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Abstract

In this article, the analysis for a special case, that of concatenated channel codes and orthogonal space-time block codes
are provided. The equivalent SISO channel model and recognize that it is a block fading channel are used to derive PEPs
for spatially and temporally correlated and Independent and Identically Distributed cases. The analysis for Rayleigh and

Rician fading are also provided.

1.1 Introduction
1.2 System model

We consider a coding-diversity scheme where a channel
code and a STBC are used as shown in Figure. The
channel code can be a single or concatenated code. The
channel encoder maps a sequence of k information bits
to n coded bits. Each coded bit is modulated by a signal
with unit energy. This is further encoded by the space
time block encoder with T transmit antennas. The
receiver employs R receive antennas and combines their
output optimally. We consider a frequency non-
selective fading channel. The output of the channel is
given by

y=Hs+n

where y is 7, x1 received signal vector, s is the
modulated 7, x1 vector transmitted over T transmit

antennas and n is 71, X1 i.id. Gaussian noise at the

input of the antennas. The channel matrix is represented
by H whose elements h, are the complex Gaussian
channel coefficients for the pair of transmit antenna i
and receive antenna j.

Figure.2.1. Concatenated channel code and space-time
block code
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In a STBC with n, transmit antennas, it is assumed
that the channel coefficients h,',- remain fixed through

n, consecutive intervals, and the receiver has either

perfect or partial knowledge about them [1, 32]. Hence,
the channel is block fading with block length 7, . Also,

in the decoded sequence, fly’ consecutive symbols are

affected by the same set of fading coefficients hl,j 's.

The multiple-input multiple output channel, driven by
an orthogonal STBC, can be represented by an
equivalent single-input single-output (SISO) channel.
Assuming the receiver combines the received signals
from R antennas optimally, the MIMO channel can be
represented as a 5150 block fading channel with fading

coefficient for each block of 72, symbols equal to:

h, =
(2.1)
Alternately, we can write the equivalent SNR

_ 2
y=7|H].. (22)
where ||||F denotes  the  Frobenius  norm,
_ 1 RE, . o
y=— is the average SNR per information bit

ny N,

per transmit antenna, and R is the code rate.
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If the noise components of the actual channel are
independent, so are the noise components of the
equivalent channel [3, 8]. The transmitted power is
scaled by the number of transmit antennas to keep the
total transmitted power constant. The equivalent fading
coefficient follows a generalized Rayleigh. distribution
[25]. The resultant instantaneous SNR per bit, -y,
follows chi-square distribution with degree of freedom

2n,n, [4].

The problem is now reduced to the analysis of a block
fading SISO channel which is no longer Rayleigh, but
rather follows a generalized Rayleigh distribution.
Spatially correlated and temporally correlated channels,
which we also consider in this work, further modify the
probability distribution.

Here it is appropriate to make a note on interleaving.
Some coded space-time transmission systems, e.g. [14],
have been proposed that do not include interleaving
between the outer and inner codes. However, our
simulations show that the codes of [14] can be
improved by 1.7dB with an interleaver’. Bauch and
Hagenauer [3] also do not employ interleaving between
inner and outer codes, where potentially similar gains in
performance would be possible. In view of these gains
and the relatively low cost of interleaving, it is
important to include interleaving in the analysis of
coded space-time systems.

Interleaving, however, requires a complicated and
cumbersome book-keeping for calculating pairwise
error probabilities. To manage this complexity and to
avoid interleaver-dependent probabilities, we use the
concept of a uniform interleaver. To demonstrate the
efficacy of this approach, Figure 5.2 shows the pairwise
error probability of the dominant error event (Hamming
distance d = 5) of a convolutional code concatenated
with Alamouti signaling. The (averaged) uniform
interleaver gives a good approximation to the best
interleaver in realistic signal-to-noise ratios. > The usage
of random uniform interleaving was first proposed by
Benedetto and Montorsi [6] for the analysis of turbo
codes and has also been used by Zummo and Stark [38]
to explore the effects of channel interleavers.
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Figure 2.2. Convolutional Code, 2-Tx and 1-Rx
antennas, d = 6, Block by block i.i.d. Rayleigh fading

1.3 Analysis of block fading channel

The performance of channel codes in block fading
environments is studied in lot of articles. The original
analysis in requires a generalized weight enumerating
function of the channel code (or generalized transfer
function for convolutional codes), which depends on the
order of transmitted bits of a codeword. Therefore, the
existence of interleaver complicates the analysis. We
use the concept of uniform interleaver to address this
problem in a manner closely following Zummo and
Stark.

If the fading coefficient remains constant over a period
of 1 symbols, the channel is called a block fading
channel with block length 1. Such a channel may arise in
practice if the coherence time of channel is greater than
symbols. However, block fading channels are only an
approximation of time correlated channels. The channel
coefficient is assumed to change independently from
one block to another.

N
Assume that a frame of signals {Sz} ,; Is transmitted

over block fading channel with block length 1. The
number of blocks F The received signal is given by,

Yra :hfsf,l S=La Fl=1..C

where y,., and §,, are the I-th received and

S
transmitted values in block f respectively. hy is the
channel coefficient in the corresponding block.
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A maximum likelihood decoder will maximize the
metric,

S):ZZ‘yf,l_hfo,l 2 CRY
7

From Equation 4.4 it is clear that the analysis required
knowledge of distribution of coded symbols in the block
f. This distribution is interleaver dependent, which
makes the analysis harder. There have been several
efforts to solve this problem.

The length of the coded sequence (frame length) is n.
The length of a fading block is 1, thus the number of

fading blocks in each coded frame is F' = [n / /]. We

now need to determine how the error bits are distributed
among different blocks, i.e., how much error weight is
present in each fading block. To characterize that, we
build a histogram of weights as follows: assume the
number of blocks that have weight m is f,, and consider

the vector [ = ( "y ) where w= nnn(l d )

given vector f is a valid histogram if z fm =F and

mem =d.

For example, let the frame length be n = 5 and fading
block length be 1=2. If an error event with weight d =
4 is interleaved, the following histograms are possible:
(3,0,2), (2, 2, 1), (1,4,0). It can be easily seen that the
total number of blocks is F 5, and the total weight in
each case is d = 4. The pattern (2, 2, 1) is shown in the
Figure 5.3. Note that all the fading coefficients shown
in the figure are independent.

ho,1 hi,1 h12 h2,1 ho.2
1 | 1 l l |

Weight:0 Weight:1 Weight:1 Weight:2 Weight:0

Number of blocks with weight 1 : f4=2

Figure 4.3. One possible block pattern for the case N =
5,d=4,1=2

Now, using the uniform interleaving concept, one may
average the PEP over all wvalid error patterns
(histograms).

P(d)=E,[P(alf)]=3 3~

Si=l 1

~

/2

~

/w

P(d|f) p(f)

\
LR
baN

2= w=

(3.2)
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where is the expectation operator and, p(f) is the weight
of occurrence of the pattern f which can be found by
combinatorics.

1.4 PEP based on moment generating functions

For a given channel code C, assuming all-zero
codeword is transmitted, the PEP of a codeword with
weight d given the pattern f of the fading blocks, is

, W n
7)=Q 2Zm27m,t (41)
m=1 i=1

Here we have collected terms corresponding to blocks

P(

with equal weight patterns. Thus y, . is the SNR for

the i-th block that has weight m (there are a total of fn,
such blocks).

In the case of T transmit and R receive antennas the
resultant SNR per bit, from (4.2), is

y=7|Hl, (42)

= 1RE, .
where y =——— is the average SNR per

g Vg
information bit, and R, is the code rate. Representing Q-
function in its alternative form [29], the PEP
conditioned on the block fading pattern f is

RTINS

Averaging the above conditional PEP over the

instantaneous SNR Y we find
P(d|f)=E7I:P( )] . Assuming y, . are
independent,
MY i
P(d|f)= j HH] ( szgjpy( Vs )7, 40

The inner integral is the moment generating function

(MGF) of }/,d)(s) =E|:esyi| , ecvaluated at

s =—m/sin’ @, hence

P(d|f)= %jo ﬁK— Sh’:ﬁ eﬂfmde.

m=1

[SIE}

(4.3)
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The expression (4.3) is general for all the channels. In
the sequel, we use moment generating function of
different channels with expression (4.3) to derive
pairwise error probabilities.

We start our analysis with spatially and temporally
independent fading.

1.5 Independent fading

If the entries of the channel matrix H are independent,

the resulting SNR is the sum of 7,7, independent

exponential variables and hence has a chi-square
distribution with the pdf [29]

P (= 1

I 5 . /— ,
D-1)17D" xp(=7/7)

where D =n_.n,. The MGF of this pdf is given by
[29]

o =)
@ (s)=(1-s57) . (5.1)
Using this MGF in (4.8) we obtain the following bound
for P (d | f)

P(d|f)= j H( — ej_mde

1
(5.2)

where the last inequality is the Chernoff bound. One
may also obtain the corresponding result for quasi-static
Rayleigh fading by the setting F = 1 which is equivalent
tom=d, fm 1.

4.5 Spatially correlated fading

Theorem 1

The moment generating function of J is given by
-1

ﬁﬁ(l sﬂ ) R

i=l j=1
(5.3)

where A and A" are eigenvalues of RT and RR
respectively.
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Proof:
||H||2 = vec(H)H vec(H) = vec(]:I)H Avec(l:l)

Ny - Mg

=224

i=l j=1

‘ . (5.4)

From (4.7) and (4.12),

y=7|Hf =7Y >4

i=l j=1

20, [

The MGF of y is

D (s)= E{exp (—s77||H||2 )} = ﬁﬁE {exp(—sﬂi(’)/lg") V_li/‘z )}

i=l j=1
Each term in the last expression is the moment
generating function of an exponential random variable.
Substitution gives (4.11).

We can now substitute in (4.8) to obtain

1 nypoon Su /”{/l(t)ﬂ/(r) I
P(d|f)=;HHH 1 ginzej do,
m=1 i=l j=
(5.4)
1 w  np  ng =
£, H(1+m;tf’)/1}”7) . (5.5)
m=l i=l j=1

Using this formula, it is instructive to consider two
extreme cases: uncorrelated and fully correlated
channels. In the case of uncorrelated channel,

A0 = /1](.r) =1 for all i, j, and the formula reduces to

1

(5.10), as expected. In the case of fully correlated
channel, the correlation matrix is rank deficient and we

have, ﬂ,l.(t) =nT,/11(.r) =n, , and all other

/1[([) = ﬂj(r) =0 . Thus the above moment generating

function reduces to

—\-1
CDy (S)I(I—SD}/) , (5.6)
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which shows no diversity, but a receive gain of

_ 1 RE
D =n,n, (recall that Y = —— b
n;, N0

1.6 Temporal and spatial correlation

For various reasons such as long data blocks or long
fading periods, it may not be practical to use
interleavers to remove the channel memory. In such
cases, we need to analyze the system with channel
memory, a task which we undertake in this section. We

assume that the coherence time is much greater than n,,

symbols, so that the channel remains effectively
constant over each STBC block and linear decoding is
possible.

Assuming a given error event has weight d, we must
concentrate on the channel matrix at time instances

{kl,...,k d} where the error event has nonzero value.

Let the channel matrix at time kj, be denoted as H and

define H :[vec(Hl)vec(Hz)...vec(Hd )] Each
H may be spatially correlated; the spatial correlations
are modeled by a matrix R as before. We assume the

statistics to be stationary (time-invariant), therefore only
one spatial correlation matrix suffices. We model the

temporal correlation of the channel by R,, that is,

t b
R, (i,j) = E[vec(H] )H vec(H] )} Therefore, H
can be modeled as

H=R"HR", (4.16)

where, H isa (”T” . )x d matrix with i.i.d. elements.

Using Lemmas 1 and 1, we can write the MGF of

dn,n, correlated exponential variables as

np  ng -1

@, (s)=TTTTLT(1-s22") .

k=l i=l j=1

(4.17)

where are eigenvalues of R, . Using this, we can

calculate the pairwise error probability
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d _
< %HHH(HM&}’)A}’)) ' @19

It is easy to see that for the special case of quasi-static

fading, (Rt )ij =1 for all i and j, therefore 14, =d and

all other 4, =0, and the equation reduces to the

familiar PEP for the quasi-static fading, where there is
no time diversity but there is a coding gain of d.

4.7 Performance analysis with multilevel modulation

We now proceed to the analysis of a concatenation of
TCM or MTCM with space-time block codes. The
design of TCM and MTCM for space-time block codes
has been addressed in [14] and [8].

Following the same steps as before, we need to consider
error patterns f (histograms) in a manner similar to
Section 5.2. Because the errors can assume multiple
values (more than two), the construction of the patterns
is complicated. In a 2™-ary modulation, an error event

can be represented by d = (do,... d ), where d is

V|

the number of times i-th symbol repeats in the error

28]
event. Obviously, Zi:O = N the codeword length.

As in Section 5.2, we denote number of fading blocks
with F and block length with 1. Then fading pattern in

J J

2"
block j can be given by v, = (v(.o),...,v(, )), where

Vy) is the number of times symbol i repeats in that

particular block. A histogram
f= { Jf; 1v, repeats f; times} is a valid histogram

if:
>fi=F, Y fW=d, i=0,..2"-1
J J

For example, let the error event (compared to all zero
codeword) in a TCM with QPSK modulation and
codeword length N=8 be

28
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{s2,sl,so,s3,sl,sz,s0,sl}. Obyviously

d=(2321) .

distribution of errors can be given as follows,

If the block Ilength is 2, the

j=1 | j=2 | j=3 | j=4
S, 5053 S8, oS,
WO o 1 0 1
W 1 0 1 1
W 0 1 0
W o 1 0 0

Hence, In the first block, v, =(0,1,1,0), in the

second block v, =(1,0,0,1) etc. The above block

distribution can be represented by the histogram:

Vi J;
(0,1,1,0) 2
(1,0,0,1) I
(1,1,0,0) 1

(2,3,2,1) =>.fv

The pairwise conditional probability of error between
the all-zero codeword and a codeword e is given by,

P(

(4.20)

where j is the index of block patterns and Vii is the

instantaneous SNR per bit for i-th block in fading

IJRITCC | June 2021, Available @ http://www.ijritcc.org

pattern j. We have defined an aggregate distance metric

a; for each block pattern j, calculated by

om

a;= kz_;"ﬁ'k)dz (54550)-

(k)

where v; is the multiplicity of symbol s, in the block

pattern indexed by j. Averaging over ¥, we find the

PEP expression

5
/2 I
P(0—>e¢|f)= j H (2sm 9} do
(4.21)

For the useful class of uniform error probability (UEP)
codes, where the reference codeword can always be
chosen as the all-zero codeword [29, 19], the union
bound on frame error probability is

,f/

) 2sin* @

2m
PS lJ.7H 2_(’"—1)2(1)}/ _z (Cl@sz’sl)
e¢0ﬂ j cl

(4.22)

where c is a symbol that belongs to the first level of set-
partitioning of the 2tm-ary modulation [19]. Note that
and fj depend on the error word e, but the dependence
has been suppressed in the formula above for notational
simplicity.

To calculate the union bound in the case of spatially and
temporally i.i.d. fading, the moment generating function
(4.9) is substituted in (4.22). To calculate the union
bound in the case of spatially correlated fading, we
insert the moment generating function (4.11) into
(4.21).

The union bound in the case of temporally correlated
channel requires a little twist. In the previous cases, the

equivalent SNR was a function of ||H || only, therefore

decorrelating H simplified the MGF expressions.
However, in the case of temporal correlations, the
effective SNR is expressed as

29
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d_np ng
=222 0 () 4
k=1 i=1 j=1
(4.23)

where 0, is the Euclidean distance of the error event at

k-th error position. Obviously decorrelating H no longer
works. Define D= diag(é},..., 5d) and note that

where

H-= [vec

sum of independent SNR components, we must

vec(H ) ...veC(Hd )] To obtain a

diagonalize the autocorrelation of HD .

d_np g
y=[HDf =Y 3> |h, (k) &

k=l i=l j=1

ny  ng

»HI

k=1 i=1 j=1

(O 840214,

Recall that the spatial and temporally correlated H is
modeled as

Hg Rl/zﬁR;/Z

where H has iid. entries and R, and R, are the

spatial and temporal correlation matrices, respectively.

It follows that ,&k are the eigenvalues of DRD.
Therefore we can still use equations (5.17) and (5.21)

except we should substitute £Z, for 4, .*

4.8 Performance under Rician fading

In this section we consider the Rician fading channels

with parameter K describing the ratio of the energy of

the line-of-sight component to the multipath

component. For the uncorrelated Rician channel, the
— 2

moment generating function of ¥ =) ”H ” is given

by [29]
(1+k) Y (Ks7) )
o = =7 — 7
() (1+K—S;7 =P 1+K-sy

By using this MGF with equation (4.21), the PEP for
the fast fading Rician channel and multilevel
modulation is given by
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— D
e,
K J
P 1+K 2
P(0—>e)= J.QH ( )_ exp—28 0| 4g
ay .
T+ K +—5 +K+ "
2sin" @ 2sin" @

(4.24)

For the case of spatially correlated fading, the MGF can
be once again derived using Lemmas 1 of Section 3.1
and Lemma 2 of Section 4.5,

wm (14K) ksA"2y

@,(s)=]1I1

b 14 K =su A7 14K -s20207 |

(4.25)

where A” and A") are the eigenvalues of transmit
and receive correlation matrices R, and Ry,
respectively. Expressions (5.25) and (5.22) directly
yield the desired bounds on error probability.

When temporal as well as spatial correlation is present,
it is straightforward to show that the moment generating
function is expressed as follows

wom (1+K) Ksp A"2\7

=TI |

k=id a1+ K - S,ukl()/lj( )]/ 1+K—S,Uk/1-(t)l§r)
(4.26)

where u, are the eigenvalues of temporal correlation

matrix R;. Once again, in combination with (5.22), the
desired bounds are obtained.

4.9 Conclusion

We derived the PEP expression for concatenated
channel codes and space-time block codes. This setup
provides full diversity and coding gain with simple
design, at the cost of loosing some rate. This article
analyzed the system for spatially and/or temporally
correlated channels as well as i.i.d. channels and also
provided analysis for Rayleigh and Rician fading.
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