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Abstract—The Lights Out puzzle presents an interesting problem in mathematics, encompassing elements of linear algebra, 

number theory and programming.  This paper will analyze the mathematics associated with a version of the Lights Out puzzle 

game developed by Tiger Electronics (c.1995) that is most often presented to users. Our goal is to implement Sage using an 

algorithm in linear algebra to solve a linear system derived from this game. We attained results regarding the solvability and the 

structure of the solution space to the linear system. Furthermore, we used Sage to investigate other models of Lights Out puzzles 

in different settings, such as modifying the shape of the game‟s array and adding more states of display other than „on‟ or „off‟.   
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I. INTRODUCTION 

The Lights Out puzzle is a commercially available, 

hand-held game that was introduced by Tiger Electronics in 

the mid-1990‟s ([4]), although variations date back to the 

1970‟s with a game called Merlin.  The game, visually 

perceived as a square array of buttons (5 by 5), is presented 

to the player as a configuration where some buttons are „on‟ 

(lit) and some are „off‟ (not lit).  The goal of the game is to 

press a series of buttons to turn off all of the lights. When a 

button is pressed, it changes its own state and also states of 

its direct neighbors (those buttons to the left, right, above, 

and below the given pressed-button).  Once all the lights are 

off, the game is over and the player wins. 

On the surface, this game seems like a simple 

child‟s toy, complete with ear-wrenching, beeping sound 

effects and a portable, convenient size.  For this project, we 

are interested in a strategy to win the game.  We translate 

each action (pressing a button) into a mathematical 

calculation, and then investigate the reasoning behind the 

game.   

This paper is based on a previous project in a 

summer undergraduate research experience (SURE), part of 

this paper was presented by Mr. Gino in Emerging 

Researchers National (ERN) Conference in 2012 when he 

was a undergraduate student in our department and he 

received the 1
st
 position. This paper aims to present a 

feasible computational project in applied mathematics for 

college, especially, sophomore and junior students who have 

prior learning experience in Linear Algebra. We selected the 

programming software Sage to solve the problems presented 

from Lights Out Puzzle because Sage is an open source and 

freely available and it is a good option for students who 

have no access to Matlab, Maple or Mathematica. The 

estimated amount of time a college student would be 

expected to complete this project including learning and 

applying Sage is three or four weeks. Through this paper, it 

shows that it has been a good approach for a student to 

develop his/her interest in mathematics research by 

investigating the mathematics reasoning behind a game or a 

modeling, furthermore, a student can be more motivated to 

learn programming or new technology through problem 

solving; we also hope to communicate with mathematics 

professors about how to advise undergraduate students to do 

research.  

 

II. MATHEMATICAL MODELING OF THE GAME 

 The Lights Out puzzle creates a very interesting 

question in mathematics that involves matrices, linear 

algebra, number theory and programming.  
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Figure 1      

 Corresponding to the commercial game board, we 

first give an ordering to all buttons, for convenience as in 

Figure 1 (provided through Sage); the ordering can be 

arbitrary and has no essential impact on solving the problem. 

 
  We begin by looking at the 5 by 5 array: 

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

M

 
 
 
 
 
 
 
 

 

and one vector of 25 by 1: 

(0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)TN  , 

where T is the operation of transposition on a matrix. The 

matrix M  and vector N  represent the same configuration in 

the 5 by 5 board, refer to above Figure 1: there are only two 

buttons with light on, they are the 2
nd

 and 6
th
 buttons on the 

board. In this way, each configuration of the board can be 

represented as a 5 by 5 matrix in a natural way; this matrix can 

be converted to a vertical vector in the following way: first row 

then second row and continue. This vertical vector has a size of 

25 by 1; it can be converted to a 5 by 5 matrix in “reverse”. For 

example, the above matrices M  and N  can be converted to 

each other. 

When one button is pressed, there are changes in a 

few states, which can be represented with a 25 by 1 column 

vector: we use 1 to indicate a change in the state of the button 

in the corresponding position, while 0 means the button stays 

with same state. 

For example, when the 1
st
 button is pressed, the vector 

1 (1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)TQ  .  

When the 8
th
 button is pressed, the vector is 

8 (0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)TQ 

. 

We call vectors, such as 1 8Q , Q , effect vectors. By 

collecting all these effect vectors in an increasing order, we can 

create a 25 by 25 matrix, which is named as a Toggle matrix. A 

toggle matrix plays a key role in investigating the game of 

turning off lights; it provides the information of the game rule. 

Given a starting configuration vector, a toggle matrix will 

decide whether this configuration is a winning one, that is, all 

the lights can be turned off after a series of pressing buttons; 

and the solutions in a winning configuration.     

For a 5 by 5 board, it is noticed that the toggle matrix 

T  has a structure as follows in [1]:  

          ,

Z I O O O

I Z I O O

T O I Z I O

O O I Z I

O O O I Z

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 where 

1 1 0 0 0

1 1 1 0 0

0 1 1 1 0 ,

0 0 1 1 1

0 0 0 1 1

z

 
 
 
 
 
 
 
 

  

where I is the 5 by 5 identity matrix, O is the 5 by 5 matrix of 

all zeros. Notice Z  is a symmetric matrix, therefore T is also 

symmetric. With these facts in mind, it is much easier for us to 

input this toggle matrix in Sage.  

Let us look at the game. Each button can only display 

one of two states (on and off) at a given time. These two states 

can be represented by 1 and 0 respectively. Furthermore, each 

action of pressing one button can be represented by a vertical 

effect vector. We notice a few things: pressing a button twice 

results in no change; pressing two buttons, the total changes 

can be expressed in a vector which is sum of two effect 

vectors, and naturally 1 1 0   in the summation of 

components of the vectors; if three or more buttons are 

pressed, then the order of pressing these buttons has no impact 

on the total changes of configuration. Furthermore, all linear 

operations: addition and multiplication, can be conducted in 

2Z , the “field of integers modulo 2, 1 for on, and 0 for off”, 

denoted as mod(2) as in [1].  Then a series of button presses 

result in changes which can be represented as a linear 

combination of the column vectors in the Toggle matrix in 

mod(2).  

The “turning off all lights” can be modeled as 

follows: given a starting configuration vector b  of 25 by 1, 

1 2( , , , )T

nb b b b  , the Toggle matrix is 

1 2 25( , , , )T T T T  , find a vector p  of 25 by 1, such that 

* 0 b T p   in mod(2) (here *  is the multiplication in 

matrices), which is equivalent to *  T p b in mod(2). 

Again, pressing one button an odd number of times 

makes a change, while pressing one button an even number of 

times makes no change. Based on this observation, we only 

need to take into account a series of presses, where no button 

is pressed more than once. 
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III. SOLVING THE SYSTEM 
*T p b

 IN 

MOD(2) IN SAGE 

 

To solve this system, we will program in Sage. The 

first version of Sage was released in 2005 as a free and open 

source under the terms of the GNU General Public License, 

with the initial goals of creating an “open source alternative 

to Magma, Maple, Mathematica, and MATLAB”. The 

algorithm we use is to use the reduced row-Echelon forms 

(RREF) of the matrices T  and ( , )T I ,  which will provide 

critical information we need in deciding whether the system 

has solutions or no solution.   

Recall a matrix is in RREF (in [3]) of a matrix if: 

1. All the rows consisting entirely of zeros are at the bottom 

2. In each non-zero row, the leftmost non-zero entry is a 1. 

These are called the leading ones. 

3. Each leading one is further to the right than the leading 

ones of previous rows. 

4. The column of each leading one is “clean”, that is all 

other entries in the column are 0. 

For matrices with entries in mod(2), we have same 

concept RREF, and Sage can do the same operations as in the 

field of all real numbers. Actually, for a prime number n , the 

ring of integers mod( n ) is a field.   

The following programming in Sage is to get a matrix 

G  which is the RREF of the toggle matrix T . 

Z = matrix(IntegerModRing(2),[[1,1,0,0,0],[1,1,1,0,0], 

[0,1,1,1,0],[0,0,1,1,1],[0,0,0,1,1]]) 

I=matrix.identity(IntegerModRing(2), 5); 

O=matrix(IntegerModRing(2),5,5,0);  

T=block_matrix(5,5,[Z,I,O,O,O,I,Z,I,O,O,O,I,Z,I,O,O,O,I,Z

, I,O,O,O,I,Z]);  

G=T.rref() 

print G.str() 

%md the rank of toggle matrix T in the 5 by 5 lights out game 

rT=T.rank() 

rT 

%md 'the following is the block (T, I), we call it G2, ,G2=(T, 

I)' 

I2=matrix.identity(IntegerModRing(2), 25); 

G2=block_matrix(1,2,[T,I2]); 

%md 'Let us denote G2.rref() in Sage as (G,L) or GL ' 

GL=G2.rref(); 

%md 'the matrix L is the right half of the matrix GL' 

%md 'this matrix L will be used in therorm 1' 

L=GL[::, 25::] 

show(L) 

 Comments: in this programming, the most important 

function we use is rref(), which is explained; as to the meaning 

or syntax of the other  functions used in the program, please 

refer to [6].   

 This program will produce: 
1 2

,
0 0 0

I g g
G

 
  
 

  

where I is the identity matrix of size 23 by 23, the last two 

rows of G are zero vectors, 1g  and 2g  are vertical vectors of 

size 23 by 1, and  

1

2

[0  1 1 1  0  1 0 1 0 1 1 1 0 1  1 1 0 1 0  1 0 1 1 ] ,

[1 0 1   0 1   1 0 1 0 1 0 0 0 0 0 1 0 1 0 1  1 0 1 ] .

T

T

g

g





 

It follows from the structure of G  that the toggle 

matrix T  has a rank=23. In order to get the information for 

solvability or solutions (if they exist), we need two matrices: an 

augmented matrix ( ,  ) A T b  and 2 ( ,  ) G T I , where 

I  is identity matrix of 25 by 25. Let us denote G2.rref() in 

Sage as ( ,  )G L , then we have *L T G ; if *T p b , 

then * *G p L b ; * *( ,  ) ( ,  * )L A L T b G L b  . 

(1) A basic theory in linear algebra tells that the 

necessary and sufficient condition for the system: 

*T p b  in mod(2) to have a solutions is that 

rank(T )=rank( A ), or, rank(L*T)=rank(

* ,  *L T L b ), or rank( G )=rank( ,  *G L b ).  

 The above programming in Sage gives the matrix L , 

which is rather big and we will not display it here. The last 

two rows of L are: 

1

2

[1  0 1  0 1  1 0 1 0 1 0 0 0 0 0 1 0 1  0 1 1 0 1 0 1],

[0 1  1 1  0  1 0 1 0 1 1 1  0 1  1 1 0 1  0 1 0 1 1 1 0].

C

C





 We have 1 2[ , 0, 1]TC g  and 2 1[ , 1,  0]TC g . 

Definition: two vertical vectors v and w  are 

perpendicular if their inner product * 0Tv w  .  

In order that rank( G )=rank( ,  *G L b )=23, the last 

two values of *L b   must be 0 ; therefore, we prove the 

following theorem:  

Theorem 1: In the case of a 5 by 5 board, the system: 

*T p b  in mod(2) has a solution if and only if the vector 

b  is perpendicular to 1

TC  and  2

TC  in mod(2).                                         

Assume 1 2( , , , )T

nb b b b  , the above conditions 

tell that the two sums, 

1 3 5 6 8 10 16 18 20 21 23 25b b b b b b b b b b b b            and 
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2 3 4 6 8 10 11 12 14 15 16 18 20 22 23 24b b b b b b b b b b b b b b b b               , 

are even numbers.  

 By checking carefully all entries in these two sums, 

we notice that neither of 7 9 17, ,b b b  and 19b  is in one of the 

two sums; it follows that the starting state of 7th, 9th, 17th or 

19
th
 button has no impact on whether a starting configuration is 

a winning one. Therefore, we have the following 

      Corollary 1.1: the values of 7 9 17, ,b b b  and 19b  

have no impact on the solvability of  *T p b  in mod(2). In 

other words, whether a starting configuration is a winning one 

has nothing to do with the states of the 7
th
, 9

th
, 17

th
 and 19

th
 

buttons.      

Theorem 1 tells that in a winning configuration, two 

sums 

1 3 5 6 8 10 16 18 20 21 23 25b b b b b b b b b b b b            

and 

2 3 4 6 8 10 11 12 14 15 16 18 20 22 23 24b b b b b b b b b b b b b b b b                

are even, from which two sates, for example, 24b  and 25b , 

can be decided by the others. Using the equation 

1 3 5 6 8 10 16 18 20 21 23 25 0b b b b b b b b b b b b             in 

mod(2), we have 

25 1 3 5 6 8 10 16 18 20 21 23b b b b b b b b b b b b            in 

mod(2); using the equation 

2 3 4 6 8 10 11 12 14 15 16 18 20 22 23 24 0b b b b b b b b b b b b b b b b               

 in mod(2), we have 

24 2 3 4 6 8 10 11 12 14 15 16 18 20 22 23b b b b b b b b b b b b b b b b                

in mod(2). 

 In the other direction, if we choose the states of 23 

buttons arbitrarily except 24
th

 and 25
th

 buttons, and choose 

states of 24
th

 and 25
th

 buttons as decided as above, then this 

starting configuration is a winning one by theorem 1. 

Therefore, we have the following: 

Corollary 1.2: There are total winning 

configurations among all 
252 possible starting configurations; 

the probability to win for a randomly chosen starting 

configuration is 25% .  

Also, we may draw some results about the solutions 

of the system * 0T p  .   

(1)The Kernel space of the matrix T  

We know the kernel space of a matrix T  is the space 

of all vectors p  such that * 0T p  . For this vector p , we 

have * * 0L T p  , or * 0G p  . Assume 

1 2 25[ , , , ]Tp p p p  , based on the structure of the matrix 

G , we know that 

1 2 23 24 1 25 2 [ , , , ]  p *g p *g 0Tp p p     in mod(2), 

therefore, 1 2 23 24 1 25 2 [ , , , ] = p *g p *gTp p p   in 

mod(2),where 24p  and 25p  can take the values of 0 and 1.  

There are two independent solutions: 

when 24 1p   and 25 0p  , the solution is 

1 2 23 1 2 [ , , , ,1, 0] [ , 1, 0]T T T Tp p p g C  ; 

when 24 0p   and 25 1p  , the solution is 

1 2 23 2 1 [ , , , , 0, 1] [ , 0, 1]T T T Tp p p g C  . 

 The above expressions give the structure of the kernel 

space of the matrix T .  

Corollary 1.3: the system * 0 T p  in mod(2) has 

the following solutions: 

1 2 23 24 25 25 1 24 2[ , , , , , ] * *T T Tp p p p p p p C p C   , 

where 24p  and 25p  take values of 0 or 1. 

(2) The solution space of *T p b  when the 

conditions in theorem 1 are satisfied 

If *T p b , then * * *L T p L b , that is, 

* *G p L b ; let us denote *  L b  , and 

1 2 25( , , , )T     . Notice that *T p b  in mod(2) 

has a solution iff that 24 25 0   ; furthermore we can 

prove as follows that this   is one solution of *T p b  in 

nod(2).  

Since 
1 2

,
0 0 0

I g g
G

 
  
 

 we have * *G p L b  is 

same as 

1 2

1 2 25 1 2 25*[ , , , ] [ , , , ]
0 0 0

T T
I g g

p p p   
 

 
 

  , 

that is, 

1 2

1 2 23 24 25 1 2 23[ , , , ,0,0] 0 0 [ , , , ,0,0]

0 0

T T

g g

p p p p p   

   
   

  
   
      

 

in mod(2), 

1 2 23 1 2 23 24 1 25 2[ , , , ,0,0] [ , , , ,0,0] [ ,0,0] [ ,0,0]T T T T T Tp p p p g p g     

in mod(2). 

Therefore,

1 2 23 24 25 1 2 23 24 1 25 2[ , , , , , ] ( , , , ,0,0) [ ,1,0] [ ,0,1]T T T T T Tp p p p p p g p g     

in mod(2). Particularly, when 24 0p   and 25 0p  , then we 

have one solution 

1 2 23 1 2 23[ , , , , 0, 0] [ , , , , 0, 0]T Tp p p       .  

We notice that 1 1[ , 1, 0]TC g  and 

2 2[ , 0, 1]TC g , then we have the following : 

Corollary 1.4: If b is a winning starting 

configuration, then there are 4 winning strategies or 4 

solutions to the system *T p b  in mod(2):  , 1

TC  , 

2

TC  and 1 2

T TC C   , where *L b  .  

 

Now we have obtained the conditions of solvability 

of the system *T p b  in mod(2) and all the possible 

232
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solutions when it is solvable; therefore we have completely 

figured out the puzzle of the game “lights out”.     

 

Example: Consider the following starting 

configurations: 

1 [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],S   

2 [1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].S   

The first one 1S  is not a winning configuration: as to 

the vector 1S , 1 2 1,b b   

1 3 5 6 8 10 16 18 20 21 23 25 1b b b b b b b b b b b b             in 

mod(2).  While 2S  is a winning configuration: as to the vector 

2S , 1 2 6 1,b b b     

1 3 5 6 8 10 16 18 20 21 23 25 1 6 0b b b b b b b b b b b b b b              ;  

2 3 4 6 8 10 11 12 14 15 16 18 20 22 23 24 2 6 0b b b b b b b b b b b b b b b b b b                   

in mod(2). The solutions are: 

 
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],

[1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0],

[0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1],

[0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1].  

 
Figure 2: Triangular board 

 
Figure 3: 3 by 3 board

 

 

Figure 4: 3 by 4 board

 

 
Figure 5: 4 by 4 board 

IV. GAME VARIATIONS 

Following the rules as the commercial Lights Out 

puzzle, the game can be played on almost any shaped arrays. 

We have the boards in Figure 2 to Figure 5.  

We discuss a few variations in above figures. They 

are a triangular board with six buttons, one 3 by 3 board with 9 

buttons, one 3 by 4 board with 12 buttons and one 4 by 4 

board  with 16 buttons. All the buttons are on the grid points. 

In the triangular board, 3 middle points on three sides are 

connected. We will use the same game rule: each button has 

two states: on and off; pressing once on each button will 

change the states of itself and all neighboring buttons 

(connected by a side). 

Though intuitive sense is always important in 

mathematics and all sciences, sometimes we cannot trust it too 

much.  By using Sage with same algorithms, we may check 

the above 4 cases one by one through Sage. In Sage, we only 

need to input a different Toggle matrix T  in each case, then 

the same programming can be applied to this Toggle matrix 

T .  We then have the following results:  

In the cases of Figure 2, Figure 3 and Figure 4, the 

toggle matrices are of full rank; for any starting configuration 

b  in each case, the system *T p b  in mod(2) are all 

solvable and it has only one solution. In other words, any 

starting configuration is a winning one, and there is only one 

way to win. 

But in Figure 5, it is another story. For this case, 

based on the programming in Sage as we do in the case of a 5 

by 5 board, we may draw the following conclusions:  

Theorem 2: In the case of 4 by 4 board in Figure 5, 

the system *  G p b in mod(2) has a solution if and only if 

the starting vector b  is perpendicular to the transposed 

vectors of the following 4 vectors in mod(2):                                 

[1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1],

[0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1],

[0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1],

[0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0].
 

By using the same reasoning as the one for corollary 

1.2, we can draw the following corollary.  
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Corollary 2.1: In Figure 5, there are total 
122  

winning configurations among all 
162 possible starting 

configurations; the probability to win for a randomly chosen 

starting configuration is 6.25%.  

As to the kernel space and solution space, we can get 

similar results as in the case of a 5 by 5 board. We omit these 

similar results; and here we like to introduce a model based on 

a soccer ball. We know that an official soccer ball is made of 

leather pieces of 12 regular pentagons (that are usually painted 

black) and 20 regular hexagons (painted white) in Figure 6. 

We assume that on each pentagon or hexagon, a 

button together with light on or off is installed; pressing once 

on each button will change the states of itself and all its 

neighbors. Obviously, the button on a pentagon has 5 

neighbors while the button on a hexagon has 6 neighbors.  In 

this case, what we can we tell as to the same problem of 

turning off lights?  

For this model based on a soccer ball, in order to 

describe a configuration and the changes in states, we need to 

give an ordering to all buttons from 1 to 32. This can be done 

in an arbitrary way without essential impact on the solvability 

and the possible solutions to win. The toggle matrix in this 

case is of size 32 by 32, which is hard to handle and be 

reduced by hand to Echelon form. With Sage, we input this 32 

by 32 matrix in mod(2) and apply the same programming in 

Sage. To our surprise, we find that the toggle matrix is of full 

rank 32 in mod(2), and it follows that each possible starting 

configuration is a winning one, and there is only one way to 

win.   

V.    THREE COLOR STATES 

 The other variation here is to include one more state. 

Instead of two states of on and off, each button displays one of 

three colors (yellow, green, or purple);  we define that a 

yellow button, once pressed, would change to green; a green 

button, once pressed, would change to purple; a purple button, 

once pressed, would change to yellow. We now shift mod(2) 

to mod(3) in which 0 for yellow, 1 for green, and 2 for purple.  

Now it takes three presses before a button is brought back to 

its original state. Therefore, in this case, all operations, 

vectors, matrices, solving the system are processed in mod(3). 

Since the toggle matrices remain the same, we can utilize 

almost same Sage programming in identifying a winning 

configuration and the strategies to win. 

  

%md on the triangle form, use A to replace T in 

section IV 

A=matrix(IntegerModRing(3),[[1,1,1,0,0,0,],[1,1,1,1,

1,0],[1,1,1,0,1,1],[0,1,0,1,1,0],[0,1,1,1,1,1],[0,0,1,0,1,1]]) 

GA=A.rref() 

show(GA) 

rA=A.rank() 

%md the rank of A in triangle case 

rA 

When work in the state of three colors, we only need 

to replace IntegerModRing(2) by IntegerModRing(3) in the 

above programming; The toggle matrix in this case of soccer 

ball is of size 32 by 32, which is too big to be included here.  

We collect key information of the toggle matrices in 

the Table 1. 

Table 1:    Comparison of ranks of the toggle matrices  

 

 

Based on the ranks and rref(T, I), we can tell more 

about the solvability, the kernel space and solutions of the 

systems in the rings mod(3) of integers. We will not include 

these details.  
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Figure 6: A standard soccer  
 

 

 

 

 

 

 

Size of boards Ranks in mod(2) Ranks in mod(3) 

Triangle 6 6 

3 by 3 9 9 

3 by 4 12 10 

4 by 4 12 14 

5 by 5 23 22 

Soccer ball 32 32 
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