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Abstract 

In this article, the analysis for a special case, that of concatenated channel codes and orthogonal space-time block codes 

are provided. The equivalent SISO channel model and recognize that it is a block fading channel are used to derive PEPs 

for spatially and temporally correlated and Independent and Identically Distributed cases. The analysis for Rayleigh and 

Rician fading are also provided. 

1.1 Introduction 

1.2 System model  

We consider a coding-diversity scheme where a channel 

code and a STBC are used as shown in Figure. The 

channel code can be a single or concatenated code. The 

channel encoder maps a sequence of k information bits 

to n coded bits. Each coded bit is modulated by a signal 

with unit energy. This is further encoded by the space 

time block encoder with T transmit antennas. The 

receiver employs R receive antennas and combines their 

output optimally. We consider a frequency non-

selective fading channel. The output of the channel is 

given by  

H s n y = +                                                              

where y is 1Rn   received signal vector, s is the 

modulated 1Tn   vector transmitted over T transmit 

antennas and n is 1Rn   i.i.d. Gaussian noise at the 

input of the antennas. The channel matrix is represented 

by H whose elements h, are the complex Gaussian 

channel coefficients for the pair of transmit antenna i 

and receive antenna j. 

 

Figure.2.1. Concatenated channel code and space-time 

block code 

In a STBC with Tn  transmit antennas, it is assumed 

that the channel coefficients 
ijh  remain fixed through 

Tn  consecutive intervals, and the receiver has either 

perfect or partial knowledge about them [1, 32]. Hence, 

the channel is block fading with block length Tn . Also, 

in the decoded sequence, fly’ consecutive symbols are 

affected by the same set of fading coefficients 'ijh s .  

The multiple-input multiple output channel, driven by 

an orthogonal STBC, can be represented by an 

equivalent single-input single-output (SISO) channel. 

Assuming the receiver combines the received signals 

from R antennas optimally, the MIMO channel can be 

represented as a 5150 block fading channel with fading 

coefficient for each block of Tn  symbols equal to:  

2

1 1

1
.

T Rn n

eq ij

i jT

h h
n = =

=                                                

(2.1)  

Alternately, we can write the equivalent SNR  

2
,

F
H =                                                           (2.2) 

where 
F
  denotes the Frobenius norm, 

0

1 c b

T

R E

n N
 =  is the average SNR per information bit 

per transmit antenna, and R is the code rate.  
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If the noise components of the actual channel are 

independent, so are the noise components of the 

equivalent channel [3, 8]. The transmitted power is 

scaled by the number of transmit antennas to keep the 

total transmitted power constant. The equivalent fading 

coefficient follows a generalized Rayleigh. distribution 

[25]. The resultant instantaneous SNR per bit, -y, 

follows chi-square distribution with degree of freedom 

2 T Rn n  [4].  

The problem is now reduced to the analysis of a block 

fading SISO channel which is no longer Rayleigh, but 

rather follows a generalized Rayleigh distribution. 

Spatially correlated and temporally correlated channels, 

which we also consider in this work, further modify the 

probability distribution.  

Here it is appropriate to make a note on interleaving. 

Some coded space-time transmission systems, e.g. [14], 

have been proposed that do not include interleaving 

between the outer and inner codes. However, our 

simulations show that the codes of [14] can be 

improved by 1.7dB with an interleaver’. Bauch and 

Hagenauer [3] also do not employ interleaving between 

inner and outer codes, where potentially similar gains in 

performance would be possible. In view of these gains 

and the relatively low cost of interleaving, it is 

important to include interleaving in the analysis of 

coded space-time systems.  

Interleaving, however, requires a complicated and 

cumbersome book-keeping for calculating pairwise 

error probabilities. To manage this complexity and to 

avoid interleaver-dependent probabilities, we use the 

concept of a uniform interleaver. To demonstrate the 

efficacy of this approach, Figure 5.2 shows the pairwise 

error probability of the dominant error event (Hamming 

distance d = 5) of a convolutional code concatenated 

with Alamouti signaling. The (averaged) uniform 

interleaver gives a good approximation to the best 

interleaver in realistic signal-to-noise ratios. 2 The usage 

of random uniform interleaving was first proposed by 

Benedetto and Montorsi [6] for the analysis of turbo 

codes and has also been used by Zummo and Stark [38] 

to explore the effects of channel interleavers. 

 

Figure 2.2. Convolutional Code, 2-Tx and 1-Rx 

antennas, d = 6, Block by block i.i.d. Rayleigh fading 

1.3 Analysis of block fading channel  

The performance of channel codes in block fading 

environments is studied in lot of articles. The original 

analysis in requires a generalized weight enumerating 

function of the channel code (or generalized transfer 

function for convolutional codes), which depends on the 

order of transmitted bits of a codeword. Therefore, the 

existence of interleaver complicates the analysis. We 

use the concept of uniform interleaver to address this 

problem in a manner closely following Zummo and 

Stark.  

If the fading coefficient remains constant over a period 

of l symbols, the channel is called a block fading 

channel with block length l. Such a channel may arise in 

practice if the coherence time of channel is greater than 

symbols. However, block fading channels are only an 

approximation of time correlated channels. The channel 

coefficient is assumed to change independently from 

one block to another.  

Assume that a frame of signals  
1

N

l l
s

=
 is transmitted 

over block fading channel with block length l. The 

number of blocks F The received signal is given by,  

                          

,1 ,1 1,....., 1,....,f f fy h s f F l= = = l

  

where 
,1fy  and 

,1fs  are the l-th received and 

transmitted values in block f respectively. hf is the 

channel coefficient in the corresponding block.  
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A maximum likelihood decoder will maximize the 

metric,  

( )
2

,1 ,1, f f f

f l

m y s y h s= −                          (3.1)  

From Equation 4.4 it is clear that the analysis required 

knowledge of distribution of coded symbols in the block 

f. This distribution is interleaver dependent, which 

makes the analysis harder. There have been several 

efforts to solve this problem.  

The length of the coded sequence (frame length) is n. 

The length of a fading block is l, thus the number of 

fading blocks in each coded frame is  /F n= l . We 

now need to determine how the error bits are distributed 

among different blocks, i.e., how much error weight is 

present in each fading block. To characterize that, we 

build a histogram of weights as follows: assume the 

number of blocks that have weight m is fm, and consider 

the vector ( )0 ,..., wf f f=  where ( )min ,w l d= . A 

given vector f is a valid histogram if 
mf F=  and 

mmf d= .  

For example, let the frame length be n = 5 and fading 

block length be    l = 2. If an error event with weight d = 

4 is interleaved, the following histograms are possible: 

(3,0,2), (2, 2, 1), (1,4,0). It can be easily seen that the 

total number of blocks is F 5, and the total weight in 

each case is d = 4. The pattern (2, 2, 1) is shown in the 

Figure 5.3. Note that all the fading coefficients shown 

in the figure are independent. 

 

Figure 4.3. One possible block pattern for the case N = 

5, d = 4, l = 2 

Now, using the uniform interleaving concept, one may 

average the PEP over all valid error patterns 

(histograms).  

( ) ( ) ( ) ( )
1 2

/2 /

f

1 1 1

f f f
w

F F F w

f f f

P d P d P d p
= = =

 = =   E

 (3.2)  

where is the expectation operator and, p(f) is the weight 

of occurrence of the pattern f which can be found by 

combinatorics.  

1.4  PEP based on moment generating functions  

For a given channel code C, assuming all-zero 

codeword is transmitted, the PEP of a codeword with 

weight d given the pattern f of the fading blocks, is  

( ) ,

1 1

f , 2
mfw

m i

m i

P d Q m 
= =

 
=  

 
 
     (4.1)  

Here we have collected terms corresponding to blocks 

with equal weight patterns. Thus 
,m i  is the SNR for 

the i-th block that has weight m (there are a total of fm 

such blocks).3  

In the case of T transmit and R receive antennas the 

resultant SNR per bit, from (4.2), is  

2

F
H =                                                    (4.2)  

where 

0

1 c b

R

R E

n N
 =  is the average SNR per 

information bit, and Rc is the code rate. Representing Q-

function in its alternative form [29], the PEP 

conditioned on the block fading pattern f is  

( ) 2
,20

1 1

1 1
f , exp .

sin

mfw

m i

m i

P d m d


  
  = =

 
= − 

 
 

 Averaging the above conditional PEP over the 

instantaneous SNR   we find 

( ) ( )f f ,P d P d  =  E . Assuming 
,m i  are 

independent,  

( ) ( ),2
, ,20 0

1 1

1
f

sin

mfw
m i

m i m i

m i

m
P d p d d






  

 



= =

 
= − 

 
 

 The inner integral is the moment generating function 

(MGF) of ( ), ss e    =  E , evaluated at

2/ sins m = − , hence  

( ) 2
20

1

1
f .

sin

mfw

m

m
P d d




 =

  
= −  

  
             

(4.3)  
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 The expression (4.3) is general for all the channels. In 

the sequel, we use moment generating function of 

different channels with expression (4.3) to derive 

pairwise error probabilities.  

We start our analysis with spatially and temporally 

independent fading.  

1.5 Independent fading  

If the entries of the channel matrix H are independent, 

the resulting SNR is the sum of T Rn n  independent 

exponential variables and hence has a chi-square 

distribution with the pdf [29]  

( )
( )

( )11
exp / ,

1 !

Dp
D D

    


−= −
−

  

where T RD n n= . The MGF of this pdf is given by 

[29]  

( ) ( )1
D

s s 
−

 = − .                                         (5.1)  

Using this MGF in (4.8) we obtain the following bound 

for ( )fP d   

( ) 2
20

1

1
f 1

sin

mf Dw

m

m
P d d





 

−

=

 
= + 

 
               

(5.2)  

where the last inequality is the Chernoff bound. One 

may also obtain the corresponding result for quasi-static 

Rayleigh fading by the setting F = 1 which is equivalent 

to m = d, fm 1.  

4.5 Spatially correlated fading  

Theorem 1  

The moment generating function of   is given by  

( ) ( ) ( )( )
1

1 1

1 ,
T Rn n

t r

i j

i j

s s   

−

= =

 = −                               

(5.3)  

where 
( )t  and 

( )r  are eigenvalues of RT and RR 

respectively.  

 

 

Proof:  

( ) ( ) ( ) ( )
2 HH

H vec H vec H vec H vec H= = 

 

( ) ( ) 2

1 1

.
T Rn n

t r

i j ij

i j

h 
= =

=                                            (5.4) 

From (4.7) and (4.12),  

( ) ( ) 22

1 1

.
T Rn n

t r

i j ij

i j

H h    
= =

= =   

The MGF of   is  

( ) ( )  ( ) ( )( ) 22

1 1

exp exp .
T Rn n

t r

i j ij

i j

s s H s h   
= =

 = − = −E E

 Each term in the last expression is the moment 

generating function of an exponential random variable. 

Substitution gives (4.11).  

We can now substitute in (4.8) to obtain  

( )
( ) ( )

2
1 1 1

1
f 1 ,

sin

m

T R

f
t rn nw

k i j

m i j

s
P d d

  


 

−

= = =

 
= + 

 
 

                   

(5.4)  

( ) ( )( )
1 1 1

1
1 .

2

m
T R

fn nw
t r

i j

m i j

m  

−

= = =

 +  (5.5)  

Using this formula, it is instructive to consider two 

extreme cases: uncorrelated and fully correlated 

channels. In the case of uncorrelated channel, 

( ) ( )
1

t r

i j = =  for all i, j, and the formula reduces to 

(5.10), as expected. In the case of fully correlated 

channel, the correlation matrix is rank deficient and we 

have, 
( ) ( )

,
t r

i T j Rn n = = , and all other 

( ) ( )
0

t r

i j = = . Thus the above moment generating 

function reduces to  

( ) ( )
1

1 ,s sD 
−

 = −                                         (5.6)  
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which shows no diversity, but a receive gain of 

T RD n n=  (recall that 

0

1 c b

T

R E

n N



= 


 

1.6 Temporal and spatial correlation  

For various reasons such as long data blocks or long 

fading periods, it may not be practical to use 

interleavers to remove the channel memory. In such 

cases, we need to analyze the system with channel 

memory, a task which we undertake in this section. We 

assume that the coherence time is much greater than Tn

symbols, so that the channel remains effectively 

constant over each STBC block and linear decoding is 

possible.  

Assuming a given error event has weight d, we must 

concentrate on the channel matrix at time instances 

 1,..., dk k  where the error event has nonzero value. 

Let the channel matrix at time 
jk , be denoted as H and 

define ( ) ( ) ( )1 2 ... dvec H vec H vec H=   H . Each 

H may be spatially correlated; the spatial correlations 

are modeled by a matrix sR  as before. We assume the 

statistics to be stationary (time-invariant), therefore only 

one spatial correlation matrix suffices. We model the 

temporal correlation of the channel by tR , that is, 

( ) ( ) ( )1 1, .
H

tR i j vec H vec H =
 
E  Therefore, H  

can be modeled as  

1/2 1/2,s tR R=H H                                                  (4.16)  

where, H  is a ( )T Rn n d  matrix with i.i.d. elements.  

Using Lemmas 1 and 1, we can write the MGF of 

T Rdn n  correlated exponential variables as  

( ) ( ) ( )( )
1

1 1 1

1 ,
T Rn nd

t r

k i j

k i j

s s   

−

= = =

 = −                                 

(4.17)  

where are eigenvalues of tR . Using this, we can 

calculate the pairwise error probability 

                         

( )
( ) ( )

1

2
1 1 1

1
sin

T R
t rn nd

k i j

k i j

s d

  




−

= = =

 
 = + 

 
 

       

(4.18) 

( ) ( )( )
1

1 1 1

1
1 .

2

T Rn nd
t r

k i j

k i j

  
−

= = =

 +  (4.19) 

It is easy to see that for the special case of quasi-static 

fading, ( ) 1t ij
R =  for all i and j, therefore 1 d =  and 

all other 0k = , and the equation reduces to the 

familiar PEP for the quasi-static fading, where there is 

no time diversity but there is a coding gain of d.  

4.7 Performance analysis with multilevel modulation  

We now proceed to the analysis of a concatenation of 

TCM or MTCM with space-time block codes. The 

design of TCM and MTCM for space-time block codes 

has been addressed in [14] and [8].  

Following the same steps as before, we need to consider 

error patterns f (histograms) in a manner similar to 

Section 5.2. Because the errors can assume multiple 

values (more than two), the construction of the patterns 

is comp1icated. In a 2m-ary modulation, an error event 

can be represented by ( )0 2 1
,..., ,md d d

−
=  where d is 

the number of times i-th symbol repeats in the error 

event. Obviously, 
2 1

0

m

i
N

−

=
=  the codeword length. 

As in Section 5.2, we denote number of fading blocks 

with F and block length with l. Then fading pattern in 

block j can be given by 
( ) ( )2 10

,..., ,
m

j j jv v v
− =  

 
 where 

( )i
jv  is the number of times symbol i repeats in that 

particular block. A histogram 

 f :  repeats  timesj j jf v f=  is a valid histogram 

if:  

( )
, , 0,...,2 1

i m

j j j i

j j

f F f v d i= = = −   

For example, let the error event (compared to all zero 

codeword) in a TCM with QPSK modulation and 

codeword length 8N = be 
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 2 1 0 3 1 2 0 1, , , , , , , .s s s s s s s s  Obviously 

( )2,3,2,1d = . If the block length is 2, the 

distribution of errors can be given as follows,  

 

1j =  2j =  3j =  4j =  

2 1s s  0 3s s  1 2s s  0 1s s  

( )0

jv  0 1 0 1 

( )1

jv  1 0 1 1 

( )2

jv  1 0 1 0 

( )3

jv  0 1 0 0 

 

Hence, In the first block, ( )0,1,1,0 ,jv =  in the 

second block ( )1,0,0,1jv =  etc. The above block 

distribution can be represented by the histogram: 

jv  
jf  

( )0,1,1,0  2 

( )1,0,0,1  1 

( )1,1,0,0  1 

( )2,3,2,1  
( )i

j j

j

f v=  

 

The pairwise conditional probability of error between 

the all-zero codeword and a codeword e is given by, 

( ) ,

1

0 f , 2 ,
jf

j i i

j i

P e Q  
=

 
 → =
 
 

                            

(4.20) 

where j is the index of block patterns and 
,j i  is the 

instantaneous SNR per bit for i-th block in fading 

pattern j. We have defined an aggregate distance metric 

j  for each block pattern j, calculated by 

                                    
( ) ( )

2
2

0

0

, ,

m

k

j j k

k

v d s s
=

=
 

where 
( )k
jv  is the multiplicity of symbol ks  in the block 

pattern indexed by j. Averaging over  , we find the 

PEP expression 

                   

( )
/2

20

1
0 f

2sin

jf

j

j

P e d







 

  
→ =  −  

  


.                     (4.21) 

For the useful class of uniform error probability (UEP) 

codes, where the reference codeword can always be 

chosen as the all-zero codeword [29, 19], the union 

bound on frame error probability is  

( ) ( )
2

1 12
20

0

,1
2 ,

2sin

jfm i

j i im i
e

e clj

v cl s s
P d



 
 

−

− − =



      −
     


 

    (4.22)  

where c is a symbol that belongs to the first level of set-

partitioning of the 2tm-ary modulation [19]. Note that 

and fj depend on the error word e, but the dependence 

has been suppressed in the formula above for notational 

simplicity.  

To calculate the union bound in the case of spatially and 

temporally i.i.d. fading, the moment generating function 

(4.9) is substituted in (4.22). To calculate the union 

bound in the case of spatially correlated fading, we 

insert the moment generating function (4.11) into 

(4.21).  

The union bound in the case of temporally correlated 

channel requires a little twist. In the previous cases, the 

equivalent SNR was a function of H only, therefore 

decorrelating H simplified the MGF expressions. 

However, in the case of temporal correlations, the 

effective SNR is expressed as  
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( )
2

2

1 1 1

T Rn nd

ij k

k i j

h k 
= = =

=                                     

(4.23)  

where k  is the Euclidean distance of the error event at 

k-th error position. Obviously decorrelating H no longer 

works. Define ( )1,..., dD diag  =  and note that 

2
,D = H where 

( ) ( ) ( )1 2 .... .dvec H vec H vec H=   H  To obtain a 

sum of independent SNR components, we must 

diagonalize the autocorrelation of DH .  

( )
22 2

1 1 1

T Rn nd

ij k

k i j

D h k 
= = =

= =H  

( ) ( ) ( )2
2

1 1 1

ˆ .
T Rn nd

t r

ij k i i k

k i j

h k    
= = =

=  

Recall that the spatial and temporally correlated H  is 

modeled as  

1/2 1/2

s tR R=H= H , 

where H  has i.i.d. entries and sR  and tR  are the 

spatial and temporal correlation matrices, respectively. 

It follows that ˆ
k  are the eigenvalues of DRD. 

Therefore we can still use equations (5.17) and (5.21) 

except we should substitute ˆ
k  for k .4  

4.8 Performance under Rician fading  

In this section we consider the Rician fading channels 

with parameter K describing the ratio of the energy of 

the line-of-sight component to the multipath 

component. For the uncorrelated Rician channel, the 

moment generating function of 
2

H =  is given 

by [29] 

( )
( ) ( )1

exp
1 1

D D

K Ks
s

K s K s




 

+   
 =    

+ − + −   
 

By using this MGF with equation (4.21), the PEP for 

the fast fading Rician channel and multilevel 

modulation is given by  

( )
( ) 2/2

0

2 2

11 2sin0 exp

1 1
2sin 2sin

D

j

j jj

KK
P e d

K K





 
  

 

 
 +

→ =  
 + + + +
  



 (4.24)  

For the case of spatially correlated fading, the MGF can 

be once again derived using Lemmas 1 of Section 3.1 

and Lemma 2 of Section 4.5, 

( )
( )

( ) ( )

( ) ( )

( ) ( )
1 1

1
,

1 1

T R
t rn n
i j

t r t r
i j k i j i j

KsK
s

K s K s


  

      = =

 +
 =  

 + − + − 
             

(4.25)  

where 
( )t  and 

( )r  are the eigenvalues of transmit 

and receive correlation matrices TxR  and RxR  

respectively. Expressions (5.25) and (5.22) directly 

yield the desired bounds on error probability.  

When temporal as well as spatial correlation is present, 

it is straightforward to show that the moment generating 

function is expressed as follows  

( )
( )

( ) ( )

( ) ( )

( ) ( )
1 1 1

1
,

1 1

T R
t rn nd

k i j

t r t r
k i j k i j k i j

KsK
s

K s K s


   

       = = =

 +
 =  

 + − + − 


           (4.26)  

where k  are the eigenvalues of temporal correlation 

matrix Rt. Once again, in combination with (5.22), the 

desired bounds are obtained.  

4.9 Conclusion  

We derived the PEP expression for concatenated 

channel codes and space-time block codes. This setup 

provides full diversity and coding gain with simple 

design, at the cost of loosing some rate. This article 

analyzed the system for spatially and/or temporally 

correlated channels as well as i.i.d. channels and also 

provided analysis for Rayleigh and Rician fading. 
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