
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

47
IJRITCC | September 2017, Available @ http://www.ijritcc.org

Dynamic Select Approach for Memory Allocation

Jyoti Raina Bakaya

M.TECH. Scholar,

Computer Science & Engineering

Kautilya Institute of Technology & Engineering

Email: raina.jyoti81@gmail.com

Mobile: 9850209827

Abstract: When we need to use Memory allocation for relatively huge datasets, then we may have a possibility to encounter the exception that is

OutOfMemoryException. This exception shows that memory is not available for the allocation. But exception does not occur due to limited

memory system, it usually occurs due to non availability of virtual address space for that byte of data. This issue is because of the current

implementation of memory allocation which uses single array byte as backing store. When the data set is huge the backing store of memory

allocation space also requires more contiguous memory than that is available in the virtual address space. If there is no contiguous memory

available for the process then it encounters the exception of OutOfMemoryException even there is enough space available but not continuous.

This research proposed an approach for dynamically selecting the best memory allocator for every application. The proposed approach does not

need any type of contiguous memory for storing the data in stream. This approach uses a dynamic list of small chunks as backing storage that are

allocated on demand when the stream is used. If there is no contiguous memory available in the Stream then memory allocation can be done

from these small chunks of memory with no OutOfMemoryException.

__*****___

I. INTRODUCTION

An operating system has memory management unit (MMU) to

manage primary memory of the system. It is the responsibility

of the memory management unit to maintain records of each

and every memory location that is memory management should

be well informed about a memory location whether it is

allocated to a process or processes or it is available for

allocation to any process.

MMU checks how much memory is required to be allocated to

a process or processes, and then decides which process will be

allocated memory and at what time.[1] It has to keep track of

memory, when memory if freed by a process or processes,

memory allocated to processes and correspondingly it has to

change the status of memory. Memory management provides

this feature by using two registers, a base register and a limit

register. The base register keeps the smallest physical memory

address and the limit or restrict register specifies the size of

range. Instructions and data for the memory addresses can be

accessed in following ways:

Compile Time –Compile time is pre-determined time and the

binding at compile time is used to create the absolute code.

Load Time – Load time is not known statically at compile time

where the process will be processed in memory, the compiler

creates re-locatable code.

Execution Time – When a process can be easily moved while it

is executing from one memory segment to another memory

segment, then binding must be delayed to be executed at run

time.

 Types of Memory Management

Memory management is divided into three parts, although the

distinctions are fuzzy:

 Hardware Memory Management

 Operating System Memory Management

 Application Memory Management

The above mentioned Memory Management methods are

present in almost most of the computer systems; to some extent

form layers between the user’s program and actual memory

hardware [5]. The Memory Management mostly deals with the

application layer memory management.

 Memory Management Problems

The basic problem in managing memory is to know when to

hold the data that it contains, and when to throw this data away

so that memory can be used again. This sounds easy and

simple, but it is a matter of study in its own capacity. In the

ideal world scenario, most programmers do not have to worry

about memory management problems as it is taken care of by

memory management of the system. Unfortunately, there are

several ways in which lack of a good memory management

may affect the performance and speed of user programs, in both

manual and automatic memory management situations.

The contribution of this work can be summarized as the

performance of Memory allocation process of this approach

over the default allocation method by operating system. This

approach uses 4kb blocks of unused memory to allocate the

process. When a process is requested for the contiguous

memory then these small blocks are used for allocating them.

In this paper it is found that performance and capacity of

memory allocation process has improved.

II. LITERATURE SURVEY

In related work which is found in literature to propose the

problems of Memory Management, a number of papers have

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

48
IJRITCC | September 2017, Available @ http://www.ijritcc.org

been published regarding the improvement of memory

management problems.

OnurUlgen and MutluAvci in 2015 in their research that

entitled as "The intelligent memory allocator selector" proposed

an approach for “the dynamically selecting the best memory

allocator for each application”. In their approach they executed

each process with several memory allocators. When the

execution was done they choose an efficient memory allocator

according to situation of operating system (OS). If the system

running out of memory exception occurred, then it selected the

memory efficient allocator for processes which are newest.

When most of the CPU power had been consumed, then it

chooses the faster allocator. If it is not selected, then the

balanced allocator is selected. As per the execution results, the

proposed approach offered up to 59% less fragmented memory,

and around 90 percent faster memory operations. Even in the

average case fragmented memory is less and memory

operations are faster. These results also prove the proposed

approach is more reliable. This research proposed a technique

that is dynamic and efficient approach for the memory

fragmentation issue but their approach of solution did not solve

the problem for contiguous allocation [7].

In 2013 German Molto, Miguel Caballer and others in their

research entitled as "Elastic Memory Management of

virtualized Infrastructures for Applications with Dynamic

Memory Requirements" focused on “automatic dynamic

memory management to fit dynamically at runtime for the

computing infrastructure in the application, therefore adapting

the memory size of the virtual machine pattern of the

application.”

This research explained architecture, combined with the proof

of implementation that dynamically adapts the memory size of

the virtual machine to avoid thrashing while reducing the

excess of free memory of virtual memory. In the test case,

where a synthetic benchmark is applied that regenerate

different memory consumption patterns which arise on actual

scientific applications. The test cases results prove that vertical

elasticity, in dynamic memory management that enables to

mitigate memory over the provisioning with managed

application performance penalty [8].

III. PROPOSED APPROACH

This approach does not require contiguous memory to allocate

the data that the memory stream has. This approach uses a

dynamic list of small blocks as the backing store which is

decided by the user, which are allocated to process on demand

when a process requests memory.

Our approach is also derived from the Stream class but the

allocation process is different from the normal process of

allocation. This approach allocates small chunks of memory as

continuous memory to a process. This is capable of initializing

from array of a byte

1. When a process requires memory, it request for the

memory then the allocation of blocks is done on demand

either for the operation read or write. The Position is

checked with respect to the Length before a read

operation takes place, to make sure the read operation is

performed within the limit of the stream. Length is just

to check if the position is below the length size and not

for the allocation amount of memory, setting the Length

size does not allocate memory to the process, rather it

allows reads to proceed on the data.

2. Memory is allocated in sequential blocks that make the

continuous memory which is required for the process.

That is, if the first block requests to access the third

block, then first and second blocks are automatically

allocated.

//A new object of class: where length=0, position=0, and no memory allocated

Memory_msps ds = new Memory_msps();

//returns -1, no memory allocated

int data = ds.ReadByte();

//Length now becomes 10000 bytes, but no memory allocated

ds.SetLength(10000);

//three blocks of memory are allocated now,

//but data1 is undefined

int data1 = ds.ReadByte();

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

49
IJRITCC | September 2017, Available @ http://www.ijritcc.org

IV. RESULTS ANALYSIS

4.1Performance Metrics

There are two parameters for analysis which algorithm

behaves in different scenarios. The two parameters are

performance and storage capacity. On the basis of these two

parameters the real implementation of both algorithms can

be determined.

It is difficult to predict performance both in terms of storage

capacity and speed, of default class and my approach.

Performance is dependent on a number of factors, one of the

most significant being the fragmentation and memory usage

of the current process, a process which allocates a lot of

memory will use up large contiguous sections faster than

one that does not – even though it is possible to get an idea

of the relative performance characteristics of the two

approaches by taking measurements in controlled

conditions.

The tables below compare the capacity and access times of

default and my approach. In all cases the process instance

has tested only the target stream.

 Storage Capacity

To check storage capacity, an operation is performed in

which a loop write the contents of 1MB array to the target

stream over and over until the stream throw an

OutOfMemoryException, that was caught and the total

number of write executions before the exception were

returned.

TABLE 4.1 CAPACITY OF CLASSES

Stream Average Stream Length Before

Exception (MB)

Default Class 785

My_Class 2272

Speed (Access Time)

To test speed or access time using default and my approach,

a set of data was written to perform the operation, then a

read operation on the stream. The data was written in

lengths between 1KB to 1MB, to and from a 1MB byte

array. A Stopwatch is used to calculate the amount of time it

takes to write, then read, the specified amount of data.

The test was executed five (5) times by each process on the

same data. The variation in the results shows the time taken

by stream every time for allocating memory and accessing

memory, which vary every time.

 Access Time with 10MB Data

Here the operations are performed over 10MB data and

results are calculated on different scenarios.

TABLE 4.2

ACCESS TIME WITH 10MB DATA

 Stream Test Execution Times (ms)

Amount Written and

Read (10 MB)

Default
My_Class

(128KB Block)

My_Class

(512KB Block)

My_Class

(1MB Block)

Execution 1 11 14 10 8

Execution 2 4 6 4 4

Execution 3 4 7 4 3

Execution 4 4 6 3 3

Execution 5 5 6 3 3

Average 5.6 7.8 4.8 4.2

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

50
IJRITCC | September 2017, Available @ http://www.ijritcc.org

The above table shows the results performed on 10MB data

with different approaches. It is calculated by the average of

these operations to find the variations between all the

scenarios.

Here it is found that when My_Class is applied with 128KB

block then it takes too much time and when size of block is

increased, then it takes less time as compared to default

class.

Figure 4.1: Access Time with 10MB Data

In the above figure results are compared for the operations

performed on 10MB data with different approaches. It is

calculated by the average of these operations to find the

variations between all the scenarios.

 Access Time with 100MB Data

Here the operations are performed over 100MB data and

results are calculated on different scenarios.

TABLE 4.3

ACCESS TIME WITH 100MB DATA

 Stream Test Execution Times (ms)

Amount Written

and Read (100

MB)

Default

My_Class

(128KB Block)

My_Class

(512KB Block)

My_Class

(1MB Block)

Execution 1 105 150 97 57

Execution 2 39 56 36 40

Execution 3 39 54 37 39

Execution 4 40 53 36 40

Execution 5 39 52 36 40

Average 52.4 73 48.4 43.2

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

51
IJRITCC | September 2017, Available @ http://www.ijritcc.org

From the above scenario it can be said that when the block

size is of 1MB then access time is less as compared to other

cases where block size is less than 1MB and operations are

performed on the 100MB data. Here it is found that when

My_Class is applied with 128KB block then it takes too

much time and when increase the size of this block then it

takes less time as compare to default class.

Figure 4.2: Access Time with 100MB Data

 Access Time with 500MB Data

Here the operations are performed over 500MB data and results are calculated using different block sizes of my_class.

TABLE 4.4

ACCESS TIME WITH 500MB DATA

 Stream Test Execution Times (ms)

Amount Written and

Read (500 MB)

Default

My_Class

(128KB Block)

My_Class

(512KB Block)

My_Class

(1MB Block)

Execution 1 520 396 297 242

Execution 2 172 228 190 175

Execution 3 173 192 160 172

Execution 4 173 193 157 173

Execution 5 172 193 158 173

Average 242 240.4 192.4 187

Access Time with 100MB Data

160

140

120

100

80

60

40

20

0

Default (128KB Block) (512KB Block) (1MB Block)

Execution 1 Execution 2 Execution 3

Execution 4 Execution 5 Average

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

52
IJRITCC | September 2017, Available @ http://www.ijritcc.org

Here this table proves the result variation between various

blocks used for the memory storage and 1 MB size block

takes very less time.The operations are performed with the

500MB data. Here again it is found that when My_Class is

applied with 128KB block size then it takes more time than

default class. And when block size is either 512KB or

1MBtoo the default class takes more time

Figure 4.3: Access Time with 500MB Data

Here this figure shows the results variation between the

various blocks used for the memory storage and 1 MB size

block takes very less time. These operations are performed

with the 500MB data. Here it found that when My_Class is

applied with 128KB block then it takes too much time and

when increase the size of this block then it takes less time as

compare to default class.

 Access Time with 1000MB Data

Here the operations are performed over 1000MB data and

results are calculated on different scenarios.

TABLE 4.5

ACCESS TIME WITH 1000MB DATA

Stream Test Execution Times (ms)

Amount Written and

Read (1000 MB)

Default

My_Class

(128KB Block)

My_Class

(512KB Block)

My_Class

(1MB Block)

Execution 1 1210 1595 817 490

Execution 2 356 556 403 351

Access Time with 500MB
Data 60

0

50
0

40
0

30
0

20
0

10
0

0
Defau
lt

(128KB
Block)

(512KB
Block)

(1MB
Block)

Execution
1

Execution
2

Execution
3

Execution
4

Execution
5

Averag
e

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

53
IJRITCC | September 2017, Available @ http://www.ijritcc.org

Execution 3 356 570 359 350

Execution 4 345 568 357 349

Execution 5 342 567 356 349

Average 521.8 771.2 458.4 377.8

Here this table proves the result variation between the

various blocks used for the memory storage and 1 MB size

block takes very less time. These operations are performed

with the 1000MB data. Here we found that when My_Class

is applied with 128KB block then it takes too much time and

when the size of this block is increased then it takes less

time as compare to default class.

Figure 4.4: Access Time with 1000MB D

Figure 4.4 presents the result variation between the various blocks used for the memory storage and 1 MB size block takes very

less time. These operations are performed with the 1000MB data. Here it found that when My_Class is applied with 128KB block

then it takes too much time as compared to default class and when the size of the block is increased then it takes less time as

compare to default class.

Access Time with 1000MB Data

2000

1500

1000

500

0

Default (128KB Block) (512KB Block) (1MB Block)

Execution 1

Execution 4

Execution 2

Execution 5

Execution 3

Average

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

54
IJRITCC | September 2017, Available @ http://www.ijritcc.org

 Average Access Time with Different Data

TABLE 4.6

AVERAGE ACCESS TIME WITH DIFFERENT DATA

Stream Test Execution Times (ms)

Amount Written and

Read on Data

Default My_Class

(128KB Block)

My_Class

(512KB Block)

My_Class

(1MB Block)

10 MB
5.6 7.8 4.8 4.2

100 MB
52.4 73 48.4 43.2

500 MB
242 240.4 192.4 187

1000 MB
521.8 771.2 458.4 377.8

Above table summarizes the average of tests performed on

different data that is 10MB, 100MB, 500 MB and 1000MB

data by default class and My_class with different block.

Results are shown in visual format below.

Figure 4.5: Average Access Time with Different Data

Average Cases

900

800

700

600

500

400

300

200

100

0

Default (128KB Block) (512KB Block) (1MB Block)

10 MB 100 MB 500 MB 1000 MB

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 9 47 – 55

55
IJRITCC | September 2017, Available @ http://www.ijritcc.org

Here this figure presents the results variation between the

various blocks used for the memory storage and 1 MB size

block takes very less time. Here it found that when

My_Class is applied with 128KB block then it takes too

much time as compared to default class and My_class

applied with 512 KB or 1MBnd block size.

V. CONCLUSION AND FUTURE SCOPE

 Conclusion

The results indicate that My_Class can store more than

double the data of Default in ideal conditions. The access

times depend on the block size of the memory setting of

My_Class; the initial allocations are margin faster than

Default class but access times are similar. The smaller the

block the more allocations must be done and got the best

results with block of 1MB.

This shows the performance and access time are better in

case of approach here implemented and it is able to allocate

more process to memory when there is an exception

encounters in the normal case.

 Future Scope

This paper covers the limitation of data to the 1000MB data

after this it slows down the system.

In the future there may be some chance of improvement and

improvements can be done by increasing the virtual address

size so that when a process requests for memory then

memory can easily be allocated to that process.

REFERENCES
[1] Silberschatz A, GalvinPB, GagneG Operating system

concepts Boston, MA Wiley.

[2] Tanenbaum AS, Woodhull AS Operating systems design

and implementation.

[3] Evans J, Scalable memory allocation using jemalloc, 2011.

Available at this URL

〈http://j.mp/1H6zIm4〉.

[4] E. Kalyvianaki, T. Charalambous, S. Hand, Self-adaptive

and self-configured CPU resource provisioning for

virtualized servers using Kalman filters, in: Proceedings of

the 6th international conference on Autonomic computing -

ICAC ’09, ACM Press, New York, New York, USA, 2009,

p. 117

[5] Tutorialspoint Team, “Introduction to Memory

Management”, Source Available at

http://www.tutorialspoint.com, July 2015.

[6] “Why use CPUs without MMU?” Page source Available

at: http://www.uclinux.org/pub/uClinux/archive/5762.html

[7] Germ´an Molt´, Miguel Caballer, Eloy Romero, Carlos de

Alfonso, Elastic Memory Management of Virtualized

Infrastructures for Applications with Dynamic Memory

Requirements, International Conference on Computational

Science, ICCS 2013

[8] OnurÜlgen, MutluAvci, The intelligent memory allocator

selector, Computer Languages, Systems & Structures Vol

44, Pages 342–354, Year 2015.

[9] Hasan Y, Chang M. A study of best-fit memory allocators.

Comput Lang SystStruct 2005; 31(1): 35– 48.

[10] Hasan Y, Chang M. A tunable hybrid memory allocator. J

SystSoftw 2006; 79(8):1051–63.

[11] Garca-Martnez A, Fernández – Conde J, Viña Á Efficient

memory management in video on demand servers.

ComputCommun 2000; 23(3):253–66.

[12] Gustavo Duarte, “Page Cache, the Affair between Memory

and Files”. Available at: http://duartes.org/gustavo/blog/

category/internals/

[13] JonesR,HoskingA,MossE.In:Thegarbagecollectionhandboo

k:theartofautomaticmemorymanagement.BocaRaton

,FL:Chapman &Hall/CRC;2011.

[14] “Process address space”. Available at:

http://kernel.org/doc/gorman/html/understand/understand0

07.html

[15] D. Williams, H. Jamjoom, Y.-H. Liu, H. Weatherspoon,

Overdriver: handling memory overload in an

oversubscribed cloud, ACM SIGPLAN Notices 46 (7)

(2011) 205. doi:10.1145/2007477.1952709.

[16] W. Zhao, Z. Wang, Y. Luo, Dynamic memory balancing

for virtual machines, ACM SIGOPS Operating Systems

Review 43 (3) (2009) 37. doi:10.1145/1618525.1618530.

http://www.ijritcc.org/

