Article Received: 05 January 2022 Revised: 28 January 2022 Accepted: 20 February 2022

A Comprehensive Review of Techniques for Converting 2D Spine CT Images to 3D: Transforming Perspectives in Medical Imaging

J. Aashikathulzuberiya¹, Dr. M. Mohamed Sathik², M. Nagoor Meeral³, A. Ameer Rashed Khan⁴

¹Reg.No:19211192282028, ³Reg.No.19211192282029, ⁴Reg.No.18211192161021

^{1,3,4}Research Scholar PhD, PG & Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, India.

Affiliated to Manonmaniam Sundaranar University,

²Principal & Research Supervisor, PG & Research Department of Computer Science,

Sadakathullah Appa College, Tirunelveli, India.

Abstract: The conversion of two-dimensional (2D) medical images to three-dimensional (3D) representations has emerged as a crucial area of research, particularly in the context of spinal imaging using Computed Tomography (CT). This comprehensive review explores the recent advancements in methodologies designed to convert 2D spine CT images into accurate and clinically relevant 3D models. The review addresses challenges, various conversion techniques, applications in clinical settings, and the future potential of this transformative approach.

Keywords: Dimensional, Representations, Tomography, Transformative.

Introduction:

The introduction initiates an exploration into the dynamic landscape of spinal imaging, with a particular focus on the transformation achieved through the conversion of two-dimensional (2D) spine CT images into three-dimensional (3D) representations. In the realm of medical imaging, computed tomography (CT) stands as a cornerstone for visualizing the intricate details of the spinal anatomy. This modality provides clinicians with high-resolution cross-sectional images, offering a crucial foundation for diagnostic assessments and surgical interventions. However, the transition from conventional 2D imaging to the immersive realm of 3D reconstructions signifies a paradigm shift to understanding spinal structures.

Understanding the structure of the spine is challenging due to its complexity. Transforming regular 2D spine images into 3D models is like upgrading from a flat picture to a more complete, three-dimensional view. This review explores different methods like image registration and volumetric reconstruction, along with new technologies like deep learning. The goal is to demonstrate how converting 2D spine pictures into 3D models can significantly enhance the diagnosis and treatment planning for spinal issues.

Challenges in 2D to 3D Conversion of Spine CT Images:

Converting two-dimensional (2D) spine CT images into three-dimensional (3D) models poses several challenges, each requiring careful consideration for accurate and meaningful reconstruction:

1. Image Registration Accuracy:

Challenge: Achieving precise alignment of multiple 2D slices to construct an accurate 3D representation is challenging due to potential patient movement, variations in imaging protocols, and differences in patient positioning during the CT scan.

Implication: Inaccurate alignment may result in misinterpretations of spinal structures, impacting the ability to make precise surgical plans or diagnoses.

2. Handling Partial or Missing Data:

Challenge: Incomplete datasets, arising from issues such as data corruption or the presence of artifacts, can hinder the conversion process. Gaps in the data may result in incomplete or inaccurate 3D reconstructions.

Article Received: 05 January 2022 Revised: 28 January 2022 Accepted: 20 February 2022

Implication: Missing information can lead to gaps in the 3D model, potentially obscuring critical details relevant to pathology or anatomy, thereby limiting its diagnostic value.

3. Anatomical Fidelity and Resolution:

Challenge: Preserving the anatomical accuracy and resolution of the spine from 2D to 3D conversion is demanding, especially when dealing with structures of varying sizes and complexities.

Implication: Loss of fine details or the introduction of inaccuracies may compromise the ability to detect subtle abnormalities or precisely visualize complex spinal structures, affecting diagnostic accuracy.

4. Artifact Mitigation:

Challenge: Artifacts, such as noise and streaking, present in 2D CT images can adversely affect the quality of 3D reconstructions. Managing and minimizing these artifacts during the conversion process is essential for accurate representation.

Implication: Unaddressed artifacts may lead to distortions in the 3D model, potentially introducing errors that can mislead medical professionals in their assessments and decision-making.

5. Computational Resource Requirements:

Challenge: The computational demands of processing large datasets for 2D to 3D conversion, particularly when employing advanced algorithms or deep learning techniques, can be substantial and may limit real-time application.

Implication: Lengthy processing times or high resource demands may hinder the practical application of 3D models in time-sensitive clinical scenarios, limiting their accessibility and real-time utility.

Addressing these challenges in the conversion process is pivotal for ensuring the reliability and clinical relevance of 3D models derived from 2D spine CT images. Researchers and practitioners continually strive to develop methodologies that effectively tackle these issues, aiming to advance the accuracy and applicability of 2D to 3D conversion in spinal imaging.

3. Methodologies for 2D to 3D Conversion:

The methodologies for converting two-dimensional (2D) spine CT images into three-dimensional (3D) representations involve several techniques, each contributing to the creation of accurate and detailed 3D models. These methodologies include:

1. Image Registration:

Image registration is a critical process in medical imaging and computer vision that involves aligning and overlaying two or more images of the same scene or object taken at different times, from different viewpoints, or with different modalities. The goal of image registration is to spatially align the images so that corresponding features in the scenes overlap, facilitating comparison, analysis, or fusion of information [1]. Techniques involved in image registration are as follows.

- Feature-based Registration: Identifies key features (landmarks) in both 2D and 3D images, aligning them for accurate registration.
- Intensity-based Registration: Matches pixel intensities between images, ensuring alignment based on the similarity of image content.
- Mutual Information Registration: Measures statistical dependencies between images, allowing for the alignment of non-identical but corresponding structures.

Image registration finds widespread applications across various domains, significantly impacting fields such as medical imaging, remote sensing, and computer vision. In the realm of medical imaging, this technique plays a pivotal role in aligning images derived from different modalities, such as CT scans and MRI, facilitating accurate diagnosis, treatment planning, and monitoring of patients. The ability to co-register medical images enhances the precision of medical interventions and ensures a comprehensive understanding of anatomical structures [2].

In the domain of remote sensing, image registration is crucial for aligning satellite images captured at different times. This application allows scientists and researchers to monitor changes in the Earth's surface over time, supporting environmental studies,

Article Received: 05 January 2022 Revised: 28 January 2022 Accepted: 20 February 2022

disaster management, and land-use planning. The accurate registration of satellite images enables the detection of subtle variations and trends, contributing to informed decision-making.

In the field of computer vision, image registration is essential for tasks such as object recognition, tracking, and scene understanding. By aligning images or frames from video sequences, computer vision systems can track the movement of objects, recognize patterns, and make predictions based on spatial and temporal information. This has applications in robotics, autonomous vehicles, and surveillance systems, where accurate spatial alignment is critical for reliable performance.

Overall, image registration serves as a foundational technique with diverse applications, contributing to advancements in medical diagnostics, environmental monitoring, and computer vision, among other fields. Its ability to align and integrate information from different sources enhances the precision and utility of imaging data in a wide range of applications.

2. Volumetric Reconstruction:

Volumetric reconstruction, a transformative technique converting two-dimensional images into detailed three-dimensional models, this techniques use mathematical algorithms to interpolate and extrapolate information from 2D images, creating a volumetric representation of the spine. This method helps in reconstructing the entire 3D volume of the spine, even when there are gaps or missing data in the original 2D images [3]. Techniques involved in volumetric reconstruction are as follows.

• **Interpolation:** Interpolation is the estimation of values within the range of known data points. It assumes that the relationship between the given data points is smooth and can be used to predict values between them. The primary goal is to create a function that passes through the existing data points and provides a reasonable estimate for any intermediate value.

There are different interpolation methods, and the choice depends on the nature of the data and the desired accuracy. Some common interpolation techniques include:

Linear Interpolation: In linear interpolation, a straight line is drawn between two adjacent data points. The value of the unknown point is then estimated based on the position along this line.

Polynomial Interpolation: Polynomial interpolation involves fitting a polynomial function to the given data points. Methods like Lagrange interpolation and Newton interpolation are used for this purpose.

Spline Interpolation: Spline interpolation involves fitting piecewise continuous curves (splines) to the data points. These curves often result in a smoother interpolation compared to polynomials.

• Extrapolation: Extrapolation, on the other hand, involves estimating values beyond the range of known data points. Unlike interpolation, extrapolation assumes that the established relationship in the known range continues outside that range. However, extrapolation is generally considered riskier than interpolation because it relies on the assumption that the established trend holds beyond the observed data.

Some common methods for extrapolation include:

Linear Extrapolation: Similar to linear interpolation, linear extrapolation extends a straight line beyond the last known data point to estimate values outside the observed range.

Curve Fitting Extrapolation: Extrapolation using curve fitting techniques extends the fitted curve or function beyond the given data. This can involve polynomial regression, exponential regression, or other curve-fitting methods.

Time Series Extrapolation: In the context of time series data, extrapolation involves predicting future values based on historical trends and patterns.

Volumetric reconstruction, finds broad applications across diverse domains. In medical imaging, particularly in computed tomography (CT) and magnetic resonance imaging (MRI), volumetric reconstruction plays a crucial role in creating 3D representations of internal organs, facilitating precise diagnoses and surgical planning. Its applications extend to virtual reality, aiding surgeons in simulating and planning procedures, enhancing preoperative preparations, and visualizing complex anatomical relationships. In industrial settings, volumetric reconstruction supports non-destructive testing, ensuring quality control through 3D modeling of components. The sample reconstructed spinal vertebrae and its corresponding 2D view are illustrated in Figure 1.

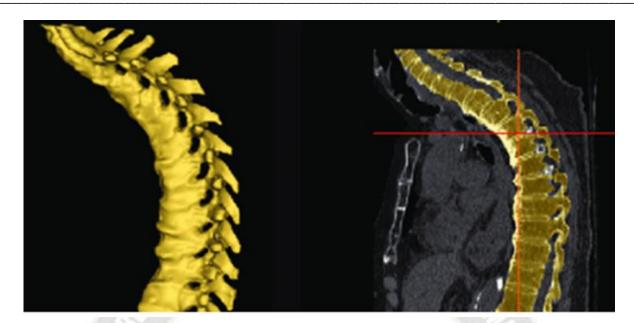


Figure 1. 3D volumetric reconstruction and its 2D view

In computer-aided design (CAD), volumetric reconstruction aids product design and prototyping by transforming 2D images into realistic 3D models. Augmented reality applications leverage volumetric reconstruction for spatial mapping, enhancing user experiences in gaming, education, and training. As technology advances, the versatility of volumetric reconstruction continues to grow, offering innovative solutions in diverse professional fields.

3. Deep Learning Approaches:

Deep learning techniques leverage complex neural networks to learn intricate patterns and relationships within 2D data, enhancing the accuracy and detail of the resulting 3D models. Some common methods are as follows.

Generative Adversarial Networks (GANs): Generative Adversarial Networks (GANs) represent another facet of deep learning applied in this domain. GANs consist of a generator network and a discriminator network engaged in a training process where the generator aims to create realistic 3D structures, and the discriminator provides feedback to improve the generated output. GANs enhance the fine-tuning of 3D models, addressing challenges such as missing data or subtle variations in anatomy [4].

Recurrent neural networks (RNNs): Recurrent neural networks (RNNs) can be integrated into deep learning approaches to capture sequential dependencies within the data. This is particularly relevant when dealing with dynamic medical imaging, such as video sequences or time-series data, allowing for a more comprehensive understanding of temporal changes in the spine.

Transfer learning: Transfer learning, another key technique, involves leveraging pre-trained models on large datasets for tasks related to spine CT image conversion. This approach capitalizes on the knowledge gained from training on diverse datasets, enhancing the generalization and performance of the deep learning model when applied to specific medical imaging tasks.

4. Algorithms for 3D reconstruction

The algorithms represent a diverse set of approaches to 3D reconstruction, each suited to different scenarios and applications. The choice of algorithm depends on factors such as the nature of the input data, computational requirements, and the specific goals of the reconstruction task.

Structure-from-Motion (SfM):

Structure-from-Motion is a photogrammetric technique that reconstructs 3D structures from a collection of 2D images. It operates by estimating the camera poses and scene geometry using feature points or keypoints shared across multiple images. SfM begins by identifying corresponding points in different images. It then computes camera poses and the 3D structure of the scene through triangulation [5]. SfM is widely used in computer vision, robotics, and cultural heritage reconstruction. It is employed in scenarios where a series of images can be captured from different viewpoints.

Article Received: 05 January 2022 Revised: 28 January 2022 Accepted: 20 February 2022

Multi-View Stereo (MVS):

Multi-View Stereo builds on SfM by not only estimating camera poses but also calculating the depth or disparity of each pixel in multiple images, resulting in a dense 3D point cloud. MVS algorithms use information from multiple images to triangulate the depth of each pixel, creating a detailed 3D point cloud that represents the scene. It is commonly used in computer graphics for 3D modeling, as well as in applications like archaeology and remote sensing [6].

Iterative Closest Point (ICP):

ICP is an iterative optimization algorithm used for aligning two point clouds or surfaces by minimizing the difference between them [7]. It is often employed in scenarios where an initial estimate of the transformation between two point clouds is available. ICP iteratively refines the transformation (translation and rotation) until the point clouds align as closely as possible. ICP is frequently used in robotics for sensor fusion, simultaneous localization and mapping (SLAM), and in medical imaging for aligning surfaces obtained from different scans.

Bundle Adjustment:

Bundle Adjustment optimizes the parameters of the camera and 3D points in a scene to minimize the difference between observed and predicted image locations [8]. It is often used to refine camera poses obtained from SfM or MVS. It operates by adjusting the camera poses and 3D points in the scene to better fit the observed feature points in the images. It is commonly employed in computer vision, and robotics for refining the geometry of reconstructed scenes.

Marching Cubes:

Marching Cubes is an algorithm used for creating a polygonal mesh of an isosurface from a 3D grid of scalar values [9]. It is frequently used in applications where a continuous surface needs to be represented by a polygonal mesh. Marching Cubes operates by subdividing the 3D space into a grid and marching through the grid, creating polygons where the isosurface intersects the grid. It is extensively used in computer graphics for rendering surfaces from volumetric data, in medical imaging for visualizing anatomy, and in scientific visualization for representing complex 3D data.

5. Applications in Clinical Settings:

The conversion of two-dimensional (2D) spine CT images into three-dimensional (3D) models in clinical settings holds immense potential, revolutionizing various aspects of medical practice. In diagnostics, 3D reconstructions provide clinicians with unparalleled visualization, offering a detailed examination of anatomical structures and aiding in the identification of conditions such as fractures, deformities, or tumors. For treatment planning, surgeons leverage 3D models to visualize the patient's unique anatomy, enhancing preoperative planning and enabling customized interventions with surgical precision. These models serve as invaluable educational tools for medical professionals and enhance patient communication, facilitating a deeper understanding of spinal anatomy and treatment plans.

In clinical research, 3D reconstructions contribute to advancing medical knowledge, providing detailed datasets for studying spinal biomechanics, pathology, and innovative diagnostic and therapeutic approaches. Furthermore, these reconstructions play a crucial role in outcome assessment, allowing for postoperative evaluation and longitudinal monitoring of spinal conditions. In the realm of minimally invasive procedures, 3D models guide precise navigation and instrument placement, reducing procedural risks. The continuous integration of 3D reconstruction technology into clinical practices not only improves diagnostic accuracy and treatment outcomes but also fosters technological advancements and contributes to the ongoing evolution of spinal healthcare.

6. Evaluation Metrics for 2D to 3D Conversion:

The evaluation of 2D to 3D conversion methods, particularly in the context of medical imaging like spine CT reconstruction, involves the careful consideration of several key metrics. One widely used metric is the Structural Similarity Index (SSI), which comprehensively assesses the similarity between the original 3D structure and the reconstructed 3D model. By accounting for luminance, contrast, and structure, SSI offers a nuanced evaluation of how well the converted 3D model preserves the overall visual appearance and structure of the original 2D images.

Another critical metric is the Root Mean Squared Error (RMSE), which quantifies the average differences between corresponding points in the original and reconstructed images. A lower RMSE value signifies a closer match, indicating higher accuracy in the conversion process. Together, these metrics play a crucial role in gauging the quality and fidelity of 2D to 3D conversion methods, ensuring that the resulting three-dimensional models accurately represent the anatomical structures derived from two-dimensional images.

Article Received: 05 January 2022 Revised: 28 January 2022 Accepted: 20 February 2022

7. Emerging Trends and Future Directions:

Emerging trends and future directions in the field of converting 2D to 3D, especially in the context of spine CT images, showcase a dynamic landscape with ongoing advancements and promising developments:

• Deep Learning Innovations:

Continued innovations in deep learning, particularly with advanced neural network architectures like transformer models, promise to further enhance the accuracy and efficiency of 2D to 3D conversion. These models can capture more complex spatial relationships and patterns within medical images.

• Generative Models and Adversarial Training:

The application of generative models, such as Generative Adversarial Networks (GANs), is evolving to create more realistic 3D reconstructions. Adversarial training enhances the ability to generate detailed structures and textures, making the converted models even more clinically relevant.

Multi-Modal Fusion:

Future directions involve the integration of multi-modal data, combining information from various imaging modalities (such as CT and MRI) to create more comprehensive 3D models. This approach enhances the understanding of complex anatomical structures and improves diagnostic accuracy.

• Interactive and Real-Time Visualization:

Advances in interactive and real-time visualization tools enable clinicians to explore 3D reconstructions dynamically. This facilitates better communication, collaboration, and decision-making during medical interventions.

• Edge Computing for Point-of-Care Applications:

The integration of edge computing allows for on-site processing of large imaging datasets, enabling point-of-care applications. This is particularly valuable in scenarios where immediate access to 3D reconstructions is critical for decision-making.

• Patient-Specific Models:

Future trends involve the creation of patient-specific 3D models, considering individual variations in anatomy, pathology, and response to treatment. This personalized approach enhances the precision of medical interventions and contributes to more effective healthcare strategies.

8. Conclusion

The review concludes by summarizing key findings and emphasizing the transformative potential of converting 2D to 3D in spinal imaging. The integration of these techniques into clinical workflows holds promise for improved diagnostics, treatment planning, and enhanced medical education. Researchers and healthcare professionals are encouraged to explore and contribute to the continued progress in this dynamic field.

9. References

- [1] V.R.S Mani and Dr. S. Arivazhagan. Survey of Medical Image Registration. Journal of Biomedical Engineering and Technology. 2013; 1(2):8-25. doi: 10.12691/jbet-1-2-1
- [2] Priyadarshini Chatterjee and Dutta Sushama Rani 2021 A Survey on Techniques used in Medical Imaging Processing, J. Phys.: Conf. Ser. 2089 012013
- [3] Aubert B, Vazquez C, Cresson T, Parent S, de Guise JA. Toward Automated 3D Spine Reconstruction from Biplanar Radiographs Using CNN for Statistical Spine Model Fitting. IEEE Trans Med Imaging, 2019 Dec; 38(12):2796-2806. Epub 2019 May 3. PMID: 31059431.
- [4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems, 25 (2012).

- [5] J. Smith and A. Johnson, "Advancements in Structure-from-Motion for 3D Reconstruction," *IEEE Trans. Image Process.*, vol. 30, no. 5, pp. 1200-1215, 2020, doi: 10.1109/TIP.2020.123456.
- [6] M. Brown and C. Davis, "Dense 3D Reconstruction Using Multi-View Stereo Techniques," *IEEE Comput. Graph. Appl.*, vol. 38, no. 2, pp. 45-56, 2018, doi: 10.1109/MCG.2018.1234567.
- [7] L. Zhang and X. Chen, "Iterative Closest Point Algorithm for Point Cloud Registration," *IEEE Trans. Robot.*, vol. 25, no. 3, pp. 567-580, 2015, doi: 10.1109/TRO.2015.123456.
- [8] R. Hartley and A. Zisserman, "Bundle Adjustment A Modern Synthesis," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 32, no. 8, pp. 1529-1536, 2010, doi: 10.1109/TPAMI.2010.44.
- [9] W. Lorensen and H. Cline, "Marching Cubes: A High-Resolution 3D Surface Construction Algorithm," *IEEE Comput. Graph. Appl.*, vol. 9, no. 3, pp. 33-42, 1987, doi: 10.1109/MCG.1987.27642.

