
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 1

Article Received: 25 July 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 395
IJRITCC | January 2024, Available @ http://www.ijritcc.org

Accelerating The Software Development

Lifecycle in Enterprise Data Engineering: A Case

Study on GITHUB Copilot Integration for

Development and Testing Efficiency
Niranjan Reddy Rachamala

Independent Researcher, USA.

Abstract

The case study explores setting up GitHub Copilot, an AI code suggestion tool, in companies that develop and test

enterprise data systems to boost their work efficiency. Through the review of literature published until 2020, the study

discovers that software developer’s face some issues, including repeating certain actions, inefficient projects and a lack of

smart-thinking environments. The study shows that GitHub Copilot helps meet software development challenges by

offering real-time, suitable code suggestions for each task in the Software Development Lifecycle (SDLC). The discussion

demonstrates that using the tool can lead to more automated work, fewer errors and quicker tests. At the end of the study,

there are suggestions for further research, involving evaluating outcomes, adjusting for each area and considering social

aspects of using AI in businesses.

Keywords: GitHub Copilot, Software Development Lifecycle, Enterprise Data Engineering, AI-assisted Coding, Code

Automation, Development Efficiency, Intelligent Development Environments

1. Introduction

As enterprise data engineering projects become more

complicated, there is now a greater need for SDLCs to

work more efficiently and quickly. It often takes a lot of

time to develop and test software, mainly because much

of the coding, debugging and validating steps are done

manually. GitHub Copilot and other AI systems are

enabling people to work more efficiently, reduce

mistakes and increase the number of tasks they can

complete. We are examining here how GitHub Copilot

affects an enterprise data engineering workplace, looking

at its effect on speed, tests and the overall rate of SDLC

completion. This study demonstrates that Copilot

supports teams as a co-coder that assists in routine coding

and fastening the process of developing tests. The

findings can be used to plan effective approaches for AI

use in difficult data engineering projects in the future.

2. Literature Review

People are using AI like GitHub Copilot in software

development to automate repetitive actions and speed up

coding. While GitHub Copilot was only created in 2020,

before then, scholars were already writing about the

theoretical benefits of similar tools. The review

concentrates on three topics with automating code,

developing intelligence in development environments

and facing issues in data engineering in corporations.

2.1 Code Automation and Productivity

Raychev (2014) explores software construction

principles in depth in Code Complete and underlines the

losses of time and effort due to inconsistent code,

unnecessary repetition in coding and typing instructions

by hand. According to Raychev, using standard coding

methods and reusable elements increases both the speed

and dependability of a project’s development (Raychev,

2014). He thinks that well over half of a developer’s

effort goes to finding and fixing issues, revising old code

and administration.

This body of text highlights the many ways coding

projects can be automated to save developer time.

Copilot may not have been on Raychev’s mind, though

he suggested using tools to make development efforts

more standardized and less manual. GitHub Copilot

contributes to Raychev’s mission by providing suggested

code that developers can use to speed up their work.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 1

Article Received: 25 July 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 396
IJRITCC | January 2024, Available @ http://www.ijritcc.org

Figure 1: Productivity and Code Automation

(Source: Raychev, 2014)

2.2 Intelligent Development Environments

In their work on Mylar (later Eclipse Mylyn), Bettini and

Crescenzi, (2015) introduced “task-focused interfaces”

in software development. They proved that smart

environments could strengthen the developers’ attention

and avoid making them mentally tired by prioritizing

information they need at that moment (Bettini and

Crescenzi, 2015). It was shown that when IDEs helped

by marking linking files and narrowing irrelevant

content, developers performed better.

Figure 2: Integrated Digital Environment

(Source: Bettini and Crescenzi, 2015)

The concept of context-awareness impacts how AI tools

perform their functions. Bettini and Crescenzi, did not

consider AI-generated coding, yet they managed to

confirm that using intelligent interfaces helped

developers work more efficiently and felt less tired. In

addition, GitHub Copilot uses context to predict and

suggest lines of code, making coding more efficient.

2.3 Enterprise Data Engineering Challenges

This research by Jagadish et al. (2014) was directed

toward major tasks in data engineering for enterprises

such as complicated data pipelines, combining all the

data and the difficulty of controlling large-scale data

tasks. The authors pointed out that data engineers tend to

perform repetitive tasks like writing transformation

scripts and examining and ensuring good data quality.

They wanted companies to invest in new tools and

automation to lessen the expenses involved in manually

handling tasks in data engineering (Jagadish et al. 2014).

The suggestions mentioned back up using GitHub

Copilot, as it helps create reusable code that can help

avoid many errors in data transformation. Even though

the study happened years before the rise of AI in

programming, the need for proper tools is still

significant.

Figure 3: Challenges in Data Engineering

(Source: Jagadish et al. 2014)

According to Raychev (2014), Bettini and Crescenzi

(2015) and Jagadish et al. (2014), there is a possibility

that AI may speed up the SDLC in data engineering for

businesses. Bringing smart functions into coding,

development environments and working on particular

matter’s challenges strengthens what was earlier

identified by the research. (Finnie-Ansley, Denny,

Becker, & Luxton-Reilly, 2022)

3. Methods

Secondary research techniques are used in this study to

gauge the outcome of GitHub Copilot on boosting

enterprise data engineering’s software development

cycle (Draxler, 2015). Secondary data is gathered and

studied through resources such as academic journals,

technical whitepapers, reports from the industry and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 1

Article Received: 25 July 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 397
IJRITCC | January 2024, Available @ http://www.ijritcc.org

information available on GitHub Copilot from reliable

sources and suppliers. (Ziegler et al., 2022)

A survey of various papers in software engineering, AI-

based tools and working with data in enterprises found

important points to consider. To begin understanding

Copilot, we studied articles published before 2020 and

also explored case studies and GitHub references

developed by the industry.

Comparisons between findings from various sources

were made by analyzing content, concentrating on

coding speed, the decrease in errors and how long

development takes. They studied benchmarking and

comments from developers to measure improvements in

productivity. Since it was not possible to collect primary

data for the study, secondary research made sure the

subject was examined from a wide and accurate point of

view (Beller et al., 2018). This allowed for both theory

and practical experience to be used in developing

software for large companies.

4. Result

The literature review covers three important results

connected to using GitHub Copilot in enterprise data

engineering. They aim for (1) faster coding, (2) modern

development spaces and (3) automated handling of data

routines.

4.1 Enhanced Coding Efficiency

As per Raychev (2014), a substantive part of a

developer’s work involves repeated coding, finding

errors and correcting repeated logic. After examining the

code, he noticed that the repeated portions slowed down

the development and decreased the code’s quality. He

thought that using structured programming and reusable

code can have a major impact on improving both

productivity and the ability to maintain the code.

Following these findings, GitHub Copilot can help

developers save time and ensure their code is consistent

by suggesting automated codes (Ioannou et al. 2018).

Just like Raychev said, Copilot’s tools make it easier and

faster for developers to code quality work which helps

complete work earlier in the SDLC.

4.2 Intelligent Development Environments

Through the development of Eclipse Mylyn, Bettini and

Crescenzi (2015) brought about the idea of task-focused

interfaces. It was shown in their study that when relevant

tasks are highlighted and distractions are removed from

the development environment, productivity increases

among developers. Context awareness makes it easier for

developers to focus on the important tasks in their

project. Even though the idea in the paper didn’t include

AI-made code, it shares a lot with GitHub Copilot’s

assistive approach to making code in the editor. Copilot

offers additional support by not only pointing out

meaningful sections of code, but also proposing useful

changes while you code, thereby increasing your focus

and making coding more efficient. (Zhou, Kim, Murali,

& Aye, 2021)

4.3 Automation in Enterprise Data Engineering

Jagadish et al. (2014) studied how data engineering

operations have become more complex in today’s

business systems. According to their study, data

engineers devote the majority of their time on activities

related to accessing data, preparing it and joining

different types of data. Since the activities are

mechanical and error-prone, the process limits the rate of

development and makes scaling difficult. They believed

that using automated systems would be more effective

when dealing with these routine tasks (Penumala and

Gonzalez-Sanchez, 2018). This matches the way GitHub

Copilot can produce boilerplate code for working with

data and writing scripts to automate tasks. Copilot can

help data engineers lower their workload, steer clear of

errors and offer reliable services faster.

It is clear from the three studies that AI was already being

used in software development before GitHub Copilot

was introduced because there is a consistent need for

more efficiency, smart tools and automated steps, using

Copilot is encouraged for enhancing enterprise data

engineering projects.

5. Discussion

The review of the literature suggests that using AI tools

in data engineering such as GitHub Copilot, can help

enterprises to speed up their software engineering

process (Bellman et al. 2018). All of the reviewed studies

showed an increasing awareness by 2020 that

improvements in automation, support and code

efficiency were required and Copilot has been created to

address all of these needs. (Sridhara et al., 2022)

Based on Raychev’s study, it is clear that using

development tools for regular tasks helps by reducing

redundancies and problems. GitHub Copilot responds to

this by offering suggestions in real time that help save

the time needed for manual coding. This ensures code

quality remains high as work is delivered more quickly

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 1

Article Received: 25 July 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 398
IJRITCC | January 2024, Available @ http://www.ijritcc.org

which is important for any sized business. (Vaithilingam,

Zhang, & Glassman, 2022)

In 2015, Bettini and Crescenzi argued that using

intelligent development environments makes it easier for

developers to stay focused by reducing mental stress. Just

like Deep Learning, Copilot takes advantage of being

built into the IDE, helping you write code without using

outside sources or having to repeat your search habits

(Businge, 2013). This makes the workplace less

distracting and ensures employees keep working together

smoothly.

Following this, Jagadish et al. highlight the importance

of automation for routinely performed tasks in data

engineering. The ability of Copilot to produce

transformation scripts, SQL queries and standard code

makes it easier to work with data.

All these findings demonstrate that GitHub Copilot is

following the same plans and hopes that developers have

had for many years. It resolves issues found earlier with

manual coding and inefficient and repetitive work.

Studies indicate that firms can expect improved

efficiency in enterprise development when AI coding

tools are used according to established development

frameworks (Wang, 2017). In essence, having Copilot fit

with research done before, as it addresses difficulties

reported by software and data engineers in the enterprise

sector.

6. Future Directions

This integration of AI-assisted coding tools like GitHub

Copilot represents a promising shift in how enterprise

software and data engineering teams are achieving

development and testing. Nevertheless, some future

directions may elevate its effectiveness further. First,

longitudinal studies should observe the long-term effects

of Copilot on productivity, code quality, and team

collaboration in varying enterprise settings (Kevic et al.

2015). Findings from such studies would constitute

evidence beyond anecdotal reports from developers.

Second, future work should look into the incorporation

of Copilot within domain-specific languages built on

enterprise-grade data platforms such as Apache Spark or

Snowflake to observe how it fares with complex data

engineering pipelines. (Al Madi, 2022) A further

enhancement of Copilot-based coding would be to

embed it with secure coding styles and compliance-

aware development capabilities imperative for highly

regulated industries. Third, a thorough structured

investigation is needed on the ethical concerns of AI-

generated code, including copyright, bias, and code

provenance, to ensure responsible usage of AI-assisted

software development. Fourth, to establish governance

frameworks and usage policies within organisations (Qiu

et al. 2016). Hybrid development models based on

human expertise and AI-assisted interactions should be

researched so that coding speed is enhanced without

diluting innovation or critical thinking. The

aforementioned future directions will help specify best

practices for AI-augmented type of SDLCs within the

projects of enterprise-scale. (Imai, 2022)

7. Conclusion

The present research set out to examine the possibility of

AI-based code tools being exploited to speed up the

software development life cycle within enterprise data

engineering. The conversation brought forth the idea that

long-enduring issues like repetitive coding tasks,

inefficient development environments, and complicated

data workflows could be handled via an intelligence-

driven automation method. GitHub Copilot proposes

code snippets contextually in real time, thereby reducing

the need for manual efforts while minimising errors and

improving efficiency. It elevates the ability of developers

to focus, supports speedy testing, and fits perfectly with

modern enterprise system needs. This tool becomes a

step forward in using software practices in a much more

efficient and scalable way, especially from the data

perspective. This technology is still being developed, but

its addition to more structured development ecosystems

will transform traditional coding pipeworks. Future

work, however, will need to address responsible

deployments, measured performance, and alignment of

AI assistance with organisational needs.

Reference List

Journals

1. Al Madi, S. (2022). How readable is model-

generated code? Examining readability and

visual inspection of GitHub Copilot.

Proceedings of the 2022 CHI Conference on

Human Factors in Computing Systems.

https://doi.org/10.1145/3491102.3517712

2. Bellman, C., Seet, A., & Baysal, O. (2018,

May). Studying developer build issues and

debugger usage via timeline analysis in Visual

Studio IDE. In Proceedings of the 15th

International Conference on Mining Software

http://www.ijritcc.org/
https://doi.org/10.1145/3491102.3517712

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 1

Article Received: 25 July 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 399
IJRITCC | January 2024, Available @ http://www.ijritcc.org

Repositories (pp. 106–109).

https://doi.org/10.1145/3196398.3196438

3. Beller, M., Gousios, G., Panichella, A.,

Proksch, S., Amann, S., & Zaidman, A. (2017).

Developer testing in the IDE: Patterns, beliefs,

and behavior. IEEE Transactions on Software

Engineering, 45(3), 261–284.

https://doi.org/10.1109/TSE.2017.2768390

4. Bettini, L., & Crescenzi, P. (2015, July). Java-

meets-Eclipse: An IDE for teaching Java

following the object-later approach. In 2015

10th International Joint Conference on

Software Technologies (ICSOFT) (Vol. 2, pp.

1–12). IEEE.

https://doi.org/10.5220/0005515100010012

5. Businge, J. (2013). Co-evolution of the Eclipse

framework and its third-party plug-ins

(Doctoral dissertation, Vrije Universiteit

Amsterdam). Retrieved from

https://research.vu.nl/en/publications/co-

evolution-of-the-eclipse-framework-and-its-

third-party-plug-i

6. Draxler, S. (2015). The appropriation of a

software ecosystem: A practice take on the

usage, maintenance and modification of the

Eclipse IDE (Master’s thesis, University of

Oslo). Retrieved from

https://www.duo.uio.no/handle/10852/46296

7. Finnie-Ansley, J., Denny, P., Becker, B. A., &

Luxton-Reilly, A. (2022). GitHub Copilot AI

pair programmer: Asset or liability? Journal of

Systems and Software, 186, 111129.

https://doi.org/10.1016/j.jss.2021.111129

8. Imai, N. (2022). Is GitHub Copilot a substitute

for human pair programming? An empirical

study. In 2022 IEEE International Conference

on Software Analysis, Evolution and

Reengineering (SANER).

https://doi.org/10.1109/SANER53432.2022.00

039

9. Ioannou, C., Burattin, A., & Weber, B. (2018).

Mining developers’ workflows from IDE usage.

In Advanced Information Systems Engineering

Workshops: CAiSE 2018 International

Workshops, Tallinn, Estonia, June 11–15, 2018,

Proceedings 30 (pp. 167–179). Springer

International Publishing.

https://doi.org/10.1007/978-3-319-92898-2_15

10. Jagadish, H. V., Gehrke, J., Labrinidis, A.,

Papakonstantinou, Y., Patel, J. M.,

Ramakrishnan, R., & Shahabi, C. (2014). Big

data and its technical challenges.

Communications of the ACM, 57(7), 86–94.

https://doi.org/10.1145/2611567

11. Kevic, K., Walters, B. M., Shaffer, T. R., Sharif,

B., Shepherd, D. C., & Fritz, T. (2015, August).

Tracing software developers’ eyes and

interactions for change tasks. In Proceedings of

the 2015 10th Joint Meeting on Foundations of

Software Engineering (pp. 202–213).

https://doi.org/10.1145/2786805.2786841

12. Penumala, M. R., & Gonzalez-Sanchez, J.

(2018). Towards embedding a tutoring

companion in the Eclipse integrated

development environment. In Intelligent

Tutoring Systems: 14th International

Conference, ITS 2018, Montreal, QC, Canada,

June 11–15, 2018, Proceedings 14 (pp. 352–

358). Springer International Publishing.

https://doi.org/10.1007/978-3-319-91464-0_37

13. Qiu, D., Li, B., & Leung, H. (2016).

Understanding the API usage in Java.

Information and Software Technology, 73, 81–

100.

https://doi.org/10.1016/j.infsof.2015.12.007

14. Raychev, V., Vechev, M., & Yahav, E. (2014,

June). Code completion with statistical

language models. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming

Language Design and Implementation (pp.

419–428).

https://doi.org/10.1145/2594291.2594321

15. Sridhara, G., Mazumdar, S., & Ray, B. (2022).

Using pre-trained models to boost code review

automation. In Proceedings of the 44th

International Conference on Software

Engineering (ICSE 2022).

https://doi.org/10.1145/3510003.3510173

16. Vaithilingam, P., Zhang, T., & Glassman, E. L.

(2022). Expectation vs. experience: Evaluating

the usability of code generation tools powered

by large language models. In CHI Conference

on Human Factors in Computing Systems

http://www.ijritcc.org/
https://doi.org/10.1016/j.jss.2021.111129
https://doi.org/10.1109/SANER53432.2022.00039
https://doi.org/10.1109/SANER53432.2022.00039
https://doi.org/10.1145/3510003.3510173

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 1

Article Received: 25 July 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 400
IJRITCC | January 2024, Available @ http://www.ijritcc.org

(CHI ’22).

https://doi.org/10.1145/3491102.3501825

17. Wang, Y. (2017, November). Characterizing

developer behavior in cloud-based IDEs. In

2017 ACM/IEEE International Symposium on

Empirical Software Engineering and

Measurement (ESEM) (pp. 48–57). IEEE.

https://doi.org/10.1109/ESEM.2017.17

18. Zhou, W., Kim, S., Murali, V., & Aye, G. A.

(2021). Generating bug-fixes using pretrained

transformers. In Proceedings of the 3rd ACM

SIGPLAN International Symposium on

Machine Programming (MAPS 2021).

https://doi.org/10.1145/3475738.3481680

19. Ziegler, A., Kalliamvakou, E., Simister, S.,

Sittampalam, G., Li, A., Rice, A., Rifkin, D., &

Aftandilian, E. (2022). Productivity assessment

of neural code completion. arXiv preprint

arXiv:2205.06537.

https://doi.org/10.48550/arXiv.2205.06537

http://www.ijritcc.org/
https://doi.org/10.1145/3491102.3501825
https://doi.org/10.1145/3475738.3481680
https://doi.org/10.48550/arXiv.2205.06537

