
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 2

Article Received: 05 January 2022 Revised: 30 January 2022 Accepted: 20 February 2022

 73
IJRITCC | February 2022, Available @ http://www.ijritcc.org

Designing Scalable B2B Integration Solutions

Using Middleware and Cloud APIs
Rajalingam Malaiyalan

Independent Researcher, USA.

Abstract

The main objective of a number of middleware frameworks and technologies is to facilitate the integration process of

distributed systems by promoting interoperability between them. A change in value generation was started with the advent

of Industry 4.0. Data-driven services—also referred to as smart services—that use data analysis techniques like machine

learning are becoming more and more important for new business models and the inter-company data exchange processes

required for them. The present paper analyses the main developing technologies that offer various degrees of

interoperability that enable quick application development for e-businesses in the context of business-to-business (B2B) e-

commerce. In order to demonstrate the effectiveness of current middleware in resolving integration issues across systems

within a particular domain, these technologies are shown via a case study in the global financial sector.

Keywords: - Middleware Technologies, Business-to-Business (B2B), E-Commerce, Integration Process, CPQ Systems,

Industry 4.0, Data-Driven Services, Implemented.

I. INTRODUCTION

For a long time, the key to understanding and optimising

a supply chain that is becoming more and more

internationally dispersed has been the digitisation of

business activities and the integration of those processes

across business partners [1]. In business-to-business

(B2B) operations that include the exchange of tangible

goods, well-established strategies like vendor-managed

inventory or Just-in-Sequence/Just-in-Time processes

boost productivity and efficiency rates [1, 2].

The purpose of the standard software development

process is to create a whole application in one go.

Applications are packaged as a single deployment

artefact that contains all of its modules or components.

While this approach is a simple and practical way to get

started, it may become a barrier to scaling [3, 4]. This

development process renders the program inflexible and

hard to modify later. Many software programs struggle

to adjust to the dynamics of growth and agility in real-

world scenarios.

Usually, the architecture of these apps is altered to

accommodate the needs of scalability and to provide their

end users additional features and services. In addition to

losing their competitive edge, applications that don't

satisfy these standards run the danger of becoming

outdated very fast [3, 4]. Web applications may generally

be deployed on-site or in the cloud. Since the cloud

provider handles the administration, setup, and upkeep of

the server hardware, cloud computing is an effective

deployment strategy [4, 5].

Virtualisation, which enables many apps to run

concurrently on a same computer system and target

various operating systems, is a key component used by

cloud providers [5, 6]. These operating systems operate

in a layer that is isolated from the hardware itself.

Virtualisation facilitates effective resource sharing across

several operating systems.

Application processes (i.e., components) and end

consumers may communicate and work together over a

network thanks to middleware, which is a collection of

standard business-unaware services. The software that

sits above the network and underneath the business-

aware software applications is known as middleware [6,

7]. The best middleware should conceal the variations in

computing systems, programming languages, and

network protocols in addition to the quality features like

real-time, safety, security, and performance.

In other words, the ideal middleware would enable

content and process communication across scattered

autonomous systems as if they were parts of the same

system. Middleware is not yet developed sufficiently to

accommodate more complex interoperability

abstractions between applications and systems [6, 7].

These interoperability abstractions are part of the e-

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 2

Article Received: 05 January 2022 Revised: 30 January 2022 Accepted: 20 February 2022

 74
IJRITCC | February 2022, Available @ http://www.ijritcc.org

commerce framework and are designed to facilitate

integration between and across various B2B

infrastructures.

Three B2B architecture types were mentioned: federated,

dynamic (on-the-fly), and centralised. In the first form,

the worldwide business process is controlled by a central

body, such as an organisation. This kind emphasises

process efficiency by establishing a close-knit, long-

term, and static connection between participants (i.e.,

partners). The second kind lacks a centralised control

body but nonetheless emphasises process efficiency [8,

9]. Static, long-term, and loosely or closely connected

relationships are supported. The last kind emphasises

transaction efficiency by facilitating short-term, loosely

connected, and transitory interactions among

participants.

1.1 B2B Integration

Giving the interacting entities—such as customers and

sellers—a consistent picture of the e-commerce system

is known as business-to-business (B2B) integration.

Connecting front-end and back-end systems is another

aspect of business-to-business integration. These

systems may consist of external partner systems or older

data sources and programs [4, 6]. In the age of Web-based

e-commerce, B2B integration is a difficult undertaking

due to the following reasons:

• There is a growing variety of information forms.

• The information space is numerous and ever-

changing.

• Data semantic integration is still a work in

progress [1, 9].

• The majority of systems are self-sufficient,

meaning that their architecture is not

centralised.

Quick, easy, safe, and change-adaptable integration is

required. Integration may be carried out utilising a

variety of middleware technologies at different e-

commerce system levels [8, 9]. Integration is offered at

the following several levels by the B2B Integration

Framework that is covered in Figure 1:

The message exchange between parties is the focus of the

Communication Layer (Transport). A variety of

protocols and frameworks, ranging from distributed

object frameworks to network-level protocols for

communicating, have been established [4]. By

translating and converting messages across diverse

protocols, this layer's interoperable goal is to provide

independence from such protocols and environments.

Semantic and structural heterogeneity problems are

resolved by the Content Layer (Data).

For instance, it ascertains if a document is a purchase

order, quotation request, product description, etc.

Different information formats are used, which results in

structural variations. Variations in how the same notion

is interpreted give rise to semantic disparities. For

instance, a data item named "price" may refer to a price

that contains or does not include tax. Thus, the

interoperability goal of this layer is to provide

independence from formats, languages, and data

structures [9]. Information translation and integration

constitute the foundation of solutions; mediators and

wrappers are two examples.

The Business Process Layer, also known as Process

Flows, handles the semantics of interactions that relate to

collaborative business processes. A collaborative

business process may include, for instance, sending an

order, processing it, delivering the goods, and paying for

it. Issues like what a message means, what may be done,

what is expected of you, etc., are resolved by this layer.

Thus, the goal of the layer's interoperability is to enable

transparent peer-to-peer communication with any

partners. This is a really challenging task. Potential

solutions include document-based solutions, workflow-

based solutions, and the Application Programming

Interface (API) [11].

Fig. 1 Layers of B2B interoperability. [10, 11]

Configure, Price, Quote (CPQ) software is a sales

enablement solution that helps companies easily create

expert quotations, establish precise pricing, and

configure complicated items. By automating the labour-

intensive processes of product setup, pricing, and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 2

Article Received: 05 January 2022 Revised: 30 January 2022 Accepted: 20 February 2022

 75
IJRITCC | February 2022, Available @ http://www.ijritcc.org

quotation preparation, CPQ improves accuracy and

streamlines sales operations. Because it makes it easier

to create personalised quotations and contracts, this

software is especially helpful for businesses that provide

highly adjustable goods or services [22]. In the fiercely

competitive and fast-paced SaaS sector, businesses must

successfully grow their operations and innovate

constantly, among other problems.

For SaaS organisations that often deal with intricate

pricing models and product customisations, CPQ

software solves these issues by automating and

streamlining the sales process [21, 22]. Because of its

versatility in accommodating several pricing models,

including value-based, subscription-based, and usage-

based pricing, CPQ is a vital tool for SaaS companies. By

facilitating quicker and more accurate quotation

production, CPQ software not only shortens the sales

cycle but also enhances sales effectiveness with

improved data analytics and assisted selling capabilities.

It additionally assists in minimising mistakes in product

setups and bids, which lowers revenue leakage and

increases customer satisfaction [9, 10]. The integration

complexity of CPQ software implementation in a SaaS

environment is substantial. Several departments,

including Sales, [10,12], Finance, IT, and Product

Management, must work together to ensure a successful

rollout. A uniform source of truth for customer data,

product catalogues, and price information must be

maintained during the integration process, which must

guarantee smooth interaction with current systems like

CRM and ERP applications [4].

Fig. 2 CPQ services architecture based on

microservices. [11]

II. MICROSERVICES ARCHITECTURE

In the context of CPQ, microservices architecture refers

to a design methodology in which the CPQ system is

divided into smaller, independently deployable services,

each of which is in charge of a distinct business

capability [13, 14]. The following fundamental ideas

form the basis of this architectural style:

• Service independence: It is possible to

individually build, implement, and grow each

microservice.

• Loose coupling: Well-defined APIs allow

services to communicate with one another,

reducing inter-service dependency [14].

• Single responsibility: Within the CPQ process,

each service focusses on a certain business

function.

There are three layers in the client-server paradigm of

Docker: the registry, Docker client, and Docker host. The

architecture of Docker is explained in detail in Figure 3.

Otherwise, the end user cannot communicate with the

docker daemon; only the docker client is permitted to do

so. The end user, who may not be on the same computer

as the daemon, uses the docker client to deliver a

command. Through Rest API interfaces, the docker

daemon receives the command. After that, the Docker

daemon runs the command and returns the result [14].

The daemon is in charge of constructing, managing, and

allocating the containers.

Fig. 3 Docker architecture. [15]

Software systems are traditionally built using monolithic

architecture. The fundamental design idea behind many

software systems that are now in use across several

sectors and enterprises is this architecture. All software

components are intended to be assembled into a single,

sizable piece using monolithic architecture. Due to its

interdependencies and interconnections, monolithic

software often lacks modularity among its many

components. The bounds of modularity for these

components are not clear. In the end, [15], these

disparate parts or modules are deployed together as a

single process.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 2

Article Received: 05 January 2022 Revised: 30 January 2022 Accepted: 20 February 2022

 76
IJRITCC | February 2022, Available @ http://www.ijritcc.org

Fig. 4 Typical monolithic application layered

architecture. [14, 16]

III. TRANSPORT LEVEL MIDDLEWARE

We want to refer to an integrating process based on the

lowest levels of interconnection as low-level middleware

[11]. The network protocols that are used to transmit raw

data and the remote procedure call (RPC), which is the

first form of the distributed computing architecture, are

the two ideas that we will cover at this stage.

3.1 Network-protocol level

Early distributed systems were constructed with limited

choices in order to accomplish interconnectivity [11,12].

These choices use programming at a relatively low level

and are more closely tied to the underlying network

protocols.

3.2 Object and component-based middleware

Object

A majority common strategies for creating distributed

systems are component-based and orientated methods.

Because it facilitates closely linked connection, the

various middleware types discussed in this section are

most appropriate for the centralised design of B2B

distributed systems. This middleware is not a suitable

option for inter-enterprise connection because of its

closely linked connectivity, which requires that the

connecting components understand each other's

object/component interface [14, 15].

3.3 Content level middleware

A data transfer format specifies how the data should be

formatted so that multiple parts can exchange messages,

data, and even documents that they can comprehend and

interpret—not just within the same distributed business

system, but also across systems that are located in

different companies and technologies [15]. Initially, the

common format should be agreed upon by both the

sender and the recipient. Typically, the sender component

contains software (an embedded part) that encodes the

message's contents into a certain format before sending it

to the distant object or component via middleware

protocols [17, 25].

3.4 Electronic Data Interchange(EDI) based

integration frameworks

In the industry, Electronic Data Interchange (EDI) is

well-established and well-defined as it offers both

specified vocabularies and syntax for the contents of the

EDI message fields [17]. Using EDI standards, suppliers

exchange business documents over value-added

networks (VANs). Long before the Internet was created,

EDI was in operation.

3.5 XML-based frameworks

An emerging collection of open standards for

information creation and consumption, the Extensible

Markup Language (XML) is overseen by the World Wide

Web Collective (W3C) [18]. A lightweight subset of the

Standard Generalising Markup Language (SGML)

serves as the foundation for XML, a data-oriented

technology that may be used for the creation, [19],

storing, and retrieval of structured data. Language

independence is intrinsic in XML.

IV. BUSINESS PROCESS MIDDLEWARE

Descriptions of the actions necessary for an organisation

to accomplish its goals, including fulfilling a business

contract or a particular consumer request, are known as

business processes [19, 20]. Taking charge of these

procedures enables a company to modify them to meet

evolving needs or reengineer and enhance each one.

4.1 Application Programming Interface (API)

involves figuring out business processes offline, figuring

out how everything is connected and coordinated, and

then creating widely accepted abstract interfaces that

provide back-end system connections and remote

operation invocations [21]. These abstract interfaces are

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 2

Article Received: 05 January 2022 Revised: 30 January 2022 Accepted: 20 February 2022

 77
IJRITCC | February 2022, Available @ http://www.ijritcc.org

subsequently translated into physical implementation

using middleware and database technologies. CORBA-

based solutions are one example of such methods.

• Document-based remedies a protocol governs

the exchange of a collection of documents.

Since partners individually publish their

publications, there is no previous agreement.

• The foundation of traditional workflow systems

is the idea that managing business processes

holistically is essential to an organization's

success. In fact, a growing number of

organisations have already used workflows to

automate their internal process management,

and they have reaped significant advantages

from doing so [22].

• A loosely connected, document-based

integration architecture for Internet-based

applications, the Web Services concept is

gradually gaining traction [17]. Web services

provide inter-enterprise workflows, which

differ from conventional workflows in that they

allow business processes from different

organisations to communicate loosely

connected via the exchange of XML document-

based messages.

Rig. 1 Cycle of Securities Trading. [17]

V. CASE STUDY: CAPITAL MARKET

SYSTEMS INTEGRATION

The recent technical advancements that have enabled the

immediate interchange of information, assets, and money

globally have made trading in capital markets like the

New York Stock interchange and the Australian Stock

Exchange a more global activity [18]. Decisions about

trading have become more complex due to the fact that

they are made by several individuals interacting over

large geographic distances and time zones.

The conventional communication medium is sluggish

and ineffective, which results in a significant loss of

potential trade possibilities [19]. The telephone, fax, and

email are examples of traditional communication

methods for multiple platforms within the same market

or across various industries because the majority of these

systems are not integrated in a way that enables business

processes to move seamlessly between systems without

the need for human interaction.

Fig. 5 The degree of interoperability in capital market

systems. [22]

The majority of financial systems use private or

dedicated networks to communicate with one another for

security concerns. The SWIFT Transport Network

(STN), which uses the X.25 protocol, is one example.

Considering that communication software is not

standardised, this is a very costly approach [24, 23].

Many international institutions were already attempting

to embrace common standards in the financial sector at

the same time as XML advancements. The Financial

Information e-Xchange (FIX) protocol is one of these

protocols for sharing securities transactions between two

parties.

Fig. 6 Essential services related to trading securities.

[24]

A basic service or a composite (integrated) service is

offered by each software component. In the former case,

the architectural element provides the service logic in its

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 2

Article Received: 05 January 2022 Revised: 30 January 2022 Accepted: 20 February 2022

 78
IJRITCC | February 2022, Available @ http://www.ijritcc.org

entirety [18]. In order to complete its function, the latter

is where the architectural component interacts and needs

additional services, often known as outsourced services.

VI. CONCLUSION

The three layers of interoperability of B2B e-commerce

applications—transport (low level and object and

component level), contents, and business process

levels—have been covered in this study. We have seen

how several middleware systems facilitate

interoperability at various levels throughout the article.

However, none of the three tiers are supported by any

middleware technology. The interoperability support for

the main middleware technologies is briefly discussed

here:

• Low-level communication at the

communication level, middleware facilitates ad

hoc interoperability. At the lowest level, loosely

connected interaction is supported via network-

level TCP/IP. The first type that provide closely

linked interaction is RPC.

• In the context of closely connected services,

component and object-based frameworks

emphasise compatibility at the communication

layer. They are more suited for integrating intra-

business services.

• EDI is primarily concerned with

interoperability at the content and

communication levels when it comes to loosely

connected services. This method works well for

combining inter-enterprise services with stable,

long-term commercial relationships.

• Various XML-based frameworks offer

interoperability at various levels. They often

concentrate on interoperability at the content

and communication levels when discussing

loosely connected Internet-based services.

RosettaNet and ebXML support for

interoperability at the business process layer is

limited.

• While new initiatives in this field seek to enable

all interoperability levels in the context of inter-

enterprise services, workflow-based solutions

concentrate on interoperability at the business

process layer in the context of closely connected

services.

In general, we have spoken about the technologies that

facilitate e-commerce. We have concentrated on the

limitations these technologies have on software

developed using them as well as the interoperability they

enable. There will be greater issues with interoperability

and integration as the number of these technologies

grows without a clear leader. This would compel rival

technologies to provide ways to integrate with other

important technologies. Because it adds extra adapter

layers to ensure interoperable across applications with

various middleware architectures, this approach has a

performance costs.

VII. REFERENCES

[1] Bhardwaj, A. Deshpande, A. J. Elmore, D. Karger,

S. Madden, A. Parameswaran, H. Subramanyam, E.

Wu und R. Zhang, „Collaborative Data Analytics

with DataHub,“ Proceedings of the VLDB

Endowment, Bd. 8, Nr. no. 12, p. 1916–1919, 01

August 2015.

[2] Bundesministerium für Wirtschaft und Energie

(BMWi), „Smart Service Welt: Internetbasierte

dienste für die Wirtschaft,“ 2017.

[3] Bundesministerium für Wirtschaft und Energie

(BMWi), „Erfolgreich Smart Services Entwickeln:

Projektabschlussbroschüre der Smart Servie Welt I,“

2019.

[4] R. Wirth und J. Hipp, „CRISP-DM: Towards a

Standard Process Model for Data Mining,“ in

Proceedings of the Fourth International Conference

on the Practical Applikation of Knowledge

Discovery and Data Mining, 2000.

[5] D. Sculley, G. Holt, D. Golovin, E. Davydov, T.

Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F.

Crespo und D. Dennison, „Hidden Technical Debt in

Machine Learning Systems,“ Advances in Neural

Information Processing Systems 28, 2015.

[6] Graziano, C. D. A performance analysis of xen and

kvm hypervisors for hosting the xen worlds project.

PhD thesis, Iowa state university, 2011.

https://lib.dr.iastate.edu/cgi/viewcontent.cgi?

article=3243&context=etd.

[7] Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A.

C., and Arpaci-Dusseau, R. H. Slacker: Fast

distribution with lazy docker containers. In

Proceedings of the 14th Usenix Conference on File

and Storage Technologies (Berkeley, CA, USA,

2016), FAST’16, USENIX Association, pp. 181–

195.

[8] Jaramillo, D., Nguyen, D. V., and Smart, R.

Leveraging microservices architecture by using

docker technology. In SoutheastCon 2016 (March

2016), pp. 1–5.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 2

Article Received: 05 January 2022 Revised: 30 January 2022 Accepted: 20 February 2022

 79
IJRITCC | February 2022, Available @ http://www.ijritcc.org

[9] kubernetes.io. Getting Started - Container runtimes.

https://kubernetes.io/docs/setup/production-

environment/ container-runtimes/. Accessed 29 Oct

2019

[10] Taibi, Davide, Valentina Lenarduzzi, and Claus

Pahl.

[11] "Architectural Patterns for Microservices: A

Systematic Mapping Study." Closer (2018): 221-

232.

[12] Guide, Solutions, Dipanker Jyoti, and James A.

Hutcherson. "Salesforce Architect’s Handbook."

[13] Baldwin, Donald. "A Domain Neutral Enterprise

Architecture Framework for Enterprise Application

Integration and Pervasive Platform Services."

(2015).

[14] Gerald Brose, Andreas Vogal, and Keith Duddy. Java

Programming with CORBA: Advanced Techniques

for Building Distributed Applications. John Wiley &

Sons, Inc, 3rd edition, 2001.

[15] A. W. Brown. Large-Sclae, Component-Based

Development. Prentice Hall, 2000.

[16] Ritson, Carl G., and Peter H. Welch. "A process‐

oriented architecture for complex system

modelling." Concurrency and Computation: Practice

and Experience 22, no. 8 (2010): 965-980.

[17] Christoph Bussler. B2b protocol standards and their

role in semantic b2b integration engines. Bulletin of

the IEEE Computer Society Technical Committee

on Data Engineering, 24(1), 2001.

[18] Feras Dabous and Fethi Rabhi. Smarts architecture

and performance. Technical report, School of ISTM,

The University of NSW, June 2002. confidential

document that concluded seed grant from CMCRC.

[19] Research information exchange markup language

web site.

[20] The simple object access protocol (soap)

specification web site.

[21] M. Eisenträger, C. Frey, A. Herzog, A. Moghiseh, L.

Morand, J. Pfrommer, H. Stephani, A. Stoll und L.

Wessels, „ML4P-Vorgehensmodell: Machine

learning for production“.

[22] Morabito, R., KjAllman, J., and Komu, M. ˜

Hypervisors vs. lightweight virtualization: A

performance comparison. In 2015 IEEE

International Conference on Cloud Engineering

(March 2015), pp. 386– 393.

[23] Hasterok, J. Stompe, J. Pfrommer, T. Usländer, J.

Ziehn, S. Reiter, M. Weber und T. Riede, „PAISE -

Das Vorgehensmodell für KI-Engineering,“ 2021.

[24] M. E. Porter und J. E. Heppelmann, „How Smart,

Connected Products Are Transforming

Competition,“ Harvard Business Review, November

2014.

[25] S. Leminen, M. Rajahonka, M. Westerlund und R.

Wendelin, „The future of the Internet of Things:

toward heterarchical ecosystems and service

business models,“ Journal of Business & Industrial

Marketing, Bd. Vol. 33, Nr. No. 6, pp. 749-767,

2018.

http://www.ijritcc.org/

