks 5 and 12, respectively, using a noise 
factor w = 0.8. 
 

In these figures, the function f(x) is shown for the given block 

together with the MP approximated values (circles) and the 

original function values (*) at the selected nodal points. 

 

 
Figure 1.  Function approximation for (a) block 5 and (b) 

block 12 (o: MP function values, *: Original function values) 

 

It is clear from the examples shown in Fig. 1 that the 

MPapproximated values differ from those values of the 

original function at the same nodal points. The figure also 

shows the results of quadratic interpolation of the MP values 

(g(x) approximation, solid curve) and the original function 

values (h(x) approximation, dotted curve), again highlighting 

the difference between these two approximations. 

To examine the effect of the number of nodal points on the 

piecewise approximations, we have computed the Mean 

Square Error (MSE) over the whole series between the original 

signals f(x) and the corresponding MP approximation g(x) 

using different numbers of nodal points per block nk = M+1. 

Fig. 2 shows a plot of the MSE over all blocks against nk. For 

comparison, the figure also shows the MSE for the 

corresponding approximation h(x) that uses the original 

function values at the nodal points. 

 
Figure 2.  Mean Square Error Vs No. of nodal points / block. 

 

The figure shows that the MSE is almost constant for the MP 

approximation g(x)over nk = 3 – 9, and that the MSE for g(x) is 

about 57% only of the corresponding MSE for the 

approximation h(x)obtained using the original function values. 

We have also examined the effect of noise on the 

approximations g(x) and h(x) with the results shown in Fig. 3.   
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In the calculations shown in this figure, we have used nk = 7 

nodal points / block corresponding to a nodal point sampling 

rate of R = 16.  

 
 

Figure 3.  Mean Square Error Vs Signal-to-Noise Ratio. 

 

As we might expect, the MSE drops with increasing SNR. 

Moreover, the MSE for the MP approximation g(x) is 

significantly lower than that for the original function values 

approximation h(x),  particularly in the presence of significant 

noise (low SNR). Only in the case of noise-free signals that we 

might expect the two approximations to give low and close 

values for the MSE. Similar patterns are obtained for nk = 3 or 

5 or 9. 

 

From the results shown in Fig, 1 to Fig. 3, we might 

conclude that the moment-preserving (MP) approximations of 

1-D signals are superior to other interpolation approximation 

methods, particularly when the signals contain significant 

noise components. It follows that MP approximations have 

significantly higher reconstruction accuracy and can be used 

successfully for signal denoising while achieving in the same 

time high packing ratios R. 

 

IV. EXPERIMENTS ON 

MULTIVARIATEFINANCIAL TIME SERIES 

APPROXIMATION 

 

A. The Observed Financial Time Series 

We have conducted a set of experiments on the MP 
approximation of independent components derived from actual 
multivariate time series representing financial data. For this 
purpose, 6 foreign exchange rate series were selected 
representing USD versus Brazilian Real (BRL), Canadian 
Dollar (CAD), Danish Krone (DKK), Japanese Yen (JPY), 
Swedish Krona (SEK), and Swiss Franc (CHF) in the period 
from January 4, 2010 till December 31, 2015. The dataset size 
was 6 time series over 1504 days collected from different 
historical exchange rates data sources such as [11, 12, 13]. Fig. 
4 shows these time series.  
 

 
 

 
Figure 4. Exchange rate time series (January 4, 2010 - 

December 31, 2015) 
 

B. Computing the Independent Components 

We consider the above observed series X to be a linear 

mixture of independent sources S related to X by an 

instantaneous linear noiseless mixing model represented by: 

 

X = A S      (12)  

 

where Sis a random matrix of hidden sources with mutually 

independent components (IC’s), and A is a non-singular 

mixing matrix. Given X, the basic problem in Independent 

Component Analysis (ICA) is to find an estimate Y of the IC’s 

S and the mixing matrix A such that: 

 

Y = W X = W A S = G S ≈ S  (13) 

 

where W = A
-1

 is the unmixing matrix, and G = W A is usually 

called the Global Transfer Function or Global Separating-

Mixing (GSM) Matrix. The linear mapping W is such that the 

unmixed signals Y are statistically independent. However, the 

sources are recovered only up to scaling and permutation. In 

practice, the estimate of the unmixing matrix W is not exactly 

the inverse of the mixing matrix A. Hence, the departure of G 

from the identity matrix I can be a measure of the error in 

achieving complete separation of sources. 

For computing the independent components Y from the 

observed mixtures X, we adopt the modified algorithm given 

by [14] which is based on the Fast ICA algorithm originally 

given by [15]. Basically, the algorithm uses a fixed-point 

iteration method to maximize the negentropy using a Newton 

iteration method. Details of applying this algorithm to 

financial series are given in a previous paper [7]. For the 

present financial series, it was found necessary to choose the 

appropriate non-linearity for the fast ICA algorithm. Analysis 

of the normalized kurtosis for the given series X showed that 

they represent a mixture between super-gaussian and sub-

gaussian signals. We found that the algorithm would converge 

in fewer number of iterations if we use a mixture non-linearity 

derived from a bimodal Exponential Power Distribution (EPD) 

symmetric mixture density [7, 16]. 
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C. Application of MP Approximation to Noisy IC’s 

In the present application of MP approximations to the IC;s 

obtaied by the above mentioned Fast ICA algorithm, we have 

examined the effect of the number of nodal points on the 

piecewise approximations. We have computed the Mean 

Square Error (MSE) between the original independent 

components Y and their corresponding MP approximations 

g(x) using different numbers of nodal points per block, as well 

as the corresponding approximations h(x) that use the original 

function values at the nodal points. In these computations, we 

have used a total of1440 points/IC divided into 15 blocks with 

96 function points/block.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.  Mean Square Error Vs No. of nodal points / block. (a) 

Average MSE for Y1,Y2,Y3,Y5 and (b)  Average MSE for Y4 

and Y6 

 

Fig. 5 shows a plot of the MSE over all blocks against nk 

for noise free IC’s. The results shown in Fig. 5a relate to the 

average MSE over the IC’s Y1,Y2,Y3 and Y5 while those 

shown in Fig. 5b are for the averages over IC’s Y4 and Y6. As 

in the case of 1-D simulated signals, these results show that 

the MSE is almost constant for the MP approximation g(x)over 

nk = 5 – 9, and that the MSE for g(x) is significantly lower than 

the corresponding MSE for the approximation h(x)obtained 

using the original function values. 

 

 

Fig 6.  IC Y1 MP approximation using random noise w = 0.2 

(SNR = 12.5) 
 
To investigate the effect of random noise on the MP 

approximations of IC’s, we have simulated the presence of 
noise in the resulting dataset Y by adding a noise component w 
r, where r is a uniform random number {-1,+1} and w is the 
noise contribution weight. Fig. 6 shows examples of the results 
obtained for nb = 15 block and nk = 7 nodal points per block, 
yielding a nodal points sampling rate R = 16 (i.e. one nodal 
point every 16 function points).  

Fig. 6a and Fig. 6b show the results for the MP 
approximations for IC Y1 for two different regions of the time 
series using a noise factor w = 0.2 (SNR = 12.5). The results 
shown in these figures indicate that MP approximations can 
effectively denoise the IC’s for more effective reconstruction 
processes. Fig. 7a and Fig. 7b show similar examples of 
denoising using a higher noise content (w = 0.4, SNR = 6.57). 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.  IC Y1 MP approximation using random noise w = 0.4 

(SNR = 6.57) 

 

In the presence of noise, the MP approximation is expected 

to denoise the signals since it preserves the moments in the 

frequency domain. Fig. 8 shows examples of comparison of 

the ability of denoising IC’s between MP approximations g(x) 

and the corresponding approximations h(x) that use the 

original function values at the nodal points using nk = 7 nodal 

points per block. The figure shows that the MSE drops with 

increasing SNR and that the MSE for the MP approximation 

g(x) is significantly lower than that for the original function 

values approximation h(x), particularly in the presence of 

significant noise (low SNR). Only in the case of noise-free 

signals that we might expect the two approximations to give 

low and close values for the MSE. Similar patterns are 

obtained for nk = 3 or 5 or 9. 

 

 

 

 

 

 

 

 

 

 

 

Fig 8.  Mean Square Error Vs Signal-to-Noise Ratio using 

MP approximation g(x) (solid curve) and original values h(x):  

(a) Approximations for IC Y1, (b) Approximation for IC Y6 

 

 

V. RECONSTRUCTION OF  FINANCIAL TIME 

SERIES USING MP-APPROXIMATED IC’S 

A. Methodology 

There is a significant interest in the process of 

reconstruction of observed multivariate time series for trend 

discovery and forecasting [4,5].  Using IC’s derived from ICA 

of the series has proved to be quite efficient in the 

reconstruction process [7]. In the present work, we add the 
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advantage of using Moment-Preserving approximations (MP) 

of the IC’s instead of the original ones. The basic advantages 

are that MP approximations act effictively in denoising the IC 

series and they also allow for the compression of the IC series 

by the factor R expressing the sampling rate of the nodal 

points. 

Consider the observed k time series X = x(t) 

=[x1(t),…xk(t)]
T
  , 1 ≤ t ≤ N and let Yj, j = 1…k be their MP 

approximated independent components (IC’s). To reconstruct 

the observed time series X from these IC’s, it is necessary to 

determine for each series xi(t) a list Li of independent 

components indices in descending order of the dominance of 

the given IC’s in the corresponding reconstructed series. The 

process of reconstructing time series from the estimated 

independent components can then be done by summing their 

contributions in the order given by the list Li. Following [4], 

[7], the contribution may be expressed as: 

  (14) 

 

In the above equation, W represents the demixing matrix 

derived from ICA of the observed series and W
-1

(i,j) is the 

(i,j)th element in the inverse of the W matrix. 

Investigation of the different methods to obtain optimal 

ordering lists from the contributions (14) has been done in 

detail in [7]. In such work, it is found that three methods give 

almost the same ordering: 

1. ES: This is basically an exhaustive search method in 

which the optimal list is determined by performingk! 

reconstruction steps for each series and selecting the list 

with the least error profile. 
2. EL: This method uses a strategy of excluding the least 

contributing IC first. This method first selects from the set 

of k IC’s the component that when excluded from the list 

will minimize the reconstruction error. This component is 

then removed from the set of IC’s and its index becomes 

the last in the order list Li. The process is repeated on 

what remains in the component set to select the second-

last in the order list, and so on. This algorithm will 

involve k(k+1)/2 – 1reconstruction steps for each time 

series. 

3. ME: This method involves minimizing the reconstruction 

error for Individual IC’s Contribution. Given a certain error 

measure, the list is obtained by sorting in ascending order 

the error between individual contributions u(i,j,t) and the 

observed series xi. This method involves only k 

reconstruction steps for each time series. 

In the present work, we adopt the third method for 

obtaining optimal ordering lists due to its linear complexity. 

We compute the reconstructed version of the time series xi(t) 

using the first m independent components in the optimal list Li 

by summing the contributions of the individual components. 

Such sum is given by: 

 

                                      (15) 

 

where (s) denotes the s
th

 element of Li..Also, we use the Mean 

Square Error (MSE) for the overall reconstruction error for a 

given series xi using the first m independent components in the 

optimal list Li as: 

 

                                     (16) 

  

B. Reconstruction Results 

The ME method was usedto obtain optimal ordering lists 

which involves only k = 6 reconstruction steps for each time 

series. For such method, we follow the work of [7] in using the 

MSE as an error measure since it has lowest error profile. 

Using this method, we obtain the set of ordered lists for the 6 

exchange rate time series X as given in Table (1). 
 

TABLE 1. Obtained ordered lists 
 

Series Label Ordered List 

BRL X1 3     1     5     4     2     6 

CAD X2 3     1     5     6     4     2 

DKK X3 3     1     4     6     5     2 

JPY X4 3     5     1     4     6     2 

SEK X5 3     1     2     5     4     6 

CHF X6 2     6     5     1     4     3 

 

Calculations have also been made for the percentage 

cumulative contribution of the first m MP approximated IC’s 

from the lists to the reconstruction of the exchange rate time 

series. These contributions are calculated as 1 -𝑀𝑆𝐸 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚  / 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑥𝑖  = 1- Q(m), since the series have zero mean and 

unit variance. Fig. 9 shows the average of these contributions 

over the 6 observed time series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9.  Average percentage cumulative contribution of the first 

mMP approximated IC’s from the lists to the reconstruction of 

the exchange rate time series. 

 
The results shown in Fig. 9 indicate that it is possible to 

reconstruct the general trends in most of the observed exchange 
rate series considered here using only the first 2 MP 
approximated IC’ (contribution ≈86 %). This is evident from 
the results shown in Fig. 10 where such reconstructed series are 
compared with the corresponding observed ones for three 
different exchange rate series.  
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Fig. 10. Comparison between Observed Series (dotted 
curves) and Reconstructed Series (solid curves) using first 2 

MP approximated IC’s 
 

 
 

Fig 11a. Comparison between Observed Exchange Rate Series 

(dotted curves) and Reconstructed Series using the first 3 MP 

approximated IC’s (solid curves) 
 

Fig. 9 also indicates that the observed series can be 
reconstructed to an excellent degree using the first 4 MP 
approximated IC’s in their respective ordered lists 
(contributions ≈ 97 %). For the majority of series, quite 
acceptable reconstructions (≈ 93 %) can also be obtained with 
only the first 3 IC’s in the lists. 

 
For a comparison between the observed exchange rate time 

series and those reconstructed using MP approximated IC’s, 

weshow in Fig. 11a the results of such comparison using the 

first three IC’s in the corresponding lists given in Table (1). 

Similar results are shown in Fig. 11b for reconstructions 

using the first four MP approximated IC’s. Notice that the 

series compared in these figures have zero mean and unit 

variance as obtained from the preprocessing of the data for the 

ICA algorithm. 

 
It can be seen from these figures that the reconstruction of 

observed series using MP approximated IC’s successfully 
preserves the general trends of the series. Moreover, quite 
acceptable matching can be realized with only the dominant 3 
or 4 IC’s in the lists. 

 
 

 

 

Fig 11b. Comparison between Observed Exchange Rate Series 

(dotted curves) and Reconstructed Series using the first 4 MP 

approximated IC’s (Solid Curves) 
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VI.    SUMMARY AND CONCLUSIONS 

 

 The present paper proposes a moment-preserving (MP) 

method for approximating time series for trend discovery and 

forecasting applications. The method is based onderiving the 

approximation in the signal domain while preserving a finite 

number of geometric moments that are related to its Fourier 

domain. MP values of the time series are derived at selected 

nodal points using a quadratic approximation. Piece-wise 

approximation is conducted on blocks of the series having 

equal numbers of nodal points in a block. 

 The proposed MP method has been applied to a 1-D 

simulated series and was compared with the usual 

approximation method in which the original values of the 

function at the nodal points were used in the approximation 

process. In general, the MP values were found to differ 

significantly from the original function values at the same 

nodal points leading to a better approximation of the time 

series. 

 We have also investigated the effect of the number of nodal 

points in a block and the presence of noise componentin the 

simulated series using the Mean Square Error (MSE) between 

the observed and approximated series. The results show that 

the MSE is almost constant for the MP approximation when 

using 3 – 9 nodal points per block, corresponding to packing 

ratios   48 – 12 and that such MSE is only about 57% of the 

corresponding MSE for the approximation obtained using the 

original function values. 

 Moreover, investigation of the effect of random noise on 

the approximation efficiency has shown that the MSE for the 

MP approximation is significantly lower than that for the 

original function values approximation, particularly in the 

presence of significant noise (low SNR). Only in the case of 

noise-free signals that we might expect the two 

approximations to give closer values for the MSE. 

 From the above results, we may conclude that the moment-

preserving (MP) approximations of 1-D signals are superior to 

other interpolation approximation methods, particularly when 

the signals contain significant noise components. It follows 

that MP approximations have significantly higher 

reconstruction accuracy and can be used successfully for 

signal denoising while achieving in the same time high 

packing ratios. 

The present MP approximation method has also been 

applied to IC’s derived from ICA of actual financial 

multivariate time series of currency exchange rates. As in the 

case of 1-D simulated signals, the results for the financial 

series show that the MSE for the MPapproximated IC’s is 

significantly lower than the corresponding error for the 

approximation obtained using the original function values. 

Also, results obtained with noisy IC’s indicate that, for more 

effective reconstruction processes, the MP approximations can 

more effectively denoise the IC’s compared to the usual 

approximation methods that use the original function values. 

This is because the MP method also preserves the geometric 

moments inthe frequency domain. 

For trend discovery and forecasting applications, we have 

used the MP approximated IC’s in reconstructing the observed 

financial series considered here. Using an efficient method for 

obtaining optimal ordered lists of dominant IC’s, we were able 

to compute the percentage contribution of cumulative IC’s 

from such lists. Comparison of the reconstructed series using 

the MP approximated IC’s with the observed financial series 

shows that it is possible to reconstruct the general trends in 

most of the observed series using only the first 2 MP 

approximated IC’s (contribution ≈ 86 %). Moreover, the 

observed series can be reconstructed in this way to quite 

acceptable (93 %) and excellent ( 97 %) degrees using the 

first 3 and 4 IC’s, respectively. 

 

REFERENCES 

[1] A. Hyvärinen, J. Karhunen, and E. Oja, "Independent Component 

Analysis", John Wiley and Sons , New York , NT, 2001 

[2] A. Hyvärinen, “Independent component analysis: recent 

advances”,Phil. Trans.R. Soc. A 371: 20110534 

http://dx.doi.org/10.1098/rsta.2011.0534, 2013 

[3] A. Mansour, and M. Kawamoto, “ICA papers classified according 

to their applications and performances”, IEICE Trans. 

Fundamentals, Vol. E86-A, No. 3, pp. 620-633, 2003 

[4] Cheung, Yiu-ming, and Lei Xu. "Independent component 

ordering in ICA time series analysis", Neurocomputing, Vol. 

41.1, pp. 145-152, 2001 

[5] Chi-Jie Lu, Tian-Shyug Lee and Chih-Chou Chiu, “Time 

series forecasting using independent component analysis and 

support vector regression”, Decision Support Systems, Vol. 

47-2, pp. 115-125, 2009 

[6] A.  Kamel, A. Goneid, and D. Mokhtar, “Ordering of 

dominant independent components in time series analysis 

using fast ICA algorithm”, Egyptian Computer Science 

Journal (ISSN-1110-2586), Vol. 41–2, pp. 1-10, 2017 

http://ecsjournal.org/Archive/Volume41_Issue2.aspx 

[7]     A. Goneid, and A. Kamel, “Reconstruction of time series using 

optimal ordering of ICA components”, International Journal 

on Recent and Innovation Trends in Computing and 

Communication (IJRITCC), ISSN: 2321-8169, Volume 5 

Issue 7, PP: 297 – 305, July 2017 

[8] T.B. Nguyen and B.J. Oommen, “Moment-Preserving 

piecewise linear approximations of signals and images”, IEEE 

Trans. Pattern Analysis and Machine Intelligence, Vol. 19(1), 

pp. 84-91, 1997 

[9] A. Goneid, and S. AbuSeif, “Moment-Preserving piecewise 

approximations for 1-D and 2-D signals”, Proc. Int. Conf. on 

Computer, Communication and Control Technologies 

(CCCT’03), Orlando, Florida, USA, July 31 – Aug 2, 2003, 

Vol. 4 

[10] A. Goneid, "Moment-Preserving methods for signal piecewise 

approximation and denoising”, Egyptian Computer Science 

Journal, (ISSN-1110-2586), Vol. 36 (2), pp. 18 – 32, 2012 

[11]     www.bankofengland.co.uk/boeapps/iadb/ 

[12]     www.oanda.com/solutions-for-business/historical-rates 

[13]     www.xe.com/currencytables/ 
[14] A.  Kamel, A. Goneid, and D. Mokhtar, “Ordering of 

dominant independent components in time series Analysis 

using fast ICA algorithm”, Egyptian Computer Science 

Journal (ISSN-1110-2586), vol. 41–2, pp. 1-10, 2017 

http://ecsjournal.org/Archive/Volume41_Issue2.aspx 

[15] A. Hyvärinen, “Fast and robust fixed-point algorithms for 

independent component analysis”, IEEE Trans. on Neural 

Networks, vol. 10(3), pp. 626-634, 1999 

[16] A. Goneid, A. Kamel, and I. Farag, "Generalized mixture 

models for blind source separation", Egyptian Computer 

Science Journal, (ISSN-1110-2586), vol. 34-1, pp. 1-14, 2010 

 

http://www.ijritcc.org/

