Some Properties on Strong Roman Domination in Graphs

G. Suresh Singh™, Narges Mohsenitonekboni™
*Department of Mathematics
University of Kerala
Kariyavattom-695581
Thiruvananthapuram-Kerala, India
‘sureshsinghg@yahoo.co.in
“narges.mtonekabni@gmail.com

Abstract—A Strong Roman dominating function (SRDF) is a function f :V — {O,l, 2,3 }satisfying the condition that every

vertex U for which f (u)= 0 is adjacent to at least one vertex V for which f (V)= 3and every vertex U for which f (u): 1is

adjacent to at least one vertex V for which f (V) = 2. The weight of an SRDF is the value f (V ): ZUEV f (u ) The minimum weight

of an SRDF on a graph G is called the Strong Roman domination numberof G . Inthis paper, we attempt to verify some properties on SRDF

and moreover we present Strong Roman domination number for some special classes of graphs. Also we show that for a tree T with N >3

vertices, | leavesand S support vertices, we have ¥ ¢ (T )S

6n-1-s

and we characterize all trees achieving this bound.
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l. INTRODUCTION

Mathematical study of domination in graphs began
around 1960, there are some references to domination related
problems about 100 years prior. In 1862, De Jaenisch [2]
attempted to determine the minimum number of queens
required to cover an x N chess board. Except as indicated

otherwise, all terminology and notation follows [5, 4, 9]. Let
G= (V , E) be a graph of order |V | =nN. For any vertex

veV the open
N (V)z {u eV | uvekE }and the closed neighborhood is
the set N [V]: N(v)U {V} For a set SV the open
neighborhood of Sis N (S): U N (v) and the closed

veS

neighborhood of V is the set

neighborhood is N [S]=N(S)US A set S of vertices is
called a vertex cover if for every edge UV € E either u € S
orveS. A graph G is said to be connected if there is at

least one path between every pair of vertices in G . Otherwise,
G s disconnected. A graph with no cycle is acyclic. A forest
is an acyclic graph. A tree is a connected acyclic graph. A
rooted tree T distinguishes a vertex r called the root. A
vertex of degree 1 is called a leaf which denoted by |. A
adjacent leafof vertex U in a tree T is a neighborhood of U
that is a leaf in T . A support vertex (also called a stem in the
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literature) is a vertex of degree at least 2 that is adjacent to at
least one leaf. A support vertex adjacent to two or more leaves
is a Strong support vertex. A Weak support vertex is a support
vertex that is adjacent to exactly one leaf. Also we denote the

set of leaves in G by L(G ) and the setof support vertices
by S(G). A Star is the graph K, | where k >1.1f k > 1, the
vertex of degree K is called the Center vertex of the star. A
Double star is formed from two disjoint stars by joining the
center vertices of each by an edge. Thus a Double star is a tree

with exactly two vertices that are not leaves.
We now introduce the concept of dominating sets in

graphs. A set S —V is a dominating set if N [S]zV or
equivalently, every vertex in V — S is adjacent to at least one
vertex in S . The domination number;/(G) is the minimum
cardinality of a dominating set in G and a dominating set S
of minimum cardinality is called a 7(G )—set of G, see
[10]. Let f:V — {0,1,2} be a function having the
property that for every vertex Vv eV with f (V): 0, there

exists a neighborhood U € N (V) with f(u)=2. Such a

function is called a Roman dominating function or just an
RDF. The weight of an RDF is the \value

f (V ): Zuev f (u) The minimum weight of an RDF on
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G is called the Roman domination number of G and is
denoted by 5 (G) see [1, 10].

K. Selvakumar et al. [8] introduced Strong Roman
domination in 2016. A Strong Roman dominating function

(SRDF) is a function f :V — {O 1,2, 3} satisfying the
condition that every vertex U for which f (u )= 0 is
adjacent to at least one vertex V for which f (V)= 3 and
every vertex U for which f (u )=1 is adjacent to at least
one vertex V for which f (V ) = 2. The weight of an SRDF
is the value f (V ): Zuev f (u) The minimum weight of

an SRDF on a graph G is called the Strong Roman

domination numberof G .

In 2004, Cockayne et al. [1] studied the graph
theoretic properties of Roman dominating sets. In recent years
several authors studied the concept of Roman dominating
functions and Roman domination numbers [12, 6, 7, 11]. In
this paper, we present some results on SRDF and Strong
Roman domination number for some special classes of graphs.

Also we show that for a tree T with n > 3 vertices, | leaves

6n-1-s

and S support vertices, yq (T)S and we

characterize all trees achieving this bound.

Proposition: For any graph G , there exists an SRDF,
f=(V,,V,,V,,V,)of G,suchthat V, = .

Proof:
Let V, =@andu €V . By the definition of SRDF,

there exists a vertex V €V, such that Ve N (u) Hence a

function g =(V,U{u},V,—{u},V, —{v},V,U{v}) is
an SRDF. Continuing with the same argument we find an
SRDF with V, = ¢. Therefore, the proposition follows. o

Theorem 1: For any graph G,
27(G )SVSR(G )337(6’ )

Proof:

f=(VO,V1,V2,V3) is a
Vol=ng , [Vi]=n, ,

Suppose  that
7 (G )— function and
IV, |=n, and [V;|=n,.
VR (G ): f (V )

=> f(u)

ueVv
=3n, +2n, +n,.
V, >V, — The set V,dominates the set V.
V, >V, — The set V, dominates the set V/, .
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It is implied that V, UV, is a dominating set of G . So
;/(G)£|V2|+|V3|,thus
2y(G)<2|V,|+2|V,|
<[V, |+ 2|V, |+ 3|V,
=75 (G ).

27(G)£75R(G)' @
Now, let S bea y —Setof G . Then ]/(G)=|S|.We can

Hence

define an SRDFon G , forall v e S we have f (Vv )=3 and
also for all ugS we have f(u)=0 . Therefore
(V,, V.V, ,V, )=(¢,4,4,S) is an SRDF. It is
impliedthat |VO|=0, |V1|=O, |V2|=O and |V3|=|S|
. Therefore

VSR(G)S3|V3|

=3|S|
=37(G).

75 (G)=37(G). @
From (1) and (2) we get 27 (G )< 7, (G )<3y(G).o

Hence

Theorem 2: For any graph G of order N,
V'R (G): 27(6)
ifand only if G = K .

Proof:
Suppose that

f=(V,,V,,V,.,V,) isa
7er (G )— function . ThusV, UV, is a dominating set of
the graph G . Therefore 7(G)S |V2| + |V3|. The equality
7sr (G)=27(G) implies that we have equality in
2y(G)< 2|V, |+ 2|V, |
=2V, |+ 3|V,
=7sr (G )
So |V3| =0, which implies that V, = ¢. Hence all vertices
are assigned with 2 and therefore
7SR(G): 2|V2|
=2n.
This implies that y(G): N which shows that G = Kn :

Conversely, It is obvious that if G =K
Vsr (G)ZZV(G)‘ o

then

n
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Theorem 3: For any graph G,
7R(G)¢7SR(G)-
Proof:
suppose that f=(V,,V,,V,,V,) is a
7er (G )— function . Let g =(Y,,Y,,Y, ) be an RDF
on G where Y, =V,, Y, =V, and Y, =V,. Therefore
72 (G)=|Y | +2|Y,|
=[V, |+ 2|V
<2|V, |+3|V,|
ZVSR(G)'
Thus 75 (G )# 75, (G ). o

Based on above theorem, we know that
7r (G )27, (G)+1. In the next theorem, we will
discuss the equation of this inequality.

Theorem 4: 7 (G )=y, (G)+1 if and only if
A(G)=n-1.
Proof:

Suppose  that ¥ (G )=y, (G)+1 and
f=(V,,V,,V,,V, )isa ys (G )— function . Define
g=(Y,,Y,,Y,) is an RDF on G where Y, =V, ,
Y, =V, and Y, =V;. Therefore

e (G)<|Y [ +2]Y, |
ZIV, [+ 2|V, |
On the other hand, if |V2 | # 0 and also |V3 | # 0, then
IVa [+ 2|V [V, [+ 2V, [+ (|V, | =1)+ (v, | -1)
=2|V, | +3|V,|-2.

Hence
7o (G)+1<|V, [ +2|V, |+1

<2|V, |+3|V;| -1
:VSR(G)_]--
Thus 75 (G )+1# yx(G ), which is a contradiction.
Therefore|V3|:Oor|V2|:O.
Let |V; | =0 andif |V, | >1, then
7/R(G)£|V2|
<2|V,|-2.

Hence
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7o (G)+1<|V, |+1
<2|v,|-1
=7sr (G )_ 1.
Thus 75 (G )+1# ys (G ) which is a contradiction.
Therefore in this case, |V2 | =1 andthus G = K.
Now, assume that |V2 | =0 and if |V3 | >1, then
VR (G )S 2|V3 |
<3|V, |-2.
similarly, we get 5 (G)+1# 7. (G), which is a
contradiction. Therefore in this case, |V3 | =1 and if
V, ={v}, then deg(v)=n—1. Thus G has a vertex of
degree n —1.
Therefore in each case A(G )=n—1.
Conversely, If A(G )= n—1, then yq (G ): 3

and 7, (G)=2.50 7, (G )=yr(G)+1.0

Theorem 5: For any path P_,
{ n , n=0(mod3)

P )= .
7sn(Fr) n+l, n#0(mod3)

Proof:
Suppose that @, b and C are consecutive vertices

and f=(V,,V,,V,,V,)is a7 (G)- function of
P, respectively. If two vertices of {a ,b,c }belongingto

n
V, , then either one of those vertices belongs to V,, which in
this case we have

f(a)+ f(b)+f(c)>3,
ora, CeVyandb €V, . In this case, all vertices which are

adjacent to @ and C are named X and Y should belongto V,
. Therefore

f(x)+f(a)+f(b)+f(c)+f(y)=8.

So, always
yse(P)=(V)
>n.

Now, we use an induction on the order N. Assume the result
is true for N < 6. Suppose that N >7 and it is true for

m<n.1f n=0(mod3)and P, =V, v, ---V,, we put
(v, )= 3, |.52(mod3).
0 , i#2(mod3)
Hence, f isan SRDF and also
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f(V)=3 1 (v)

i-1
=nN.

Therefore y g ( P, )S n.

On the other hand, we have shown for any N, y¢, ( P, )2 n.

Hence y g ( P, ): n.

Now, let n#0(mod3) and f =(V,,V,,V,,V, ) bea

7 (G )— function .

If V,=¢ , then it is easy to

7/SR( )— f( )Zn"'l-

If V, # @, then assume that for 1<i<n, f (vi ):2.We
consider the following cases:

show that

Casel:i=1ori=n.

Without loss of generality, suppose that i=1,
f (v, )= 2. Hence

P,-v,=P _,.
By the induction, we know that
Vsr ( P )2 N—1. On the other hand, it is

clearly, g = f |P . Thus

g(V)Z%R(Pn—l)
>n-1.

7SR( )

be an SRDFon P, _,
-1

Therefore

(V)
(V)+2
n-1

)+2

\%

f
g
(
n+1.

Hence yqx ( P, )2 n+1.
Similarly, we can prove that the result is true for

i=n.
Case2:i#1,n.

Hence. we put P_,=V,V,...Vv;_; and

P, i =V, Vi,, ...V, . Weknow that
VSR(Pi—1)Zi_1’
7/5R(Pnfi )Zn—i.
On the other hand, it is clearly, the functions
g, =f | o, ad gy = f |Pn—i are two

SRDFs on P _,and P, ., respectively. Thus
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)2 75 (P )
>i-1,
9, (V)2 7 (ﬂ.)
Therefore =neh
V'sr ( )_ f(v ( )

=91(V )+92(V )+2
>(i-1)+(n-i)+2
=n+1.
Hence 75R(Pn )Z n+1.
Therefore in both cases g5 ( P, )Z n+1.

Now we define the function f on path P, if
n#0(mod 3) as follows:
1) If n=1(mod3), then
3 , i=2(mod3)
f(v,)=40 , i#2(mod3),i<n.
2 , i=n
2) 1fn=2(mod3), then
(v )= 3, !zz(nmd3)
0 , i#2(mod3)

In both cases f is an SRDF on path P, of weight n+1.
Hence y¢g ( P, )S n+1.

Since we have shown that before 7/SR(Pn )2n+1 ,
therefore  if Nn#0(mod3) , then we
7sx(Py)=n+1l.co

have

Il.  ANEW UPPER BOUND IN TREES

It has been shown that the domination number of a

n
connected graph G of order N is at most E [4]. Regarding

the fact that ¥ (G )<37(G ), we get
3n
73R(G )337(6 )S_'

Our aim in this section is improve this bound on trees. We

show that for any tree T of order N with | leaves and S
6n-1-s

support vertices, we have y ¢ (T )S . Moreover,

we characterize all trees achieving this bound.
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Theorem 6: If T is a tree of order N >3 with | leaves and
S support vertices, then

(7)< 8015,

4

Proof:
We prove this by induction on order N of tree T .

If diam (T )= 2,then T is a Star. Therefore | =n—1,
s=1and ;/SR(T )=3. Hence

7SR(T):3

6n-1-s

<—
4

_6n-(n-1)-1
B 4
_5n
=

Now, assume that diam (T )=3. In this case, T is a
Double Star S, | with central vertices U and V with degrees

of aand b,
that a>b.

If a=2,then b=2 andthus T = P,. Therefore
VSR (T ): 5
_6n-1l-s
1 .
Now, let a>3 . If b=2 , then the function

f=(N(u),¢,N(v),{u}) is a

}/SR(T )— function . Since n>5,l=n—-2and s=2,

we have
7SR(T): f(V)
=2|V, | +3|V, |
=2|N(v)|+3
=5
<6n—|—sl

4
Now, let b > 3. In this case, N > 6,

the function f=(V(T)—{u v},¢,¢,{u
SRDF ontree T . Hence

?/SR(T)S f(V)

respectively. Without loss of generality, suppose

l=n-2,s=2 and

V}) is an

= 2|V, | +3|V,|
=6
6n—-1-s
<
4
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So, we can assume that diam (T )2 4. 1f T has a Strong
support vertex U and also V and W are adjacent leaves to U,
then we consider T' =T —w. Let n', |" and S’ be order ,
number of leaves and number of vertices of tree T',
respectively. Since diam (T )2 4, we get n">3 .

6n" —1'—¢’
Therefore by induction y¢ (T’ )< ———
that g =(V, ,4,V,,V,) isa ys (T')— function .
If g(u )= 3, then extension of g by assigning the weight
0 to W is an SRDF on tree T . Thus, since |' =1 —1and
s’ =5, wehave

Vsr (T )S g (V )
=7sr (T , )
6n' —1'—s’
< = =
4
6(n-1)-(1-1)-s
4
6n-1-s
1 :

Now, let g(u);&B Then g( )

0,

function f with f( ) ( )=
x)=g(x

any other vertex X, we have f (

. Suppose

Therefore the
( )=3 and for
) is an SRDF on
tree T . Hence
V'sr (T )S f (V )
=g(V)+1
=7sr (T')"'l
6n' —1"'—¢'
S -
4
_6(n-1)-(1-1)-s 1
4
6n-1-s
< —)\
4
Therefore, we can consider the following Fact.

+1

Fact: T has no Strong support vertex.

We root the tree T
P=X, X -~ X4
deg ( Xg_1 ): 2. We consider the following cases:

at vertex X, Support  that

is a diagonal path. Based on Fact,

Case 1:deg(xd72 )23.
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In this case, every child of X, _, is either a leaf or a

support vertex of degree 2. Since based on Fact, T
does not has a Strong support vertex, we consider
'F:T—{&,xmi}. So, n'=n-2

I'=1-1 and s'=s-1 Suppose  that

fr=(Vy,V,,V;,V,) isa
7s (T')— function .

If 1”(Xd _2 ): 2 , then the function
f=(V,,V,,V,,V,) where
Vo :VOIU{Xd !Xd—z} ' V1 :V1':¢ )

V, =V, —{dez } and V, =V/U{x, } is an
SRDFontree T . Thus
rse(T)<E(V)
=f'(v)+1
=7sr (T’)"'l-
Since diam (T )24, we get N' > 3. Then under
the hypothesis

7/SR(T )S7SR(T’)+1

S6n’-—|'—s'+1
4
_6(n-2)-(1-1)-(s-1) ,
4
6n—1-s
<—
4

Now, let f'(xdf2 )=3 . So, the function

f :(VO’U{Xd—l}’¢’V2,U{Xd }1\/3,) is an
SRDF ontree T . Thus by hypothesis we have
rse(T)<E(V)
=f'(V)+2
:7SR(T,)+2
6n' —1'—5¢'
<-_ =
4
o(n-2)=(1-0-(s-1)

+ 2

6n-1-s
<— -
4

Therefore, we can assume that for each
7er (T')— function , the weight of the vertex

X4 _, isequalsto 0.
Assume that X, _, is a support vertex. Based on

Fact, T has only an adjacentleaf .we consider U as
an adjacent leaf to X, _,. If X,_, has a support
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child Vv other than X;_, , then since
f'(xdf2 )=O . we can assume f'(v)=3,
f’(u ): 2 and the child weight of V is equals to

0. By changing the weight of the vertices U and V
to 0, X4_, to 3 and child of V to 2 a new

7 (T')— function is obtained where weight of

X4 _, is not equals to O, which is a contradiction.
Since we assume that for each
7e (T')— function , we have the weight of

X4 _, is 0. So, we can assume that the only support
child X,_, is the wvertex X, , . We put
T'=T T, . In this case, n"=n—4. Since
diam (T )>4,weget n'>2.

If n"=2, then T = F, shown in the figure (1). In

this case, N=6, l=s=3 and (T )=7.
Therefore

Vsr (T ): 7
30
< —_
4
_6n-1l-s
2 .
Now, assume that N’ >3 . Therefore based on

6n' —1"—s'
2 .
Any 7¢ (T")— function can be extended to an

inductive hypothesis ¥ (T')<

SRDF on tree T by assigning the weight 3to Xg_2
2 to Xy and O to X, , and U . Thus

7SR(T)S78R(T')+5'

Ifdeg(xd73)=2,ﬂwn|':|-—lmms'28——2
. Therefore
7SR(T)S7SR(T’)+5
SGn’—I'—S'_'_5
4
_6(n-4)-(1-1)-(s-2)
4
6n—-1I-s
<—
4
Now, let deg(xd73 )Z 3. In this case, |"'=1 -2

and ' =S — 2. Hence
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7SR(T)S75R(TI)+5

S6n’-—|’—s’+5
4
:6(n—4)—(l—2)—(s—2)+5
4
_6n-1-s
-

Therefore in this case, if X, _, is a support vertex,
6n-1I-s

2 :
Now, assume that X, _, is not a support vertex.

then yqq (T )S

If X, _, has three children U, V and W other than

X4 1, then we put T'=T — {xd Xy 1 } We
already assumed that for each
7e (T')— function the weight of X, , is

equalsto O . We consider that the function ' is a
7er (T')— function , therefore f’(Xd_2 ): 0.
Hence we can assume
f'(u)=f'(v)=f'(w)=3 and the child
weight of each of the vertices U, V and W are 0. In
this case, by changing the weight of the vertices U,

V and W to O, childof each of the vertices U, V
and W to 3 and Xy , to 3, we obtain a
7er (T')— function where the weight of the
vertex X, , is not equals to 0 which is a

contradiction, since we previously assumed that for
each 7., (T )— function , we have the weight of

the vertex X, , isequalsto 0.

So, we can assume that X, _, has at most two
support children other than X _,.

First, assume X, _, has two support children U and
V other than X, ,. We put T'=T —T, . Since
diam (T )>4, weget n'> 2.

If n"=2, then T =F, shown in the figure (1). In
this case, N=9, | =s=4 and ye (T )=11.
Thus y¢5 (T )< Gn_—l_s

Now, let n" > 3. In this case, N =N — 7 and under

6n' —1'—s'

the hypothesis 7SR(T’)ST . Any

Vsr (T' )— function can be extended to an SRDF

on tree T by assigning the weight 3 to the vertices
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U,V and X; ;and 0 to all their neighboring
vertices. Therefore ¥eq (T )< yer (T')+9.

If deg(xd% )=2 , ten |'=1-2 and
s'>s — 3. Hence

7SR(T )575R(T,)+9

S6n'—|'—s’+9
4
6(n-7)-(1-2)-(s-3) 4
4
6n-1-s
<—.
4
Now, let deg(xd73 )23. In this case, I’=1-3
and 8" =5 — 3. Thus
7SR(T)S7/5R(T’)+9
S6W—V—§+9
4
:6(n—7)—(l—3)—(s—3)+9
4
_6n-I-s
==

Now, we support that X; , has only one support
child other than X, _,. Let U be a support child
X4 _, otherthan X, . Weput T'=T —T, .So
N=n-5, 1">1-2 and s">s—2 . Since
diam (T )24,Weget n>2.

If n"=2, then T =F; shown in figure (1). So,

Nn=7, I=s=3 and 7, (T)=9 . Hence
6n-1-s
ra(T) =228
Now, let N’ > 3. So based on inductive hypothesis
o 6n' —1"—¢'
VSR (T )S T : Any

Vsr (T' )— function can be extended to an SRDF

on tree T by assigning the weight 3 to the vertices
U and X, ;and0 to all their neighboring vertices.

50, 7 (T )< 7 (T")+ 6. And therefore


http://www.ijritcc.org/

7/SR(T)S78R(T’)+6
SGW—V—§+6
4
_6(n-5)-(1-2)-(s-2)
4
6n-1-s
<—

4

Case 2:deg(xd_2 ): 2.

Weput T'=T —TXH. Since diam (T )Z 4 we
get n' > 2.
If n"=2,then T =P;. Thus
Vsr (T ): 5

_6n-1l-s

==
Now, let n">3 . In this case, N"=n—-3 ,
I'>1-1 and s'>s-1 . Any
7sr (T')— function can be extended to an SRDF

on tree T by assigning the weight 3 to the vertices
U and Xd_landO to all their neighboring vertices.

Therefore y¢r (T )< 7 (T')+3 . Hence with
the hypothesis we have

7SR(T)S7SR(T,)+3

on-l=s'
4

_6(n-3)-(1-1)-(s-1) ,

4
6n-1-s

<——mm.

4
So the problem is solved. O
F F, Fs

Figure 1.Trees Fl, F2 and Fs-
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In the following, we characterize all the trees

6n-1I1-s

subjected to the condition ¢ (T )= .Let F

be a family of trees T where it comes from a sequence of
tees T,,T,,....,T;, (j>1) such that T, =P, or
T, = F; (Shown in Fig 1) and if j>2, then T, can be

obtained from T; with one of two operations O, or O, .

A. Operation 01

Let UEV(TJ- ) , ySR(TJ- —u)ZySR(Tj ) and
deg(u )21 T this case, T, is obtained from T, by
adding /a/' \w\ith the support vertex V and adding the
edge } '

1 1

1

\\ u I’

\ 4

\\ //

Figure 2.Operation Ol h

B. Operation O,
Let UEV(T- ) v Vsr (TJ- —U)Z Vsr (T. ) and
deg( )> 2, In this case, T;,, is obtained from T; by

addlng a,tree--‘: W|th addlng the egdge UV where V Jis a

centrg(l vertex of tree\F (See Fig

Figure 3.Operation 02 .

To prove that each tree T € F satisfy the condition

6n—
7SR(T)

useful. For each k >1, let n,, |, and S, denote order,

, the following two Lemmas will be

number of leaves and number of support vertices of tree T, ,
respectively.


http://www.ijritcc.org/

6n;, -1, s,

Lemma 1: Let yg (Tj ): and T, , is
obtained by T; with operation O, , then
6n.., -1, —s.
j+1 j+1 j+1
Vsr (Tj +1 ): 4 .

Proof:
Suppose that the path P, = XvyZz and the vertex U

is operation dependent. Any )/SR( ) function can be

extended to an SRDF on tree T by assigning the weight 3 to
V., 2 to z and O to X and y . Therefore

Vsr (Tj+1 )S Vsr (TJ- )+5 . Now, suppose that f is a
Vsr (Tj+l )— function .
if f(u)+0, then f |, isan SRDF on tree T, . So, in this

)
V)= f(V(R))
0.

Hence f | is an SRDF

case, we have

7 (T )< (

f
Now, assume that f ( )

(
on T; —U. Therefore (T —u )< f (V|

by the assumption
73R(Tj )SVSR(TJ _u)

) and so

So, in both cases we have
7SR(Tj )S f(V )_ f(V(P4 ))
<f(V)-5
=7sr (Tj+1 )_5'
7SR(Tj+1 ):7/3R(Tj )+5

Therefore Since

deg(u)=>2, we get l;,,=1;+2ands; ,=s; +2.
So, by induction we have
J/SR(Tj+1):7/sR(Tj )+5

:6nj — I —s; 5

4

_ 6(nl+l 4) (“+1 2) (SJ+1 2)

- 4

. 6nj+1 _Ij+1 Sj+1

- 4

Now, hence the proof. O
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6n;, -1, —s,
Lemma 2: Suppose that ygq (Tj ):f and

T, is obtained with the operation O, of T, then
6n; ., —1;,,—s
j+1 j+1

Vsr (Tj+1 ):

4

j+1

Proof:
Let F, be a tree with central vertex V and vertex

ueV (TJ- ) is dependent to operation O, . Suppose that f
isa ¥sg (Tj+l )— function .
if f(u)#0,then f |T, is an SRDF on tree T ;. Thus
Vsr (Tj )S f (V |Tj )
=f(V)-f(V(R))
Now, let f (u )= 0. In this case, we have
7SR(Tj )SySR(Tj _u)
<tlvl, )
=f(V)-f(V(F))

On the other hand, always f (V (F; ))>9.
So, in both cases we have

75R(Tj )S f(V )_ f(V(Fs ))
<f(V)-9
=7/SR(TJ+1)_9'
Also any 75R( ) function can be extended to an SRDF

ontree T by assigning the weight 3 to the support vertices of
tree F, and O to other vertices of tree F,. Thus

7SR(Tj+1)S7/SR(Tj)+3|S(F3)|
=;/SR(TJ-)+9.
VSR(T1+1):7SR(T1)+9
N;,,=N; +7 and since deg(u)22 , we get
I

Therefore Clearly

=l; +3 and s;,, =5; +3. So, by induction we

j+1
h;ve
75R(Tj+1):73R(TJ)+9
=6nj_|j_sj+9
4
_6(n1+1 7) (|j+1 3) (Sl+l 3)+9
4
_ 6nj+1'_|j+l Sj+l
4

Now, hence the proof. o
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Theorem 7: For any tree T of order n >3 with | leaves

) 6n-1-s
and S support vertices, Y¢g (T )= ——— if and only
ifTeF.
Proof:
6n—1-s
Suppose that 7¢g (T ): T We proceed

by an induction on the order N ofatree T .
If diam (T )S 3, then based on proof of Theorem 6, we get

T=P,andthus T e F.
Now, let diam(T )> 4. We root the tree T  at vertex X, .
Suppose that P =X, X, ...X, isa diagonal path.

Based on proof of Theorem 6, T does not have a Strong
support vertexand if T # F,, then only in following two

6n-1-s
cases are Yqg (T )z 7 holds:

Case 1:deg(xd72 ):3, deg(xdfz )23 and X, _,
is a support vertex.

In this case, we put T'=T —T, . Let U be
adjacent leaf to Xy _,. Hence T, = P,. To prove
that T is obtained fromT " with operation O, , it is
enough to show g (T' —Xq_3 )2 7er(T).

let T'eF . On contrary, suppose that
7/SR(T'_Xd—3 )<7/SR(T') : Any
Vsr (T' — X4 3 )— function can be extended to

an SRDF on tree T by assigning the weight 3 to
Xg_ o, 2t Xy and 0 to X4 ,, X4 5 and U.

Therefore e (T )< ¥en (T' — X4 _3 )+5. Thus
Ve (T )SJ/SR(TI_Xd—3 )+5

<ys(T')+5
S6W—V—§+5
4
_6(n-4)-(1-2)-(s-2) .
4
_6n-I-s
==
Therefore 7/SR(T)<6H_TI_S which is a

contradiction. So, ¥ ¢g (T' — X4 _3 )2 7er (T7).
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Now, let T'e¢F . In this  case,

,y _6n' —1"-=5¢
75R(T )<T ) Any

Vsr (T' )— function can be extended to an SRDF
by assigning the weight 3to V, 0 to U and X, ,
and2 to X, . Thus

7/SR(T)S73R(T,)+5

<6W—V—§+5
4
_6(n-4)-(1-2)-(s-2) .
4
_6n-I-s
==
Therefore ]/SR(T)<6H_TI_S which is a

contradiction.
Hence T'e F. Thus T is obtained from T’ with

operation O .

Case 2:deg(xd_2 ):4, deg(Xd_z )23 and X;_,

has exactly two support children U and V other than
Xq_1-

We put T"=T =T, . Inthis case, T, =F;.
Any 7¢ (T')— function can be extended to an
SRDF by assigning the weight 3to X4_1, U and Vv

and O to all their neighboring vertices. Thus
7SR(T )SysR(T')+9'

If T'¢F , then ySR(T')<w
Therefore
7SR(T)S7SR(T,)+9
<6W—I—s L9
4
_6(n-7)-(1-3)-(s-3) 4
4
_6n-1l-s
=
So, ;/SR(T)<6n_—I_S which is a

contradiction. Hence T' € F .
To prove that T is obtained fromT ' with operation
O, , it is enough to show that
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7/SR(T,_Xd—3 )ZySR(T') . Any
Vsr (T' )— function can be extended to an SRDF
by assigning the weight 3to X, ,, 0 to X; 5 and
vertices S (TXH ) and 2 to L(TXH ) . Thus
Vsr (T )S Vsr (T' — X4 3 )+ 9. Therefore

ySR(T)SJ/SR(T’_Xd—S)-Fg

<7/SR(T')+9
<6W—V—§+9
4
_6(n-7)-(1-3)-(s-3) 4
- 4
_6n-1I-s
=
Thus }/SR(T)<6n_TI_S which is a

contradiction.
SO0 Ysr (T' —X4_3 )2 Vsr (T'). Therefore T is

obtained fromT " with operation O, . Hence T € F

Hence inbothcases T € F .
Conversely, let T € F. We apply induction on the

number of operations performed to construct atree T .
6n-1-s
If T =P,or T = F,, thenclearly 7 (T )= —

Now, let T # P,andT # F,. Based on the structure of F,
let T be obtained of T € F with operations O, and O, .

6n" —1"—¢’
Under the hypothesis we have yq (T’):T

where N, 1" and S" denote order , number of leaves and
number of vertices of tree T, respectively.
If T is obtained fromT " with operation O, , then based on

6n-1-s
Lemma 1 we have 7qs (T )= —2
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Also, if T is obtained fromT " with operation O, , then from

_ 6n-1-s
the Lemma 2 it follows that ¢ (T ) = —

Hence the proof. o
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