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ABSTRACT 

Purpose 

This study develops an AI-driven, regulation-aware framework that integrates Building Information Modelling (BIM) and 

the Saudi Building Code (SBC) to prioritise critical clashes and enable digital twin integration within Vision 2030 

megaprojects. 

Design/methodology/approach 

A hybrid ensemble combining Random Forest (RF), Convolutional Neural Network (CNN), Graph Convolutional Network 

(GCN), and Graph Attention Network (GAT) was trained using hierarchical graph processing. SBC clauses were encoded 

into IFC features, with calibrated probabilities and a fixed cost-derived decision threshold. 

Findings 

Nested leave-one-project-out (LOPO) testing across five industrial federations demonstrated consistent improvements in 

AUROC, AUPRC, and calibration. The framework reduced coordination time by approximately 65% compared with 

incumbent workflows, with statistically significant results and large effect sizes. 

Originality/value 

This paper presents one of the first regulation-aware AI models for BIM clash prioritisation under the Saudi Building Code. 

The openly released framework enables reproducibility and provides a foundation for real-time digital twins in Saudi Vision 

2030 projects. 

Keywords: Digital Twin; Vision 2030; BIM; Clash Prioritisation; Saudi Building Code; IFC; Graph Neural Networks; 

Calibration; Cost-sensitive classification; Automation in Construction 

1. INTRODUCTION 

Giga-scale developments in Saudi Arabia (e.g., the 

PIF portfolio) compel highly coordinated, code-aligned 

design at unprecedented rates. Commercial clash engines 

excel at geometric detection but still inundate 

coordinators with thousands of low-consequence 

warnings, obscuring code-sensitive conflicts that should 

be prioritised for triage. Within Saudi Arabia’s Vision 

2030 transformation agenda, giga-scale developments 

such as NEOM, Qiddiya, and the Red Sea Project 

exemplify an unprecedented concentration of digitally 

coordinated construction. These programs prioritise 

sustainability, safety, and automation through the 

convergence of Artificial Intelligence (AI), BIM, and 

digital twin technologies. However, the ability to 

translate regulatory provisions—particularly the Saudi 

Building Code (SBC)—into actionable intelligence for 

automated quality control remains limited. Addressing 

this gap requires AI frameworks that integrate code 

semantics with data-driven reasoning directly within 

BIM environments. This paper advocates for a shift from 

mere detection to regulation-aware prioritisation, 

wherein criticality is modelled based on geometry, 

semantics, and explicit obligations encoded from the 

Saudi Building Code (SBC) into IFC-aligned features 

[1–5]. 

Accordingly, this study contributes to Vision 2030’s 

digital construction agenda through three advances. First, 

http://www.ijritcc.org/
mailto:hussamzakiah@gmail.com
https://orcid.org/0009-0000-4934-7361
mailto:h.zakieh@sak-consult.com


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 14 Issue: 1 

Article Received: 25 December 2025 Revised: 12 January 2026 Accepted: 02 February 2026 

____________________________________________________________________________________________________________ 

 
    9 
IJRITCC | February 2026, Available @ http://www.ijritcc.org 

we formalise a pipeline that (i) parses IFC, (ii) maps 

BSBC clauses to verifiable features, and (iii) learns a 

hybrid ensemble RF (tabular), CN (clash-centric views), 

GCN/GAT (relational context) with hierarchical graph 

processing (HGP) for scalability. Second, we calibrate 

probabilities and set a fixed cost-derived operating 

threshold, τ⋆ = CFP/(CFN + CFP) = 0.1667, which 

eliminates test leakage; an uncertainty referral quantile is 

fixed based on inner validation. Third, we report nested-

LOPO results over five federations with per-fold tables: 

AUROC (DeLong CIs) [29], AUPRC (bootstrap CIs) 

[30], ECE, NLL, ablations/sensitivity, and paired 

operational analyses with BH/Holm correction [32, 33], 

effect sizes [34, 35]. 

Beyond accuracy, we adopt a minutes per 100 clashes 

metric to quantify operational value. The package is 

available at DOI: 10.5281/zenodo. 17159231 includes 

synthetic IFCs, anonymised features per fold, trained 

weights, plotting scripts, and a Dockerfile for complete 

regeneration. 

2. RELATED WORK 

2.1 BIM clash detection and prioritisation 

 Studies have explored ML ranking and ontology-guided 

filtering to reduce noise in clash lists; however, few 

integrate national code signals directly into learning [10–

12]. Prioritisation remains underexplored at the giga-

scale level, particularly with formal encoding of 

obligations. 

2.2 Automated code compliance (ACC) 

ACC spans rule codification, knowledge graphs, 

IFC/IDS/bSDD alignment, and increasingly, LLM-aided 

extraction constrained by ontologies 

[13–17]. Our work treats ACC signals as first-class 

features in classification and decision-making. 

2.3 Graph learning in AEC 

 GNNs are well-suited for heterogeneous, relational BIM 

representations; attention aids in interpretability [18–23]. 

For scaling, we use hierarchical partitioning and sampled 

training (Cluster-GCN, GraphSAINT) [24–26]. 

2.4 Calibration, uncertainty, and decision costs 

Temperature scaling and Bayesian binning improve 

probability calibration [27, 28]. Threshold selection must 

avoid test leakage; we use a closed-form cost-optimal τ⋆ 

and inner-fixed uncertainty referral. Evaluation relies on 

non-parametric tests with multiple-testing control and 

proper effect sizes [31–35]. 

3. INDUSTRIAL CONTEXT, DATASETS, AND 

SBC–IFC ENCODING 

This research analyses five federations (Projects A–

E) spanning architectural, structural, and MEP 

disciplines with LOD 300–500. Certified coordinators 

assigned labels (critical/non-critical) under SBC-aware 

guidelines; inter-rater reliability used Cohen’s κ with 

bootstrap CIs [30, 34]. IFC quality (4x2 and 4x3) was 

checked for key Psets and entity coverage. 

3.1. Dataset summary 

Table 1: Industrial datasets (anonymised but measured). Nodes/edges refer to the heterogeneous BIM graph. 

Pos/neg denote (critical/non-critical). 

Project #IFC files LOD range |V | nodes |E| edges #clashes (pos/neg) 

A 124 300–500 1,240,000 8,350,000 42,350 (8,137 / 34,213) 

B 87 300–500 830,000 5,420,000 28,120 (5,956 / 22,164) 

C 103 300–500 1,010,000 6,910,000 35,980 (7,196 / 28,784) 

D 75 300–500 520,000 3,240,000 16,750 (3,897 / 12,853) 

E 92 300–500 940,000 6,180,000 31,640 (6,442 / 25,198) 
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Table 2: Exemplar SBC clause mapping to IFC sources and engineered features (IFC 4x3 naming aligned). 

3.2. SBC→IFC→feature mapping (checked against IFC 

4x3) 

We map selected SBC parts to IFC 

entities/properties and engineered features. Where a 

Pset/prop is not natively present, we define a geometric 

procedure (e.g., local buffers) with unit tests in the DOI 

package. Official SBC parts are cited [1–5]. 

Engineering notes (repeatable).. (1) Width in 

Pset_SpaceCommon is used when SpaceType indicates 

corridor; (2) Stair metrics come from 

Pset_StairFlightCommon; (3) HVAC clearance uses 

mesh offsets and Boolean ops; (4) Egress area accounts 

for leaf swing, projected opening, and obstructions; (5) 

Unit tests (synthetic IFCs) validate extraction in the DOI 

archive. 

4. METHOD 

4.1. Problem formulation 

Given a set of clashes C = {ci} over a BIM graph G 

= (V, E), we predict criticality Si ∈ [0,1] and a class at the 

operating point. Features include geometry, context, and 

SBC-derived signals; the relational structure is derived 

from typed element adjacencies. 

4.2. Hybrid branches and calibrated fusion 

Four branches operate in parallel: RF on tabular 

features, CNN on clash-centric 128×128 projections, and 

GCN/GAT on G. Fusion: 

S = αSRF + βSCNN + γSGCN + δSGAT ,α,β,γ,δ ∈ 

{0.05:0.05:0.40}, α + β + γ + δ = 1. 

Weights are chosen by inner-CV grid search; under the 

constraints above, the search has 315 distinct 

combinations (closed-form count), not including 

permutations violating the ≤ 0.40 cap. 

4.3. Hierarchical graph processing (HGP) 

We partition by building→system→zone; boundary 

nodes maintain ghost links to preserve cross-partition 

dependencies. GNN training uses Cluster-

GCN/GraphSAINT sampling for throughput [24, 25]. 

In future deployments, these hybrid branches can be 

embedded within real-time digital twin dashboards to 

process live field data (e.g., scan-to-BIM or IoT sensors), 

enabling dynamic compliance monitoring rather than 

static clash review. 

4.4. Calibration and uncertainty 

We apply temperature scaling [27] on inner 

validation. For uncertainty, we use MC-dropout (20 

samples by default) and define a referral quantile q⋆=0.80 

from inner validation only. 

(fixed for all outer folds). Referred cases (with the 

highest uncertainty) are flagged for human review; 

metrics for non-referred subsets are reported as 

supplementary. 

 

SBC Part 

Intent IFC Source → Engineered Feature Type 

 

SBC 301 Corridor 

width 

IfcSpace.Pset_SpaceCommon.Width Numeric 

→ corridor_width_min (m) 

SBC 402 Stair 

riser/tread 

IfcStairFlight.Pset_StairFlightCommon.RiserHeight/TreadLNumeric 

→stair_riser_max, stair_tread_min (mm)  

SBC 509 HVAC 

clearance 

IfcDistributionElement solids ⇒ local buffer difference

 →hvac_clearance_min (mm) 

Numeric 

SBC 801 Egress free 

area 

IfcDoor+ IfcOpeningElement + swing dir. ⇒ projected free area → 

egress_free_area (m2) 

Numeric 

SBC 201 Occupancy 

group 

IfcSpace/IfcZone → occupancy_group 

(categorical) 

Categorical 
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4.5. Cost-aware operating point without test leakage 

With (CFN, CFP) = (10,2), the fixed operating threshold is 

⋆ FP 2 

Cτ = = ≈ 0.1667, CFN + 

CFP12 

set once from costs and not optimised on test predictions. 

This avoids any leakage and aligns decisions with stated 

risk preferences. 

4.6. Algorithmic summary (no leakage) 

1. Outer LOPO: hold out one project; train on the remaining 

four. 

2. Inner CV: tune fusion weights satisfying α+β+γ+δ=1, 

each in {0.05:0.05:0.40}; calibrate with temperature 

scaling on inner validation. 

3. Fix hyper-parameters: set τ⋆=0.1667 from costs; estimate 

q⋆=0.80 on inner validation MC-dropout scores; both 

remain fixed for the outer test. 

4. Test once: compute AUROC (DeLong CIs), AUPRC 

(bootstrap CIs), ECE, NLL; compute thresholded metrics 

at τ⋆; run paired Wilcoxon across projects with BH/Holm 

correction and report effect sizes (d, δ). 

4.7. Implementation details 

Python 3.10; PyTorch 2.2; PyG 2.5; IfcOpenShell 0.7; 

CUDA 12.2. RF: 500 trees 

(max depth 30). CNN: 4 conv blocks (64/128/256/512; 

kernel 3; dropout 0.3; Adam 10−3). 

GCN/GAT: 3 layers (hidden 256; dropout 0.25; Adam 

5×10−4). Early stopping on validation 

AUPRC. Seeds: outer {1337,2025,31415}; inner 

{11,22,33}; see DOI scripts for exact seeding lines and 

container digest. 

5. EXPERIMENTAL SETUP 

5.1 Metrics 

 We report Accuracy, Precision, Recall, Macro-F1 at τ⋆; 

AUROC (DeLong CIs) [29]; AUPRC (bootstrap CIs) 

[30]; ECE (10 equal-width bins); NLL—operational 

metric: minutes per 100 clashes. 

5.2 Statistics 

 Paired Wilcoxon signed-rank tests [31] compare per-

project outcomes; multiple tests controlled by BH and 

Holm [32, 33]; effect sizes with Cohen’s d [34] and 

Cliff’s δ [35]. 

5.3 Reproducibility 

 All scripts, synthetic IFCs, anonymised per-fold 

features, weights, container, and checksums are at DOI: 

10.5281/zenodo.17159231. Per-fold ROC/PR curves are 

regenerated by scripts/plots/plot_per_fold_curves.py to 

outputs/plots/per_fold/. 

6. RESULTS 

6.1. Per-fold LOPO results (A–E) 

Table 3: LOPO results per fold (A–E). AUROC CIs via DeLong; AUPRC CIs via bootstrap; ECE uses 10 equal-width 

bins. 

Fold Acc Prec Rec Macro–F1 AUROC [95% CI] AUPRC [95% CI] ECE NLL 

A 0.958 0.949 0.946 0.948 0.984 [0.979, 0.989] 0.967 [0.959, 0.974] 0.031 0.271 

B 0.952 0.944 0.939 0.941 0.982 [0.976, 0.987] 0.964 [0.955, 0.972] 0.033 0.284 

C 0.955 0.946 0.942 0.944 0.983 [0.978, 0.988] 0.966 [0.958, 0.973] 0.032 0.279 

D 0.960 0.952 0.945 0.948 0.985 [0.981, 0.990] 0.969 [0.961, 0.976] 0.030 0.268 

E 0.953 0.945 0.941 0.943 0.983 [0.978, 0.988] 0.966 [0.957, 0.973] 0.034 0.279 

Mean 0.956 0.947 0.943 0.945 0.983 0.966 0.032 0.276 

All folds exceed macro-F1 0.94 with tight AUROC/AUPRC CIs, consistent ECE ≈ 0.03, and stable NLL. Minor fold-to-

fold variance reflects differences in discipline mixing and the spread of LOD. 
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6.2. Ablation and sensitivity 

Table 4: Ablation/sensitivity on the outer folds. ∆F1 is dropped from the complete model at τ⋆. 

Variant Macro–F1 AUROC AUPRC ∆F1 

Full (RF+CNN+GCN+GAT) 0.945 0.983 0.966 – 

No SBC features 0.920 0.973 0.948 -0.025 

No HGP 0.928 0.975 0.952 -0.017 

No calibration 0.934 0.982 0.959 -0.011 

GCN-only 0.929 0.977 0.953 -0.016 

GAT-only 0.933 0.979 0.955 -0.012 

Weights ±20% 0.942 0.982 0.964 ±0.003 

SBC features contribute the most significant marginal gain; HGP also matters at scale. Calibration slightly improves F1 

and notably ECE (not shown in the table). Fusion is robust to moderate weight shifts. 

6.3. Operational impact: minutes per 100 clashes 

Table 5: Operational time per project (paired Wilcoxon; BH-adjusted p; Cohen’s d; Cliff’s δ). Baseline: incumbent 

workflow; Proposed: regulation-aware hybrid at τ⋆. 

Project Baseline [95% CI] Proposed [95% CI] ∆% pBH d / δ 

A 255 [239, 271] 89 [82, 96] -65.1 0.003 1.21 / 0.74 

B 241 [226, 256] 85 [78, 92] -64.7 0.004 1.17 / 0.71 

C 248 [232, 264] 90 [83, 97] -63.7 0.004 1.10 / 0.68 

D 229 [216, 242] 79 [73, 86] -65.5 0.003 1.24 / 0.76 

E 238 [224, 252] 86 [80, 93] -63.9 0.004 1.13 / 0.69 

Mean – – -64.6 – – 

Time savings are substantial and consistent; BH-adjusted p-values are < 0.005, and effect sizes are large. The fixed τ⋆ 

slightly favours recall, which aligns with safety goals. 

6.4. Curves and calibration 
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Figure 1: Aggregated PR and ROC curves (per-fold curves reproducible from DOI scripts). 

 

Predicted probability bin (10 equal-width bins) 

Figure 2: Reliability diagram (ECE computed with 10 equal-width bins). 

6.5. Scalability 

 

Elements (log scale) 

Figure 3: Sub-linear scaling with HGP and sampled training (hardware detailed in Appendix A). Each point averages 

5 runs. 

7. DISCUSSION 

7.1 Why regulation-aware features matter 

 Ablations show that removing SBC features causes the 

most significant drop, revealing that precise, testable 

obligations—such as corridor width, stair geometry, 

HVAC clearances, and egress free area—carry a decisive 

signal beyond raw geometry. 

7.2 Interpretability and audit 

 Attention weights highlight influential neighbours while 

clause-level feature attributions tie decisions to specific 

obligations. This duality improves reviewer trust and 

supports auditability. The regulation-aware model serves 

as the computational core for digital twin environments 

that integrate live construction telemetry, energy, and 

safety data. By coupling calibrated predictions with IoT 

or sensor-based updates, project managers can visualise 

code compliance trends and material performance in 

real-time. The resulting feedback loop supports Vision 

2030 objectives for sustainable, efficient, and transparent 

construction delivery, reducing rework, embodied 

carbon, and operational risks. 

7.3 Decision costs and safety 

 The fixed τ⋆ favours recall under CFN ≫ CFP. Referral of 

uncertain cases allows teams to focus their human 

expertise on where model uncertainty is highest; the 

proportion referred was modest in all folds (reproducible 

via DOI scripts). 

 

0 0 . 2 0 . 4 0 . 6 0 . 8 1 
0 

0 . 2 

0 . 4 

0 . 6 

0 . 8 

1 

10 3 10 4 10 5 
0 

20 

40 

60 

80 

100 
 
 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 14 Issue: 1 

Article Received: 25 December 2025 Revised: 12 January 2026 Accepted: 02 February 2026 

____________________________________________________________________________________________________________ 

 
    14 
IJRITCC | February 2026, Available @ http://www.ijritcc.org 

7.4 Threats to validity 

 Potential biases include labelling drift, IFC 

heterogeneity (4x2/4x3), and distribution shift. Nested 

LOPO, calibration, and reporting of threshold-free 

metrics mitigate some risks; however, external 

replication on new typologies is still warranted. 

8. ETHICAL, LEGAL, AND REPRODUCIBILITY 

CONSIDERATIONS 

We avoid proprietary identifiers and report 

anonymised summaries. SBC parts are cited to official 

sources [1–5]. The DOI archive 

10.5281/zenodo.17159231 provides synthetic IFCs, 

anonymised features per fold, container, and scripts to 

regenerate all tables/figures; license terms are specified. 

9. CONCLUSIONS 

This research presents a regulation-aware hybrid for 

BIM clash prioritisation that encodes SBC obligations 

into IFC-grounded features, fuses RF/CNN/GCN/GAT 

with HGP, calibrates probabilities, and makes operating 

decisions without test leakage. Nested-LOPO results, 

ablations, and operational analyses support consistent 

gains with large effect sizes. The open, regulation-aware 

hybrid pipeline not only ensures reproducibility but also 

provides a scalable foundation for AI-driven digital twins 

that embed SBC intelligence into real-time construction 

management across Vision 2030 megaprojects. 
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