
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 45
IJRITCC | January 2021, Available @ http://www.ijritcc.org

Streaming Byzantine-Resilient Storage

Architecture for Sensor Data in Intercloud

Environments

Shaik Jaffar Hussain1, Dr. S. Bhuvaneeswari2

1Research Scholar, Department of Computer Science and Engineering, Dr. M.G.R Educational and Research Institute,

Chennai. Email: jaffar.thebest@gmail.com
2Associate Professor, Department of Computer Science and Engineering, Dr. M.G.R Educational and Research

Institute, Chennai.

Abstract – Sensor network growth in areas like critical infrastructure, smart cities, and environmental monitoring has

resulted in previously unheard-of amounts of real-time data that need to be stored in a safe, dependable, and scalable

manner. Traditional cloud storage solutions frequently fall short because of their centralized failure points, high

streaming data latency, and poor fault tolerance. This paper proposes Streaming DepSky-A, a novel extension of the

Byzantine fault-tolerant DepSky protocol that supports real-time, block-based sensor data ingestion across multiple cloud

providers. Unlike static file-oriented systems, Streaming DepSky-A operates on streaming blocks, enabling low-latency

ingestion, efficient memory usage, and fine-grained fault isolation. The system integrates quorum-based replication,

block-level integrity verification, and asynchronous dispatch to achieve high throughput and resilience under concurrent

workloads and simulated cloud faults. Experimental evaluation in a federated cloud testbed demonstrates that Streaming

DepSky-A sustains throughput exceeding 480,000 records per second per node, maintains over 99.94% availability, and

detects data corruption with 100% accuracy. The results affirm the viability of the architecture for scalable, fault-resilient

sensor data storage in untrusted and heterogeneous intercloud environments.

Index Terms – Byzantine Fault Tolerance, Multi-Cloud Storage, Sensor Data Streaming, Intercloud Architecture,

Quorum Consensus, Real-Time Data Ingestion, Data Integrity Verification, Fault-Tolerant Storage, Distributed Object

Storage

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have become more

significant in recent years, including industrial

automation, environmental monitoring, and smart

infrastructure [1]. Secure and reliable storage techniques

are necessary for these systems because they develop

continuous data streams at high rates, frequently in real-

time [2]. Since sensor nodes have limited data processing

and storage capacity, they typically cannot retain large

volumes of information locally [3]. To overcome these

limitations, data is usually transmitted to external storage

platforms—most commonly, cloud-based services [4].

Ensuring this data remains accessible, tamper-proof, and

well-preserved is critical for regulatory compliance,

future data analysis, and sound decision-making

processes [5].

Although cloud systems are flexible and scalable, many

hazards are associated with relying solely on one source

[6]. Data lock-in, service disruptions, provider-level

failures, and concerns about data confidentiality are all

serious problems. Research has been done on multi-

cloud architectures that distribute data over several

distinct cloud services to overcome these limitations. By

employing quorum-based consensus processes to

replicate data across several providers, one solution,

DepSky, increases fault tolerance.

Notwithstanding these advancements, multi-cloud

storage architectures like DepSky are not designed to

handle continuous, real-time data streams. File-based

processing, which they mostly employ, requires that the

whole dataset be stored in memory before storage can

begin. When dealing with real-time sensor data, this

approach doesn't work, which leads to excessive latency,

increased memory use, and limited scalability.

http://www.ijritcc.org/
mailto:jaffar.thebest@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 46
IJRITCC | January 2021, Available @ http://www.ijritcc.org

This paper addresses the crucial obstacles of securely and

efficiently storing real-time sensor data across multiple

cloud platforms without relying on file-based storage or

intermediary servers. The motivation arises from real-

world applications—such as traffic flow monitoring,

environmental hazard detection, and industrial

automation—where data must be streamed, verified, and

stored continuously without compromising reliability or

security.

To overcome these challenges, we present Streaming

DepSky-A, an extension of the traditional DepSky

framework. Our solution introduces a block-based

streaming model that allows sensor data to be partitioned,

verified, and distributed to multiple cloud storage

providers in real time.

The following are this paper's primary contributions:

• We design a stream-oriented, fault-tolerant

architecture for sensor data storage across

distributed cloud platforms.

• We implement efficient mechanisms for block-

level integrity verification and metadata

management, enabling the detection of data

corruption with minimal computational

overhead.

• We evaluate our model using a simulated

environment with virtual machines and

synthetic sensor data, demonstrating its ability

to handle up to 500,000 measurements per

second on a single node.

• We provide a detailed performance analysis,

highlighting availability, reliability, and

resource efficiency improvements.

II. RELATED WORK

Reliable long-term storage of critical sensor data in

distributed environments is a persistent challenge,

especially when system availability, confidentiality, and

resilience against faults are essential. Traditional data

storage systems have evolved from physical RAID-based

models to distributed and cloud-based storage platforms

that address redundancy and scalability. However, real-

time sensor data ingestion requires newer approaches

integrating fault tolerance with efficient streaming

mechanisms.

Early efforts to improve data reliability and performance,

such as RAID (Redundant Array of Independent Disks)

[7], introduced hardware-level redundancy for single-

server environments. While effective in local setups,

RAID systems are unsuited for distributed cloud

architectures, especially those handling high-speed data

streams. Their inability to manage geographically

dispersed failures or adapt to dynamic workloads has

prompted the search for more scalable, cloud-native

alternatives.

The RAIN (Redundant Array of Independent Net-

storages) model [8] addressed data redundancy by

distributing file fragments across multiple cloud

providers. This approach offered fault isolation and

confidentiality but relied on complex coordination

between providers—an unrealistic assumption, as most

commercial cloud services do not allow visibility into

their internal operations or execution logic.

HAIL (High Availability and Integrity Layer) [9] took a

different approach by focusing on data integrity in

untrusted cloud environments. It used cryptographic

techniques to verify that data was correctly stored

without retrieving the entire dataset. However, HAIL is

best suited for static or infrequently modified data,

making it less effective for continuous, real-time data

streams like sensor networks.

Other systems, such as MetaStorage [10], NubiSave [11],

and RACS (Redundant Array of Cloud Storage) [12],

explored abstractions for managing data across multiple

clouds. These platforms aim to avoid vendor lock-in and

provide redundancy, but they typically depend on active

intermediary services and are not optimized for high-

throughput, low-latency streaming workloads.

A notable direction comes from DepSky, presented by

Bessani et al. [13], which presents a Byzantine fault-

tolerant storage model employing a quorum of untrusted

cloud providers. The two variants, DepSky-A and

DepSky-CA, suggest mechanisms for providing data

integrity and confidentiality across multiple providers

without assuming trust in any single one. Nevertheless,

the DepSky model functions batch-oriented, supposing

that all files are present in memory before processing.

This presumption presents difficulties when managing

real-time sensor data because ongoing intake and real-

time processing are essential.

Our suggested paradigm overcomes the constraints of

DepSky in streaming scenarios while expanding upon its

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 47
IJRITCC | January 2021, Available @ http://www.ijritcc.org

theoretical underpinnings to fill these gaps. The stream-

oriented extension of Byzantine fault-tolerant storage we

provide in this work is intended to facilitate block-level

sensor data processing and real-time ingestion in

intercloud contexts. In contrast to active storage systems

such as HAIL or RAIN, our design uses passive object

storage with little overhead, making it a workable option

for the multi-cloud ecosystems of today.

III. METHODS & MATERIALS

A. Dataset Description

To evaluate the proposed Streaming DepSky-A model's

performance and scalability, we generated a synthetic

dataset that emulates real-world sensor network

conditions. The data simulates high-frequency

measurements from a large-scale deployment of wireless

sensor nodes, commonly found in smart infrastructure,

environmental monitoring, and industrial IoT

applications.

Every sensor record contains crucial information and

measurement elements, including distinct sensor

identification, timestamp, and measured values. The

dataset generation assumptions grounded in realistic

operational factors ensure practical relevance for

performance benchmarking in intercloud storage

systems.

Table 1: Format of Simulated Sensor Data

Field Description Size

(Bytes)

SensorId Unique 128-bit

identifier

16

Timestamp Unix timestamp (64-

bit integer)

8

ValueX First measurement

value (float64)

8

ValueY Second measurement

value (float64)

8

Total — 40

Table 1 defines the structure of each measurement, while

Table 2 presents the expected data generation rate under

various sampling frequencies. Each record is fixed at 40

bytes to ensure uniform block-level streaming and

checksum calculation across all cloud nodes.

Table 2: Estimated Data Volume Based on Sampling

Rate (10,000 Sensors)

Sampling

Rate

Measurements

per Second

Data Rate

(MB/sec)

Annual

Storage

(GB)

1 per

minute

167 0.006 200

4 per

minute

667 0.025 800

1 per

second

10,000 0.40 12,000

10 per

second

100,000 4.00 120,000

100 per

second

1,000,000 40.00 1,200,000

These projections help determine the system's

throughput needs and demonstrate the scalability

requirements for real-time sensor data storage in a

distributed fault-tolerant cloud environment. To generate

the dataset, a Python-based simulation that emulates

sensor behavior under configurable sampling

frequencies was implemented. This approach allowed for

extensive performance testing of the storage model,

including varying data ingestion rates and concurrency

levels across multiple cloud endpoints.

B. Data Storage and Processing

The exponential growth of sensor data, especially from

large-scale wireless sensor networks (WSNs), has

introduced critical data storage and processing

challenges. Each node in a sensor network generates

timestamped readings—often in high frequency—

leading to massive, real-time data streams that must be

efficiently stored, reliably accessed, and securely

maintained over long durations. Traditional on-premise

storage systems lack the scalability, fault tolerance, and

cost efficiency required for such workloads.

• Data Storage in Sensor Networks: Sensor

networks often consist of thousands of

distributed, low-power nodes generating

measurements in one or more dimensions (e.g.,

temperature, vibration, location). These

measurements are typically small (∼40 bytes),

but their cumulative volume can rapidly reach

the petabyte scale. For example, a network of

10,000 sensors, each generating 100

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 48
IJRITCC | January 2021, Available @ http://www.ijritcc.org

measurements per second, produces over 1.2

petabytes yearly. These datasets must be

stored in a form that supports long-term

archiving, secure access, and on-demand

retrieval.

• Cloud Object Storage: Cloud computing is an

appealing option for sensor data workloads

because it offers an elastic, pay-per-use storage

architecture. Object storage offers the finest

combination of scalability, fault tolerance, and

simplicity among the many storage models—

database storage, file storage, and object

storage. Object storage treats data as immutable

blobs accessed via APIs, independent of

underlying disk structures. Popular systems like

Amazon S3, Google Cloud Storage, and Azure

Blob Storage exemplify this model. Our

architecture converts each sensor reading

stream into objects (or blocks) stored across

multiple providers. This abstraction makes

Cloud-agnostic storage possible to increase

redundancy and prevent vendor lock-in.

However, depending on a single cloud provider

has drawbacks, such as service interruptions,

data lock-in, and potential Byzantine errors. For

this reason, we employ a multi-cloud approach.

• Challenges in Intercloud Storage: Using

multiple cloud providers in parallel introduces

its challenges:

- Data consistency across clouds with

different APIs.

- Fault tolerance in the face of cloud

provider failures or misbehavior.

- Efficient data streaming, since

traditional models assume static files

and batch processing.

Our proposed solution—Streaming

DepSky-A—extends the DepSky quorum-

based replication protocol to support real-

time data streaming, fine-grained integrity

checks, and block-wise verification.

Instead of processing complete files in

memory, sensor data is ingested, verified,

and replicated in blocks across a quorum of

cloud providers.

• Stream-Based Processing: From Batch to Real-

Time: Traditionally, cloud processing

frameworks such as Hadoop rely on batch

models, ill-suited for real-time sensor streams.

Modern architecture must combine batch and

stream processing to handle historical and real-

time data efficiently, as the Lambda

Architecture outlines. In our model:

- Streaming ingestion allows immediate

processing and storage of incoming

sensor data.

- Block-level checksums enable early

integrity detection.

- Append-only streams support

resilience against cloud-side

corruption.

This hybrid approach enables live analytics

and archival storage, maintaining

flexibility across diverse use cases (e.g.,

environmental monitoring, smart cities,

industrial IoT).

C. Proposed Model

Sensor data's growing volume and velocity necessitate

shifting from traditional block-based archival storage to

resilient, stream-oriented multi-cloud architectures. In

this work, we propose Streaming DepSky-A, a novel

block-based, streaming-optimized extension of the

DepSky-A algorithm. Our model is explicitly designed

to handle real-time sensor data ingestion and long-term

storage across untrusted cloud providers while

maintaining Byzantine fault tolerance, integrity, and

cost-efficiency.

Figure 1: Architecture of File Storage

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 49
IJRITCC | January 2021, Available @ http://www.ijritcc.org

• System Model: Our system consists of three

principal entities: (i) sensor data writers

(clients), (ii) cloud storage providers (untrusted,

possibly faulty), and (iii) data readers (retrievers

or analytics engines). The writers receive sensor

input streams and are responsible for encoding,

verifying, and distributing data to a quorum of

storage clouds. Readers retrieve and validate

stored data using associated metadata. Each

sensor reading is treated as a continuous stream

of bytes rather than a single monolithic file.

This architectural shift enables us to process and

store massive volumes of sensor data efficiently

without overwhelming system memory or

risking data loss due to partial failure. The

system architecture of the Streaming DepSky-A

model is shown in Figure 1. The sensor stream

is split into blocks and distributed across a

quorum of n cloud providers. Each block is

checksummed, signed, and stored with

Byzantine fault-tolerant replication. Metadata is

written after data blocks to ensure consistent

recovery.

We assume an asynchronous, distributed, and

adversarial setting where up to f out of n cloud

providers may behave in a Byzantine manner,

including data tampering, deletion, or arbitrary

response corruption. This quorum threshold

guarantees that sufficient non-faulty clouds exist to

reconstruct the correct data blocks.

To ensure safety and availability, the system

requires a minimum of:

n≥3f+1

• Streaming Data Representation: Sensor input

streams are decomposed into a sequence of byte

blocks. Let x represent the raw input stream:

x = [𝑥0, 𝑥1, 𝑥2,............𝑥𝑛]

Each block 𝑥𝑖 is of fixed size λ, except possibly

the final block, which may be shorter. We

define the transformation function r that

partitions the input stream:

𝑥𝑟 = 𝑟(𝑥, λ) = [𝛽0, 𝛽1, 𝛽2, 𝛿], where |𝛿|

= |x| mod λ

This block-wise decomposition allows us to

process and store data incrementally,

supporting high-throughput ingestion pipelines.

• Block Integrity and Checksum Verification: To

ensure the integrity of the data from beginning

to finish, a cryptographically safe hash function

H, such as SHA-256, is used to hash each block

𝛽𝑖 .

𝑐𝑖 = 𝐻(𝛽𝑖)

The collection of all checksums forms the

metadata hash stream C:

C = [𝑐0, 𝑐1, 𝑐2, 𝑐𝑛] = 𝐻∗(𝑥𝑟)

Each block 𝛽𝑖 is re-validated at read-time

against its hash 𝑐𝑖 stored in metadata. A block is

marked as valid if:

H (𝛽𝑖) = 𝑐𝑖

and corrupt if:

H (𝛽𝑖) ≠ 𝑐𝑖

This early-stage verification mechanism

ensures that only authentic, untampered data

blocks are accepted during retrieval.

• Quorum-Based Cloud Replication: Streaming

DepSky-A achieves Byzantine fault tolerance

by replicating each block across a quorum of n

cloud providers, ensuring that any n−f

responses suffice for reconstruction.

For a given data block β, we define the write

operation to cloud provider i at block position

b as:

write_cloud (I, du, b, β)

where 𝑑𝑢 is the data unit or file identifier; each

cloud is treated as a passive entity supporting

the basic operations: put, get, delete, and list.

Once all data blocks are distributed, we

generate a signed metadata structure M that

encapsulates the stream length, block

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 50
IJRITCC | January 2021, Available @ http://www.ijritcc.org

checksums, and timestamps. The metadata is

signed using a private key 𝐾𝑝𝑟:

σ = sign (M,𝐾𝑝𝑟)

This metadata is then uploaded to a quorum of

n−f clouds to support secure and verifiable read

operations.

• Stream Splitting and Composition: A major

innovation in Streaming DepSky-A lies in its

ability to split and recompose data streams

efficiently. Let x denote a block stream. We

define a function d(x,m,f) that splits x into m

encoded streams 𝑥𝑟, such that at least f+1

streams are needed for reconstruction:

d(x,m,f) = [

𝑥𝑟𝑜

𝑥𝑟1

𝑥𝑟𝑚

]

where, each 𝑥𝑟𝑖 = [𝑥𝑟𝑖0, 𝑥𝑟𝑖1, 𝑥𝑟𝑖𝑤]

 Recomposition is defined via function c, which

assembles the original stream x from any f+1

non-corrupted substreams:

x = c [𝑥𝑟0, 𝑥𝑟1, 𝑥𝑟𝑓]

This strategy allows for high resilience,

supporting read recovery even when some

clouds are unreachable or malicious.

• Write Protocol: The write operation ensures that

each segment of the input stream is durably

stored across a subset of reliable cloud

providers and verifiably retrievable by any

authorized reader. The procedure follows these

steps:

- Check for file existence using

metadata query.

- Split input stream x into blocks βi of

fixed size.

- Compute the checksum for each block

and store it in metadata.

- Replicate blocks to n clouds in

parallel.

- Sign and distribute metadata to n−f

clouds.

The write succeeds when at least n−f

clouds acknowledge the receipt of blocks.

This ensures durability and consistency

across clouds.

• Read Protocol: The write operation ensures that

each segment of the input stream is durably

stored across a subset of reliable cloud

providers and verifiably retrievable by any

authorized reader. The procedure follows these

steps:

- Retrieve signed metadata from n−f

clouds.

- Initialize parallel block fetches from

all clouds.

- For each block 𝛽𝑖:

▪ Fetch block from all providers.

▪ Verify integrity using checksum 𝑐𝑖.

▪ Upon successful match, compose the original

stream.

The use of compare-and-set (CAS) operations

ensures atomicity in accepting valid blocks.

Corrupt or inconsistent blocks are discarded

without affecting overall read completion.

The Streaming DepSky-A methodology introduces a

robust, streaming-aware enhancement to traditional

fault-tolerant cloud storage models. Its innovations—

block-level checksum validation, quorum-based

replication, stream decomposition, and metadata

signing—yield a secure, efficient, and scalable

architecture for real-time sensor data ingestion in

intercloud environments. The system is suitable for

innovative city applications, industrial IoT, and

environmental monitoring, where high-frequency sensor

data must be reliably stored across distrusted cloud

infrastructures.

IV. RESULT & DISCUSSION

A. Experimental Setup

We set up our prototype using a client-server model on

several virtual machines spread across different cloud

providers and geographic regions. Each virtual machine

(VM) was outfitted with eight virtual CPUs, sixteen

gigabytes of random-access memory, and SSD storage to

provide consistent performance: the client-side

simulated 10,000 sensors, each transmitting two-

dimensional, real-time data to replicate a real-world

sensor network. As a result, 40 bytes of data payload

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 51
IJRITCC | January 2021, Available @ http://www.ijritcc.org

were produced for each record. During testing, we

gradually increased the load—from an initial 10,000

records per second to more than 480,000 per second per

node—to observe how the system handled various traffic

levels. We also experimented with different block sizes,

quorum configurations, and data verification techniques

to see how these factors influenced system throughput

and fault tolerance.

B. Performance Overview

Table 1 presents a high-level summary of experimental

findings, with detailed graphical insights presented in the

subsections below.

Table 1: The findings of the experimental analysis

Metric Average

Observed Value

Test Conditions

Max

Throughput

~482,000

records/sec per

VM

64KB blocks,

optimal network

load

Avg Write

Latency (PUT)

9–22 ms Across providers,

mid-level

concurrency

Avg Read

Latency (GET)

6–17 ms With block-level

checksum enabled

Availability

(under faults)

99.94% With one cloud

failure tolerated (f =

1)

Recovery Time

(file-level)

~2.1 seconds Quorum read,

partial block

reassembly

Corruption

Detection Rate

100% Simulated data

tampering test cases

Our analyses show that the suggested streaming storage

architecture, which is especially designed to handle

sensor data across intercloud platforms, is reliable and

efficient. Under ideal circumstances, every virtual

machine handled 64KB data blocks with a steady

throughput of about 482,000 records per second. This

high-performance level shows that the system can meet

the requirements of large-scale sensor networks, where

continuous and quick data transfer is crucial.

Write latency across different cloud providers, measured

under moderate levels of concurrency, ranging from 9 to

22 milliseconds. Although some variation was observed

due to differences in cloud infrastructure, the system

consistently delivered acceptable response times for real-

time data ingestion. However, even with block-level

checksum verification enabled, read latency remained

stable, ranging from 6 to 17 milliseconds. According to

these findings, the integrity checks result in very little

overhead, allowing the system to continue providing

timely and dependable data access without sacrificing

efficiency.

 Even when one cloud provider failed, system

availability was strong, hitting 99.93%. This degree of

reliability reflects the architecture's resilience and

capacity to sustain service continuity even in the event of

partial system failures. Additionally, a rapid file-level

recovery was achieved using selective block

reconstruction, and quorum reads, taking an average of

around 2.1 seconds. Applications requiring prompt

access to freshly written sensor data depend on fast

recovery times.

 The architecture's remarkable ability to detect data

corruption is among its most noteworthy features. Strong

defences against Byzantine errors are indicated by the

100% detection rate proven by intentional data

tampering testing. This is especially crucial for remote

systems where data integrity and authenticity are

essential and where hostile activity or data deterioration

might have serious operational repercussions.

The system successfully combines high throughput, low

latency, robust fault tolerance, and strong integrity

guarantees. These qualities make it well-suited for

intercloud environments that demand secure, scalable,

and efficient handling of continuous sensor data streams.

C. Throughput Analysis

The Streaming DepSky-A implementation demonstrated

strong scalability under increasing ingestion rates. At

peak, the system processed over 482,000 sensor

measurements per second per VM, translating to

approximately 19.3 MB/s in compressed streaming

throughput. In contrast to conventional quorum systems

that use complete file buffers, our streaming approach

allowed for asynchronous dispatch and incremental

block processing, which decreased pipeline latency and

memory consumption. A rolling hash technique for block

integrity-maintained throughput stability even at high

verification frequencies. The stream-splitting logic

efficiently balanced the load across cloud targets without

introducing serialization overhead. This performance is

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 52
IJRITCC | January 2021, Available @ http://www.ijritcc.org

graphically illustrated in Figure 2, which presents

throughput per thread during PUT operations.

Figure 2: Throughput per thread for the HTTP PUT

request in Streaming DepSky

D. Latency Analysis

Latency was measured using fine-grained timers

wrapped around cloud storage API calls. The system

recorded average PUT latencies between 9 and 22

milliseconds, depending on the target provider and

network congestion. GET operations exhibited slightly

lower latency, averaging 6 to 17 milliseconds, due to

provider-side optimizations such as edge caching. Even

under concurrent operations, latency remained bounded

due to the architecture's ability to parallelize uploads and

downloads across independent streams. Block-level

reads allowed partial data retrievals without requiring

complete file reassembly, which is essential for real-time

sensor dashboard use cases.

E. Fault Tolerance and Availability

We simulated various Byzantine behaviours to assess

fault resilience, including cloud unresponsiveness,

delayed writes, and injected data corruption. The quorum

protocol tolerated up to one cloud provider failure in a 4-

provider configuration (n = 4, f = 1) while maintaining

99.94% availability across all operations. The inclusion

of metadata-driven verification ensured that even if a

subset of block replicas was compromised, the client

could reconstruct the original stream using the valid

replicas. In scenarios where blocks were intentionally

corrupted, the system detected and discarded them with

100% accuracy during the SHA-256 checksum

validation stage.

The experimental results substantiate several strengths of

the Streaming DepSky-A model:

• Streaming Optimization: By processing blocks

incrementally and verifying them individually,

the system avoids the overhead of full-file

buffering and redundant computation.

• Improved Fault Isolation: Fine-grained

verification allows the system to recover from

partial corruption without reprocessing the

entire dataset.

• High Ingestion Capacity: The design scales

linearly with virtual machine resources to

support dense sensor networks, and no

noticeable performance plateau is seen even

when throughput is close to maximum.

• Cross-Cloud Compatibility: Because the model

needs the fundamental object storage verbs

(PUT, GET, DELETE, and LIST), it doesn't

require proprietary features and can be used

with most major cloud providers.

V. CONCLUSION

This paper presented Streaming DepSky-A, a stream-

oriented, fault-tolerant storage architecture that extends

the traditional DepSky protocol to address the demands

of real-time sensor data ingestion in a multi-cloud

setting. Through the use of Byzantine quorum logic, the

system distributes continuous sensor data across several

cloud providers in smaller, independently verifiable

blocks, introducing a unique technique. Even when

dealing with unresponsive or malevolent providers, this

approach guarantees strong fault tolerance, integrity

checks, and effective data reconstruction. Key

mechanisms—asynchronous uploading, metadata-driven

verification, and block-level checksums—enable a

strong balance between system performance and

operational reliability.

Empirical evaluation under simulated intercloud

conditions demonstrated that the architecture sustains

high ingestion throughput with consistently low latency.

Dependable detection and recovery processes also

guarantee the integrity of stored data and maintain high

availability despite provider errors. Because of its

lightweight implementation and cloud independence, it

is a good choice for deployment in contexts with limited

resources, including edge nodes and Internet of Things

gateways. Streaming DepSky-A offers a practical and

extensible solution to secure, scalable, and low-latency

sensor data storage challenges in heterogeneous cloud

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 1

Article Received: 25 November 2020 Revised: 12 December 2020 Accepted: 30 January 2021

__

 53
IJRITCC | January 2021, Available @ http://www.ijritcc.org

ecosystems. In future work, we aim to enhance the

system with adaptive quorum adjustment strategies,

seamless integration with real-time stream analytics

platforms, and lightweight cryptographic enhancements

for end-to-end data confidentiality.

References

1. D. A. Patterson, G. Gibson, and R. H. Katz, “A

case for redundant arrays of inexpensive disks

(raid),” in Proceedings of the 1988 ACM

SIGMOD international conference on

Management of data, 1988, pp. 109–116.

2. G. Zhao, M. G. Jaatun, A. Vasilakos, Å. A.

Nyre, S. Alapnesy, Q. Yue, and Y. Tang,

“Deliverance from trust through a redundant

array of independent net-storages in cloud

computing,” in 2011 IEEE Conference on

Computer Communications Work-

3. shops (INFOCOM WKSHPS). IEEE, 2011, pp.

625–630.

4. K. D. Bowers, A. Juels, and A. Oprea, “Hail: A

high-availability and integrity layer for cloud

storage,” in Proceedings of the 16th ACM

conference on Computer and communications

security, 2009, pp. 187–198.

5. D. Bermbach, M. Klems, S. Tai, and M.

Menzel, “Metastorage: A federated cloud

storage system to manage consistency-latency

tradeoffs,” in 2011 IEEE 4th International

Conference on Cloud Computing. IEEE, 2011,

pp. 452–459.

6. J. Spillner, J. Müller, and A. Schill, “Creating

optimal cloud storage systems,” Future

Generation Computer Systems, vol. 29, no. 4,

pp. 1062–1072, 2013.

7. H. Abu-Libdeh, L. Princehouse, and H.

Weatherspoon, “Racs: a case for cloud storage

diversity,” in Proceedings of the 1st ACM

symposium on Cloud computing, 2010, pp.

229–240.

8. Bessani, M. Correia, B. Quaresma, F. André,

and P. Sousa, “Depsky: dependable and secure

storage in a cloud-of-clouds,” Acm transactions

on storage (tos), vol. 9, no. 4, pp. 1–33, 2013

http://www.ijritcc.org/

