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Abstract – Sensor network growth in areas like critical infrastructure, smart cities, and environmental monitoring has 

resulted in previously unheard-of amounts of real-time data that need to be stored in a safe, dependable, and scalable 

manner.  Traditional cloud storage solutions frequently fall short because of their centralized failure points, high 

streaming data latency, and poor fault tolerance. This paper proposes Streaming DepSky-A, a novel extension of the 

Byzantine fault-tolerant DepSky protocol that supports real-time, block-based sensor data ingestion across multiple cloud 

providers. Unlike static file-oriented systems, Streaming DepSky-A operates on streaming blocks, enabling low-latency 

ingestion, efficient memory usage, and fine-grained fault isolation. The system integrates quorum-based replication, 

block-level integrity verification, and asynchronous dispatch to achieve high throughput and resilience under concurrent 

workloads and simulated cloud faults. Experimental evaluation in a federated cloud testbed demonstrates that Streaming 

DepSky-A sustains throughput exceeding 480,000 records per second per node, maintains over 99.94% availability, and 

detects data corruption with 100% accuracy. The results affirm the viability of the architecture for scalable, fault-resilient 

sensor data storage in untrusted and heterogeneous intercloud environments. 

Index Terms – Byzantine Fault Tolerance, Multi-Cloud Storage, Sensor Data Streaming, Intercloud Architecture, 

Quorum Consensus, Real-Time Data Ingestion, Data Integrity Verification, Fault-Tolerant Storage, Distributed Object 

Storage 

 

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) have become more 

significant in recent years, including industrial 

automation, environmental monitoring, and smart 

infrastructure [1]. Secure and reliable storage techniques 

are necessary for these systems because they develop 

continuous data streams at high rates, frequently in real-

time [2]. Since sensor nodes have limited data processing 

and storage capacity, they typically cannot retain large 

volumes of information locally [3]. To overcome these 

limitations, data is usually transmitted to external storage 

platforms—most commonly, cloud-based services [4]. 

Ensuring this data remains accessible, tamper-proof, and 

well-preserved is critical for regulatory compliance, 

future data analysis, and sound decision-making 

processes [5]. 

 

Although cloud systems are flexible and scalable, many 

hazards are associated with relying solely on one source 

[6].  Data lock-in, service disruptions, provider-level 

failures, and concerns about data confidentiality are all 

serious problems.  Research has been done on multi-

cloud architectures that distribute data over several 

distinct cloud services to overcome these limitations.  By 

employing quorum-based consensus processes to 

replicate data across several providers, one solution, 

DepSky, increases fault tolerance.  

 

Notwithstanding these advancements, multi-cloud 

storage architectures like DepSky are not designed to 

handle continuous, real-time data streams.  File-based 

processing, which they mostly employ, requires that the 

whole dataset be stored in memory before storage can 

begin.  When dealing with real-time sensor data, this 

approach doesn't work, which leads to excessive latency, 

increased memory use, and limited scalability.  
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This paper addresses the crucial obstacles of securely and 

efficiently storing real-time sensor data across multiple 

cloud platforms without relying on file-based storage or 

intermediary servers. The motivation arises from real-

world applications—such as traffic flow monitoring, 

environmental hazard detection, and industrial 

automation—where data must be streamed, verified, and 

stored continuously without compromising reliability or 

security. 

 

To overcome these challenges, we present Streaming 

DepSky-A, an extension of the traditional DepSky 

framework. Our solution introduces a block-based 

streaming model that allows sensor data to be partitioned, 

verified, and distributed to multiple cloud storage 

providers in real time. 

 

The following are this paper's primary contributions: 

• We design a stream-oriented, fault-tolerant 

architecture for sensor data storage across 

distributed cloud platforms. 

• We implement efficient mechanisms for block-

level integrity verification and metadata 

management, enabling the detection of data 

corruption with minimal computational 

overhead. 

• We evaluate our model using a simulated 

environment with virtual machines and 

synthetic sensor data, demonstrating its ability 

to handle up to 500,000 measurements per 

second on a single node. 

• We provide a detailed performance analysis, 

highlighting availability, reliability, and 

resource efficiency improvements. 

 

II. RELATED WORK 

Reliable long-term storage of critical sensor data in 

distributed environments is a persistent challenge, 

especially when system availability, confidentiality, and 

resilience against faults are essential. Traditional data 

storage systems have evolved from physical RAID-based 

models to distributed and cloud-based storage platforms 

that address redundancy and scalability. However, real-

time sensor data ingestion requires newer approaches 

integrating fault tolerance with efficient streaming 

mechanisms. 

 

Early efforts to improve data reliability and performance, 

such as RAID (Redundant Array of Independent Disks) 

[7], introduced hardware-level redundancy for single-

server environments. While effective in local setups, 

RAID systems are unsuited for distributed cloud 

architectures, especially those handling high-speed data 

streams. Their inability to manage geographically 

dispersed failures or adapt to dynamic workloads has 

prompted the search for more scalable, cloud-native 

alternatives. 

 

The RAIN (Redundant Array of Independent Net-

storages) model [8] addressed data redundancy by 

distributing file fragments across multiple cloud 

providers. This approach offered fault isolation and 

confidentiality but relied on complex coordination 

between providers—an unrealistic assumption, as most 

commercial cloud services do not allow visibility into 

their internal operations or execution logic. 

 

HAIL (High Availability and Integrity Layer) [9] took a 

different approach by focusing on data integrity in 

untrusted cloud environments. It used cryptographic 

techniques to verify that data was correctly stored 

without retrieving the entire dataset. However, HAIL is 

best suited for static or infrequently modified data, 

making it less effective for continuous, real-time data 

streams like sensor networks. 

 

Other systems, such as MetaStorage [10], NubiSave [11], 

and RACS (Redundant Array of Cloud Storage) [12], 

explored abstractions for managing data across multiple 

clouds. These platforms aim to avoid vendor lock-in and 

provide redundancy, but they typically depend on active 

intermediary services and are not optimized for high-

throughput, low-latency streaming workloads. 

 

A notable direction comes from DepSky, presented by 

Bessani et al. [13], which presents a Byzantine fault-

tolerant storage model employing a quorum of untrusted 

cloud providers. The two variants, DepSky-A and 

DepSky-CA, suggest mechanisms for providing data 

integrity and confidentiality across multiple providers 

without assuming trust in any single one. Nevertheless, 

the DepSky model functions batch-oriented, supposing 

that all files are present in memory before processing. 

This presumption presents difficulties when managing 

real-time sensor data because ongoing intake and real-

time processing are essential.  

 

Our suggested paradigm overcomes the constraints of 

DepSky in streaming scenarios while expanding upon its 
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theoretical underpinnings to fill these gaps. The stream-

oriented extension of Byzantine fault-tolerant storage we 

provide in this work is intended to facilitate block-level 

sensor data processing and real-time ingestion in 

intercloud contexts. In contrast to active storage systems 

such as HAIL or RAIN, our design uses passive object 

storage with little overhead, making it a workable option 

for the multi-cloud ecosystems of today.  

 

III. METHODS & MATERIALS 

 

A. Dataset Description  

To evaluate the proposed Streaming DepSky-A model's 

performance and scalability, we generated a synthetic 

dataset that emulates real-world sensor network 

conditions. The data simulates high-frequency 

measurements from a large-scale deployment of wireless 

sensor nodes, commonly found in smart infrastructure, 

environmental monitoring, and industrial IoT 

applications. 

Every sensor record contains crucial information and 

measurement elements, including distinct sensor 

identification, timestamp, and measured values. The 

dataset generation assumptions grounded in realistic 

operational factors ensure practical relevance for 

performance benchmarking in intercloud storage 

systems.  

Table 1: Format of Simulated Sensor Data 

Field Description Size 

(Bytes) 

SensorId Unique 128-bit 

identifier 

16 

Timestamp Unix timestamp (64-

bit integer) 

8 

ValueX First measurement 

value (float64) 

8 

ValueY Second measurement 

value (float64) 

8 

Total — 40 

Table 1 defines the structure of each measurement, while 

Table 2 presents the expected data generation rate under 

various sampling frequencies. Each record is fixed at 40 

bytes to ensure uniform block-level streaming and 

checksum calculation across all cloud nodes. 

Table 2: Estimated Data Volume Based on Sampling 

Rate (10,000 Sensors) 

Sampling 

Rate 

Measurements 

per Second 

Data Rate 

(MB/sec) 

Annual 

Storage 

(GB) 

1 per 

minute 

167 0.006 200 

4 per 

minute 

667 0.025 800 

1 per 

second 

10,000 0.40 12,000 

10 per 

second 

100,000 4.00 120,000 

100 per 

second 

1,000,000 40.00 1,200,000 

These projections help determine the system's 

throughput needs and demonstrate the scalability 

requirements for real-time sensor data storage in a 

distributed fault-tolerant cloud environment. To generate 

the dataset, a Python-based simulation that emulates 

sensor behavior under configurable sampling 

frequencies was implemented. This approach allowed for 

extensive performance testing of the storage model, 

including varying data ingestion rates and concurrency 

levels across multiple cloud endpoints. 

B. Data Storage and Processing 

The exponential growth of sensor data, especially from 

large-scale wireless sensor networks (WSNs), has 

introduced critical data storage and processing 

challenges. Each node in a sensor network generates 

timestamped readings—often in high frequency—

leading to massive, real-time data streams that must be 

efficiently stored, reliably accessed, and securely 

maintained over long durations. Traditional on-premise 

storage systems lack the scalability, fault tolerance, and 

cost efficiency required for such workloads.  

 

• Data Storage in Sensor Networks: Sensor 

networks often consist of thousands of 

distributed, low-power nodes generating 

measurements in one or more dimensions (e.g., 

temperature, vibration, location). These 

measurements are typically small (∼40 bytes), 

but their cumulative volume can rapidly reach 

the petabyte scale. For example, a network of 

10,000 sensors, each generating 100 
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measurements per second, produces over 1.2 

petabytes yearly. These datasets must be 

stored in a form that supports long-term 

archiving, secure access, and on-demand 

retrieval. 

• Cloud Object Storage: Cloud computing is an 

appealing option for sensor data workloads 

because it offers an elastic, pay-per-use storage 

architecture. Object storage offers the finest 

combination of scalability, fault tolerance, and 

simplicity among the many storage models—

database storage, file storage, and object 

storage.  Object storage treats data as immutable 

blobs accessed via APIs, independent of 

underlying disk structures. Popular systems like 

Amazon S3, Google Cloud Storage, and Azure 

Blob Storage exemplify this model. Our 

architecture converts each sensor reading 

stream into objects (or blocks) stored across 

multiple providers. This abstraction makes 

Cloud-agnostic storage possible to increase 

redundancy and prevent vendor lock-in. 

However, depending on a single cloud provider 

has drawbacks, such as service interruptions, 

data lock-in, and potential Byzantine errors. For 

this reason, we employ a multi-cloud approach.  

• Challenges in Intercloud Storage:  Using 

multiple cloud providers in parallel introduces 

its challenges: 

- Data consistency across clouds with 

different APIs. 

- Fault tolerance in the face of cloud 

provider failures or misbehavior. 

- Efficient data streaming, since 

traditional models assume static files 

and batch processing. 

Our proposed solution—Streaming 

DepSky-A—extends the DepSky quorum-

based replication protocol to support real-

time data streaming, fine-grained integrity 

checks, and block-wise verification. 

Instead of processing complete files in 

memory, sensor data is ingested, verified, 

and replicated in blocks across a quorum of 

cloud providers. 

 

• Stream-Based Processing: From Batch to Real-

Time: Traditionally, cloud processing 

frameworks such as Hadoop rely on batch 

models, ill-suited for real-time sensor streams. 

Modern architecture must combine batch and 

stream processing to handle historical and real-

time data efficiently, as the Lambda 

Architecture outlines. In our model: 

- Streaming ingestion allows immediate 

processing and storage of incoming 

sensor data. 

- Block-level checksums enable early 

integrity detection. 

- Append-only streams support 

resilience against cloud-side 

corruption. 

This hybrid approach enables live analytics 

and archival storage, maintaining 

flexibility across diverse use cases (e.g., 

environmental monitoring, smart cities, 

industrial IoT). 

 

C. Proposed Model 

Sensor data's growing volume and velocity necessitate 

shifting from traditional block-based archival storage to 

resilient, stream-oriented multi-cloud architectures. In 

this work, we propose Streaming DepSky-A, a novel 

block-based, streaming-optimized extension of the 

DepSky-A algorithm. Our model is explicitly designed 

to handle real-time sensor data ingestion and long-term 

storage across untrusted cloud providers while 

maintaining Byzantine fault tolerance, integrity, and 

cost-efficiency. 

 

Figure 1: Architecture of File Storage 
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• System Model: Our system consists of three 

principal entities: (i) sensor data writers 

(clients), (ii) cloud storage providers (untrusted, 

possibly faulty), and (iii) data readers (retrievers 

or analytics engines). The writers receive sensor 

input streams and are responsible for encoding, 

verifying, and distributing data to a quorum of 

storage clouds. Readers retrieve and validate 

stored data using associated metadata. Each 

sensor reading is treated as a continuous stream 

of bytes rather than a single monolithic file. 

This architectural shift enables us to process and 

store massive volumes of sensor data efficiently 

without overwhelming system memory or 

risking data loss due to partial failure. The 

system architecture of the Streaming DepSky-A 

model is shown in Figure 1. The sensor stream 

is split into blocks and distributed across a 

quorum of n cloud providers. Each block is 

checksummed, signed, and stored with 

Byzantine fault-tolerant replication. Metadata is 

written after data blocks to ensure consistent 

recovery. 

 

We assume an asynchronous, distributed, and 

adversarial setting where up to f out of n cloud 

providers may behave in a Byzantine manner, 

including data tampering, deletion, or arbitrary 

response corruption. This quorum threshold 

guarantees that sufficient non-faulty clouds exist to 

reconstruct the correct data blocks. 

To ensure safety and availability, the system 

requires a minimum of: 

n≥3f+1 

• Streaming Data Representation: Sensor input 

streams are decomposed into a sequence of byte 

blocks. Let x represent the raw input stream:  

 

x = [𝑥0, 𝑥1, 𝑥2,............𝑥𝑛] 

 

Each block 𝑥𝑖 is of fixed size λ, except possibly 

the final block, which may be shorter. We 

define the transformation function r that 

partitions the input stream: 

 

𝑥𝑟 =  𝑟(𝑥, λ)  =  [𝛽0, 𝛽1, 𝛽2, . . . . . . 𝛿], where |𝛿| 

= |x|    mod λ 

 

This block-wise decomposition allows us to 

process and store data incrementally, 

supporting high-throughput ingestion pipelines. 

 

• Block Integrity and Checksum Verification: To 

ensure the integrity of the data from beginning 

to finish, a cryptographically safe hash function 

H, such as SHA-256, is used to hash each block 

𝛽𝑖 .  

 

𝑐𝑖  =  𝐻(𝛽𝑖) 

 

The collection of all checksums forms the 

metadata hash stream C: 

 

C = [𝑐0, 𝑐1, 𝑐2, . . . . . . . . . 𝑐𝑛] = 𝐻∗(𝑥𝑟) 

 

Each block 𝛽𝑖 is re-validated at read-time 

against its hash 𝑐𝑖 stored in metadata. A block is 

marked as valid if: 

 

H (𝛽𝑖) = 𝑐𝑖 

and corrupt if: 

 

H (𝛽𝑖) ≠ 𝑐𝑖 

 

This early-stage verification mechanism 

ensures that only authentic, untampered data 

blocks are accepted during retrieval. 

 

• Quorum-Based Cloud Replication: Streaming 

DepSky-A achieves Byzantine fault tolerance 

by replicating each block across a quorum of n 

cloud providers, ensuring that any n−f 

responses suffice for reconstruction. 

 

For a given data block β, we define the write 

operation to cloud provider i at block position 

b as: 

write_cloud (I, du, b, β) 

where 𝑑𝑢 is the data unit or file identifier; each 

cloud is treated as a passive entity supporting 

the basic operations: put, get, delete, and list. 

Once all data blocks are distributed, we 

generate a signed metadata structure M that 

encapsulates the stream length, block 
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checksums, and timestamps. The metadata is 

signed using a private key 𝐾𝑝𝑟: 

σ = sign (M,𝐾𝑝𝑟) 

 

This metadata is then uploaded to a quorum of 

n−f clouds to support secure and verifiable read 

operations. 

 

• Stream Splitting and Composition: A major 

innovation in Streaming DepSky-A lies in its 

ability to split and recompose data streams 

efficiently. Let x denote a block stream. We 

define a function d(x,m,f) that splits x into m 

encoded streams 𝑥𝑟, such that at least f+1 

streams are needed for reconstruction:                  

 

d(x,m,f) = [

𝑥𝑟𝑜

𝑥𝑟1

𝑥𝑟𝑚

] 

where, each 𝑥𝑟𝑖 = [𝑥𝑟𝑖0, 𝑥𝑟𝑖1, . . . . . . . 𝑥𝑟𝑖𝑤] 

 

 Recomposition is defined via function c, which 

assembles the original stream x from any f+1 

non-corrupted substreams: 

x = c [𝑥𝑟0, 𝑥𝑟1, . . . . . . 𝑥𝑟𝑓] 

 

This strategy allows for high resilience, 

supporting read recovery even when some 

clouds are unreachable or malicious. 

 

• Write Protocol: The write operation ensures that 

each segment of the input stream is durably 

stored across a subset of reliable cloud 

providers and verifiably retrievable by any 

authorized reader. The procedure follows these 

steps: 

 

- Check for file existence using 

metadata query. 

- Split input stream x into blocks βi of 

fixed size. 

- Compute the checksum for each block 

and store it in metadata. 

- Replicate blocks to n clouds in 

parallel. 

- Sign and distribute metadata to n−f 

clouds. 

 

The write succeeds when at least n−f 

clouds acknowledge the receipt of blocks. 

This ensures durability and consistency 

across clouds. 

 

• Read Protocol: The write operation ensures that 

each segment of the input stream is durably 

stored across a subset of reliable cloud 

providers and verifiably retrievable by any 

authorized reader. The procedure follows these 

steps: 

 

- Retrieve signed metadata from n−f 

clouds. 

- Initialize parallel block fetches from 

all clouds. 

- For each block 𝛽𝑖: 

▪ Fetch block from all providers. 

▪ Verify integrity using checksum 𝑐𝑖. 

▪ Upon successful match, compose the original 

stream. 

The use of compare-and-set (CAS) operations 

ensures atomicity in accepting valid blocks. 

Corrupt or inconsistent blocks are discarded 

without affecting overall read completion. 

 

The Streaming DepSky-A methodology introduces a 

robust, streaming-aware enhancement to traditional 

fault-tolerant cloud storage models. Its innovations—

block-level checksum validation, quorum-based 

replication, stream decomposition, and metadata 

signing—yield a secure, efficient, and scalable 

architecture for real-time sensor data ingestion in 

intercloud environments. The system is suitable for 

innovative city applications, industrial IoT, and 

environmental monitoring, where high-frequency sensor 

data must be reliably stored across distrusted cloud 

infrastructures. 

 

IV. RESULT & DISCUSSION 

A. Experimental Setup 

We set up our prototype using a client-server model on 

several virtual machines spread across different cloud 

providers and geographic regions. Each virtual machine 

(VM) was outfitted with eight virtual CPUs, sixteen 

gigabytes of random-access memory, and SSD storage to 

provide consistent performance: the client-side 

simulated 10,000 sensors, each transmitting two-

dimensional, real-time data to replicate a real-world 

sensor network.  As a result, 40 bytes of data payload 
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were produced for each record. During testing, we 

gradually increased the load—from an initial 10,000 

records per second to more than 480,000 per second per 

node—to observe how the system handled various traffic 

levels. We also experimented with different block sizes, 

quorum configurations, and data verification techniques 

to see how these factors influenced system throughput 

and fault tolerance. 

B. Performance Overview 

Table 1 presents a high-level summary of experimental 

findings, with detailed graphical insights presented in the 

subsections below. 

Table 1: The findings of the experimental analysis 

Metric Average 

Observed Value 

Test Conditions 

Max 

Throughput 

~482,000 

records/sec per 

VM 

64KB blocks, 

optimal network 

load 

Avg Write 

Latency (PUT) 

9–22 ms Across providers, 

mid-level 

concurrency 

Avg Read 

Latency (GET) 

6–17 ms With block-level 

checksum enabled 

Availability 

(under faults) 

99.94% With one cloud 

failure tolerated (f = 

1) 

Recovery Time 

(file-level) 

~2.1 seconds Quorum read, 

partial block 

reassembly 

Corruption 

Detection Rate 

100% Simulated data 

tampering test cases 

Our analyses show that the suggested streaming storage 

architecture, which is especially designed to handle 

sensor data across intercloud platforms, is reliable and 

efficient. Under ideal circumstances, every virtual 

machine handled 64KB data blocks with a steady 

throughput of about 482,000 records per second. This 

high-performance level shows that the system can meet 

the requirements of large-scale sensor networks, where 

continuous and quick data transfer is crucial.  

Write latency across different cloud providers, measured 

under moderate levels of concurrency, ranging from 9 to 

22 milliseconds. Although some variation was observed 

due to differences in cloud infrastructure, the system 

consistently delivered acceptable response times for real-

time data ingestion. However, even with block-level 

checksum verification enabled, read latency remained 

stable, ranging from 6 to 17 milliseconds.  According to 

these findings, the integrity checks result in very little 

overhead, allowing the system to continue providing 

timely and dependable data access without sacrificing 

efficiency.  

 Even when one cloud provider failed, system 

availability was strong, hitting 99.93%. This degree of 

reliability reflects the architecture's resilience and 

capacity to sustain service continuity even in the event of 

partial system failures. Additionally, a rapid file-level 

recovery was achieved using selective block 

reconstruction, and quorum reads, taking an average of 

around 2.1 seconds. Applications requiring prompt 

access to freshly written sensor data depend on fast 

recovery times.  

 The architecture's remarkable ability to detect data 

corruption is among its most noteworthy features. Strong 

defences against Byzantine errors are indicated by the 

100% detection rate proven by intentional data 

tampering testing.  This is especially crucial for remote 

systems where data integrity and authenticity are 

essential and where hostile activity or data deterioration 

might have serious operational repercussions.  

The system successfully combines high throughput, low 

latency, robust fault tolerance, and strong integrity 

guarantees. These qualities make it well-suited for 

intercloud environments that demand secure, scalable, 

and efficient handling of continuous sensor data streams. 

C. Throughput Analysis 

The Streaming DepSky-A implementation demonstrated 

strong scalability under increasing ingestion rates. At 

peak, the system processed over 482,000 sensor 

measurements per second per VM, translating to 

approximately 19.3 MB/s in compressed streaming 

throughput. In contrast to conventional quorum systems 

that use complete file buffers, our streaming approach 

allowed for asynchronous dispatch and incremental 

block processing, which decreased pipeline latency and 

memory consumption. A rolling hash technique for block 

integrity-maintained throughput stability even at high 

verification frequencies. The stream-splitting logic 

efficiently balanced the load across cloud targets without 

introducing serialization overhead. This performance is 
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graphically illustrated in Figure 2, which presents 

throughput per thread during PUT operations. 

 

Figure 2: Throughput per thread for the HTTP PUT 

request in Streaming DepSky 

D. Latency Analysis 

Latency was measured using fine-grained timers 

wrapped around cloud storage API calls. The system 

recorded average PUT latencies between 9 and 22 

milliseconds, depending on the target provider and 

network congestion. GET operations exhibited slightly 

lower latency, averaging 6 to 17 milliseconds, due to 

provider-side optimizations such as edge caching. Even 

under concurrent operations, latency remained bounded 

due to the architecture's ability to parallelize uploads and 

downloads across independent streams. Block-level 

reads allowed partial data retrievals without requiring 

complete file reassembly, which is essential for real-time 

sensor dashboard use cases. 

E. Fault Tolerance and Availability 

We simulated various Byzantine behaviours to assess 

fault resilience, including cloud unresponsiveness, 

delayed writes, and injected data corruption. The quorum 

protocol tolerated up to one cloud provider failure in a 4-

provider configuration (n = 4, f = 1) while maintaining 

99.94% availability across all operations. The inclusion 

of metadata-driven verification ensured that even if a 

subset of block replicas was compromised, the client 

could reconstruct the original stream using the valid 

replicas. In scenarios where blocks were intentionally 

corrupted, the system detected and discarded them with 

100% accuracy during the SHA-256 checksum 

validation stage. 

 

The experimental results substantiate several strengths of 

the Streaming DepSky-A model: 

 

• Streaming Optimization: By processing blocks 

incrementally and verifying them individually, 

the system avoids the overhead of full-file 

buffering and redundant computation. 

• Improved Fault Isolation: Fine-grained 

verification allows the system to recover from 

partial corruption without reprocessing the 

entire dataset. 

• High Ingestion Capacity: The design scales 

linearly with virtual machine resources to 

support dense sensor networks, and no 

noticeable performance plateau is seen even 

when throughput is close to maximum.  

• Cross-Cloud Compatibility: Because the model 

needs the fundamental object storage verbs 

(PUT, GET, DELETE, and LIST), it doesn't 

require proprietary features and can be used 

with most major cloud providers.  

 

V. CONCLUSION 

 

This paper presented Streaming DepSky-A, a stream-

oriented, fault-tolerant storage architecture that extends 

the traditional DepSky protocol to address the demands 

of real-time sensor data ingestion in a multi-cloud 

setting. Through the use of Byzantine quorum logic, the 

system distributes continuous sensor data across several 

cloud providers in smaller, independently verifiable 

blocks, introducing a unique technique. Even when 

dealing with unresponsive or malevolent providers, this 

approach guarantees strong fault tolerance, integrity 

checks, and effective data reconstruction. Key 

mechanisms—asynchronous uploading, metadata-driven 

verification, and block-level checksums—enable a 

strong balance between system performance and 

operational reliability. 

 

Empirical evaluation under simulated intercloud 

conditions demonstrated that the architecture sustains 

high ingestion throughput with consistently low latency. 

Dependable detection and recovery processes also 

guarantee the integrity of stored data and maintain high 

availability despite provider errors. Because of its 

lightweight implementation and cloud independence, it 

is a good choice for deployment in contexts with limited 

resources, including edge nodes and Internet of Things 

gateways.  Streaming DepSky-A offers a practical and 

extensible solution to secure, scalable, and low-latency 

sensor data storage challenges in heterogeneous cloud 
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ecosystems. In future work, we aim to enhance the 

system with adaptive quorum adjustment strategies, 

seamless integration with real-time stream analytics 

platforms, and lightweight cryptographic enhancements 

for end-to-end data confidentiality. 
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