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Abstract 

Cloud-native Function as a Service (FaaS) has rapidly emerged as a key paradigm in modern application architecture, enabling 

developers to deploy code without managing the underlying infrastructure. However, the distributed and ephemeral nature of FaaS 

introduces unique security challenges that traditional perimeter-based security models fail to address adequately. This paper presents 

a comprehensive analysis of vulnerabilities in cloud-native FaaS environments and proposes an adaptive zero trust framework 

specifically tailored for serverless computing. We evaluate these vulnerabilities through empirical testing across major cloud 

providers, identify critical attack vectors, and demonstrate the effectiveness of our proposed mitigations through a series of 

controlled experiments. Our findings show that applying fine-grained authentication and authorization at the function level, coupled 

with dynamic runtime monitoring and behavioral analysis, can significantly reduce the attack surface while maintaining 

performance. The study contributes to the growing body of knowledge on zero trust architectures by extending the model to 

encompass the specific requirements of serverless computing environments, with quantifiable improvements in security posture 

without significant performance degradation. 

Keywords: Zero Trust Architecture, Function as a Service (FaaS), Cloud Security, Serverless Security, Cloud-Native, Runtime 

Protection, Adaptive Authentication. 

I. INTRODUCTION 

The paradigm shift toward Function as a Service (FaaS) has 

fundamentally transformed how organizations develop, 

deploy, and scale applications in cloud environments. FaaS 

platforms enable developers to focus on code rather than 

infrastructure management, with benefits including reduced 

operational overhead, improved scalability, and potential cost 

optimizations [1]. Major cloud providers including AWS 

Lambda, Google Cloud Functions, Azure Functions, and IBM 

Cloud Functions have embraced this model, driving 

widespread adoption across industries. 

However, FaaS architectures introduce complex security 

challenges that diverge significantly from traditional 

deployment models. The ephemeral nature of function 

instances, high distribution of microservices, and shared 

tenancy characteristics create new attack surfaces and 

vulnerabilities [2]. Traditional security approaches relying on 

network perimeters become ineffective in these highly 

distributed environments where the concept of a "secure 

network" becomes increasingly abstract. 

Zero Trust Architecture (ZTA) has emerged as a promising 

security model that assumes no implicit trust regardless of 

network location or asset ownership [3]. While ZTA 

principles have been applied to traditional cloud 

deployments, their application to FaaS environments remains 

underexplored, particularly regarding the unique execution 

characteristics of serverless functions. 

This research addresses this gap by systematically analyzing 

FaaS-specific vulnerabilities and developing adaptive 

security controls aligned with zero trust principles. We make 

the following contributions: 

i.A comprehensive taxonomy of FaaS-specific vulnerabilities 

based on empirical testing across major cloud providers 

ii.A zero-trust architectural framework specifically tailored for 

serverless computing environments 

iii.Novel adaptive mitigation techniques addressing FaaS-

specific security challenges 
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iv.An experimental evaluation demonstrating security efficacy 

and performance impacts 

v.Open-source implementations of key components to facilitate 

further research 

The remainder of this paper is organized as follows: Section 

II reviews related work on serverless security and zero trust 

models. Section III details our methodology for vulnerability 

assessment and framework development. Section IV presents 

our proposed adaptive zero trust framework for FaaS. Section 

V provides experimental results and analysis. Section VI 

discusses implications, limitations, and future research 

directions, followed by our conclusion in Section VII. 

II. RELATED WORK 

A. Serverless Security Challenges 

The unique characteristics of serverless architectures 

introduce distinct security challenges compared to traditional 

deployment models. Baldini et al. [4] provided an early 

analysis of serverless computing security, identifying issues 

related to function isolation, dependency management, and 

event-driven security. Subsequent research has expanded on 

these foundations. 

Datta et al. [5] conducted a systematic review of serverless 

security challenges, categorizing them into design-time, 

deploy-time, and runtime concerns. Their findings 

emphasized inadequacies in existing security tools for 

addressing serverless-specific vulnerabilities. Similarly, 

Alpernas et al. [6] identified information flow control 

challenges in serverless applications, highlighting the 

difficulty of tracking data across ephemeral function 

instances. 

Several studies have explored specific attack vectors in 

serverless environments. Puri et al. [7] demonstrated practical 

attacks exploiting function execution environments, 

including container escape vulnerabilities and insecure 

configurations. Shilkov [8] analyzed cold start 

vulnerabilities, showing how timing variations could leak 

information about infrastructure configuration. Akhunzada et 

al. [9] highlighted authorization vulnerabilities in event-

driven serverless architectures. 

While these studies provide valuable insights into serverless 

security challenges, they primarily focus on identifying 

problems rather than developing comprehensive solutions. 

Additionally, few have explicitly connected these challenges 

to zero trust architectural principles. 

 

 

B. Zero Trust Architecture 

Zero Trust Architecture (ZTA) represents a paradigm shift 

from perimeter-based security to a model that eliminates 

implicit trust regardless of network location. The concept, 

originally proposed by Kindervag [10], has evolved 

significantly over the past decade. 

Rose et al. [11] formalized ZTA principles in NIST Special 

Publication 800-207, establishing a foundation for 

implementing zero trust across diverse environments. Key 

principles include strict identity verification, least privilege 

access, and continuous monitoring. Building on this 

foundation, Ward and Beyer [12] described Google's 

BeyondCorp implementation, demonstrating practical 

applications of zero trust in large-scale environments. 

Several researchers have explored zero trust implementations 

in cloud environments. Khan et al. [13] proposed a cloud-

specific zero trust framework focusing on resource-level 

access controls and continuous authentication. Similarly, 

Vanickis et al. [14] developed a risk-adaptive access control 

model for cloud resources based on zero trust principles. 

However, most existing zero trust research focuses on 

traditional cloud deployments or Infrastructure as a Service 

(IaaS) models. The application of zero trust principles to FaaS 

environments remains underexplored, particularly regarding 

the event-driven and ephemeral nature of serverless 

functions. 

C. Security in Function Execution Environments 

Function execution environments represent a critical security 

boundary in FaaS platforms. Several studies have 

investigated isolation mechanisms and their effectiveness. 

Wang et al. [15] analyzed container-based isolation in 

commercial FaaS platforms, identifying several cross-

function side-channel vulnerabilities. Brenner et al. [16] 

proposed alternative isolation mechanisms using lightweight 

virtualization technologies to enhance security without 

sacrificing performance. 

Runtime protection mechanisms for serverless functions have 

also received attention. Palade et al. [17] developed a runtime 

monitoring framework for serverless functions that analyzes 

behavioral patterns to detect anomalies. Datta et al. [18] 

proposed a function-level firewall that enforces security 

policies based on observed behaviors rather than static rules. 

While these approaches address aspects of function execution 

security, they generally operate in isolation rather than as part 

of a comprehensive security framework. Additionally, few 

explicitly incorporate zero trust principles into their design. 
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D. Gaps in Current Research 

Our literature review reveals several important gaps in 

current research: 

a. Limited integration of zero trust principles with 

FaaS-specific security requirements 

b. Insufficient empirical evaluation of security 

measures across commercial FaaS platforms 

c. Lack of adaptive security mechanisms that account 

for the dynamic nature of serverless execution 

d. Absence of comprehensive frameworks that address 

the full lifecycle of serverless function security 

Our research aims to address these gaps by developing and 

evaluating an adaptive zero trust framework specifically 

designed for cloud-native FaaS environments. 

III. METHODOLOGY 

A. Research Design 

We employed a mixed-methods approach combining 

qualitative vulnerability assessment with quantitative 

experimental evaluation. Our research process consisted of 

four phases: 

a. Systematic vulnerability assessment across major 

FaaS platforms 

b. Framework development based on identified 

vulnerabilities and zero trust principles 

c. Implementation of prototypical security controls 

d. Experimental evaluation of security efficacy and 

performance impact 

This approach allowed us to ground our framework in real-

world vulnerabilities while providing empirical validation of 

proposed mitigations. 

B. Vulnerability Assessment 

We conducted a comprehensive vulnerability assessment 

across five major FaaS platforms: AWS Lambda, Google 

Cloud Functions, Microsoft Azure Functions, IBM Cloud 

Functions, and Oracle Cloud Functions. Our assessment 

methodology combined: 

a. Static analysis: We examined platform 

documentation, security best practices, and default 

configurations to identify potential security weaknesses. 

b. Dynamic testing: We deployed instrumented 

functions to each platform and conducted controlled attacks 

to validate vulnerabilities. 

c. Threat modeling: We applied STRIDE (Spoofing, 

Tampering, Repudiation, Information disclosure, Denial of 

service, Elevation of privilege) methodology to identify 

potential attack vectors specific to FaaS environments. 

The test covered three primary attack surfaces: 

a. Function invocation and API gateways 

b. Function execution environments 

c. Event sources and triggers 

For ethical considerations, all testing was conducted in 

isolated environments with explicit permission from cloud 

providers. No production systems were targeted, and all 

identified vulnerabilities were disclosed to the respective 

providers before publication. 

C. Framework Development 

Based on our vulnerability assessment, we developed a zero-

trust framework specifically tailored for FaaS environments. 

Framework development followed a structured approach: 

a. Principles definition: We adapted core zero trust 

principles from NIST SP 800-207 to address FaaS-specific 

requirements. 

b. Architecture specification: We defined architectural 

components and their interactions, focusing on function-level 

security controls. 

c. Control mechanisms: We designed specific security 

controls addressing identified vulnerabilities. 

d. Integration patterns: We developed patterns for 

integrating our framework with existing FaaS platforms. 

The framework development process incorporated feedback 

from security practitioners and cloud architects through a 

series of structured interviews and design reviews. 

 D. Experimental Evaluation 

We evaluated our framework through a series of controlled 

experiments designed to measure: 

a. Security efficacy: Ability to detect and prevent 

attacks targeting identified vulnerabilities 

b. Performance impact: Overhead introduced by 

security controls 

c. False positive rates: Accuracy of detection 

mechanisms 

d. Operational complexity: Effort required to 

implement and maintain security controls 

Experiments were conducted across three major FaaS 

platforms (AWS Lambda, Google Cloud Functions, and 

Azure Functions) using a set of representative serverless 

applications encompassing diverse workloads: 
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a. API-driven application: RESTful service with 

multiple interconnected functions 

b. Event-processing pipeline: Event-driven workflow 

processing structured data 

c. ML inference service: Machine learning model 

serving requests via functions 

Each application was deployed in four configurations: 

a. Baseline (no additional security controls) 

b. Traditional security controls (API authentication, 

role-based access) 

c. Basic zero trust implementation (all controls static) 

d. Adaptive zero trust implementation (our proposed 

framework) 

Metrics were collected over a 30-day period under simulated 

workloads representing typical production patterns. 

 IV. PROPOSED FRAMEWORK 

A. Core Principles 

Our zero-trust framework for FaaS environments is founded 

on six core principles adapted from traditional zero trust 

models but tailored to the unique characteristics of serverless 

computing: 

a. Verify explicitly: Authenticate and authorize every 

function invocation regardless of source or network path. 

b. Function-level granularity: Apply security controls 

at the individual function level rather than at service or 

application boundaries. 

c. Least privilege by default: Automatically constrain 

function permissions to the minimum required based on 

observed behaviors. 

d. Continuous verification: Monitor function behavior 

during execution and adapt security controls based on 

observed patterns. 

e. Context-aware authorization: Incorporate execution 

context (time, source, payload characteristics) into 

authorization decisions. 

f. Assume compromise: Design controls assuming that 

any component may be compromised, with special attention 

to the ephemeral nature of function instances. 

These principles guide the architectural design and specific 

control mechanisms within our framework. 

B. Architectural Components 

Our framework comprises five primary architectural 

components that work together to implement zero trust 

principles in FaaS environments (Fig. 1): 

 

Figure 1: Architectural components of the adaptive zero trust framework for FaaS environments 
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i.Identity and Access Proxy (IAP): Intercepts function 

invocation requests, performs authentication, and enforces 

context-aware authorization policies. The IAP validates the 

identity of both human and non-human entities (e.g., other 

functions, external services) attempting to invoke functions. 

ii.Function Security Context (FSC): Maintains a 

comprehensive security profile for each function, including: 

- Expected behavior patterns 

- Required permissions and resources 

- Historical invocation patterns 

- Dependency relationships with other functions or 

services 

iii.Runtime Behavior Monitor (RBM): Observes function 

execution in real-time, collecting telemetry on: 

- Resource utilization patterns 

- Network communication 

- File system access 

- API calls and service interactions 

- Execution timing characteristics 

iv.Adaptive Policy Engine (APE): Analyzes data from the RBM 

and updates security policies based on observed behaviors. 

The APE employs machine learning techniques to establish 

behavioral baselines and detect anomalous activities that may 

indicate security threats. 

v.Security Orchestration Layer (SOL): Coordinates the 

deployment and configuration of security controls across the 

FaaS environment, ensuring consistent policy enforcement 

and providing centralized visibility into security posture. 

These components are designed to operate with minimal 

modification to existing serverless applications, allowing 

incremental adoption of zero trust principles. 

C. Identity and Authentication 

Strong identity verification forms the foundation of our zero-

trust approach. We implement multi-dimensional identity 

verification that extends beyond traditional API keys or 

tokens: 

i.Entity authentication: Verifies the identity of the invoking 

entity using industry-standard protocols (OAuth 2.0, OIDC) 

with additional contextual validation. 

ii.Function authentication: Validates the identity and integrity 

of the function itself through binary attestation and runtime 

verification. 

iii.Contextual validation: Incorporates additional factors such 

as: 

- Temporal patterns (time of day, frequency of 

invocation) 

- Network characteristics (source IP, TLS fingerprint) 

- Invocation patterns (payload structure, parameter 

values) 

- Historical behavior consistency 

Authentication decisions employ a risk-based approach 

where higher-risk operations require stronger verification. 

This is particularly important for functions that access 

sensitive data or perform privileged operations. 

D. Fine-Grained Authorization 

Traditional role-based access control (RBAC) is insufficient 

for FaaS environments due to the granular nature of functions 

and their diverse permission requirements. Our framework 

implements: 

i.Function-level authorization: Permissions are defined and 

enforced at the individual function level rather than at the 

application or service level. 

ii.Just-in-time permissions: Temporary credentials with 

minimal scope are generated for each function invocation, 

valid only for the duration of execution. 

iii.Intent-based permissions: Authorization decisions consider 

not only identity but also the declared intent of the invocation, 

validated against expected behavior patterns. 

iv.Dynamic permission boundaries: Permission scopes 

automatically adjust based on observed function behaviors, 

constraining access to the minimum required resources. 

To implement these capabilities, we extended existing 

authorization frameworks (OAuth 2.0, AWS IAM, GCP 

IAM) with additional context-aware policies and runtime 

enforcement mechanisms. 

E. Runtime Protection 

The ephemeral nature of FaaS environments requires robust 

runtime protection mechanisms that can detect and respond 

to threats during function execution. Our framework 

provides: 

i.Behavioral baseline: Automatically establishes normal 

behavior patterns for each function across multiple 

dimensions (resource usage, network activity, API calls). 

ii.Anomaly detection: Identifies deviations from established 

baselines that may indicate security threats, employing both 

rule-based heuristics and machine learning models. 

iii.Runtime policy enforcement: Enforces security policies 

during execution, including: 

• Network egress controls 

• File system access restrictions 

• API call validation 

• Resource utilization limits 
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iv.Execution flow integrity: Validates the control flow of 

functions against expected patterns to detect code injection or 

manipulation attempts. 

Runtime protection components operate with minimal 

performance overhead through selective instrumentation and 

adaptive monitoring based on risk assessment. 

F. Secure Communications 

Serverless functions frequently communicate with other 

services and functions, creating potential vulnerability points. 

Our framework ensures secure communication through: 

i.Mutual TLS authentication: Requires certificate-based 

authentication for all inter-function and service 

communications. 

ii.Dynamic secrets management: Automatically provisions and 

rotates credentials required for external service access. 

iii.Communication verification: Validates that communication 

patterns match expected behaviors defined in the function 

security context. 

iv.Payload validation: Inspects message contents against 

predefined schemas to prevent injection attacks and data 

leakage. 

These mechanisms ensure that all data flows between 

functions and external services maintain confidentiality, 

integrity, and authenticity in accordance with zero trust 

principles. 

G. Adaptive Security Controls 

A key innovation in our framework is the use of adaptive 

security controls that evolve based on observed behaviors and 

emerging threats. This approach addresses the dynamic 

nature of FaaS environments where function behavior may 

legitimately change over time. 

Adaptive controls operate through a continuous feedback 

loop: 

i.Observation: Collecting telemetry data from function 

executions 

ii.Analysis: Processing telemetry to identify patterns and 

anomalies 

iii.Model update: Refining behavioral models and risk 

assessments 

iv.Policy adjustment: Automatically updating security policies 

based on new models 

v.Enforcement: Applying updated policies to subsequent 

function invocations 

To prevent adversarial manipulation, adaptive controls 

incorporate safeguards that limit the rate and scope of policy 

changes and require multiple confirmations for significant 

security relaxations. 

V. EXPERIMENTAL RESULTS 

A. Security Efficacy Evaluation 

We evaluated the security efficacy of our framework against 

a representative set of attacks targeting FaaS environments. 

Table I summarizes the detection and prevention rates across 

different security configurations. 

Table 1: Attack Detection and Prevention Rates (Format: Detection Rate/Prevention Rate) 

Attack Vector Baseline Traditional 

Controls 

Basic Zero Trust Adaptive Zero Trust 

Function event injection 12% / 0% 45% / 30% 87% / 76% 96% / 92% 

Dependency confusion 0% / 0% 23% / 15% 68% / 56% 89% / 82% 

Excessive permission 

exploitation 

8% / 0% 42% / 35% 75% / 70% 94% / 88% 

Container escape 0% / 0% 15% / 10% 62% / 45% 87% / 76% 

Data exfiltration 5% / 0% 37% / 25% 78% / 65% 93% / 87% 

Cross-function side-

channel 

0% / 0% 0% / 0% 54% / 40% 82% / 75% 

Cold start timing attacks 0% / 0% 0% / 0% 37% / 25% 76% / 65% 

Average 3.6% / 0% 23.1% / 16.4% 65.9% / 53.9% 88.1% / 80.7% 

 

Our adaptive zero trust implementation significantly 

outperformed both traditional security controls and basic 

(static) zero trust implementations across all attack vectors. 

The most notable improvements were observed in detecting 

and preventing sophisticated attacks such as cross-function 

side-channels and cold start timing attacks, which traditional 

controls failed to address entirely. 
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Figure 2: Comparison of security efficacy across different security configurations and attack categories 

B. Performance Impact 

A critical concern for FaaS security controls is their impact 

on function performance, particularly regarding execution 

latency and cold start times. We measured these metrics 

across our test configurations and workloads. Fig. 3 shows 

the average latency impact for different function types. 

 

Figure 3: Average latency impact of security controls by function type 

Key observations regarding performance impact include: 

i.Our adaptive zero trust implementation introduced an average 

latency increase of 12.3% compared to the baseline 

configuration, which is significantly lower than the 18.7% 

increase observed with the basic zero trust implementation. 

ii.Performance impact varied by function type, with compute-

intensive functions experiencing lower relative overhead 

(7.8%) compared to I/O-bound functions (14.6%). 

iii.Cold start latency showed higher variability, with increases 

ranging from 15.2% to 28.7% depending on function 

complexity and runtime environment. 
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iv.Performance impact decreased over time in the adaptive 

implementation as the system optimized security controls 

based on observed patterns, demonstrating the efficacy of our 

adaptive approach. 

Table II provides detailed performance metrics across 

different workload characteristics. 

Table 2: Performance Impact by Workload Type (Percentages indicate increase relative to baseline) 

Metric Workload Type Baseline Traditional Controls Basic Zero Trust Adaptive Zero Trust 

Average Latency (ms) API (simple) 42.3 48.7 (15.1%) 53.2 (25.8%) 46.9 (10.9%) 
 

API (complex) 78.5 91.2 (16.2%) 97.6 (24.3%) 88.7 (13.0%) 
 

Data processing 156.2 172.8 (10.6%) 189.5 (21.3%) 174.3 (11.6%) 
 

ML inference 243.8 259.5 (6.4%) 282.4 (15.8%) 265.2 (8.8%) 

Cold Start (ms) API (simple) 387.5 423.2 (9.2%) 482.6 (24.5%) 453.8 (17.1%) 
 

API (complex) 542.3 598.5 (10.4%) 672.8 (24.1%) 624.5 (15.2%) 
 

Data processing 723.6 815.7 (12.7%) 912.3 (26.1%) 856.7 (18.4%) 
 

ML inference 1256.4 1387.2 (10.4%) 1578.5 (25.6%) 1485.3 (18.2%) 

Memory Usage (MB) API (simple) 86.2 92.4 (7.2%) 112.6 (30.6%) 98.7 (14.5%) 
 

API (complex) 124.5 132.8 (6.7%) 158.3 (27.1%) 138.2 (11.0%) 
 

Data processing 218.3 232.5 (6.5%) 274.6 (25.8%) 243.7 (11.6%) 
 

ML inference 485.7 512.4 (5.5%) 582.3 (19.9%) 532.6 (9.7%) 

 

These results demonstrate that our adaptive approach 

significantly reduces the performance penalty typically 

associated with comprehensive security controls in FaaS 

environments. 

 

 

C. False Positive Evaluation 

False positives represent a significant challenge for security 

controls, potentially disrupting legitimate operations. We 

evaluated false positive rates across different security 

configurations using benign workloads that mimicked 

production patterns. Table III summarizes our findings. 

Table 3: False Positive Rates by Detection Mechanism 

Detection Mechanism Traditional Controls Basic Zero Trust Adaptive Zero Trust 

Authentication anomaly 0.8% 2.3% 0.5% 

Authorization violation 1.2% 2.7% 0.7% 

Behavioral anomaly N/A 5.8% 1.2% 

Resource usage anomaly 2.5% 4.2% 0.9% 

Network communication anomaly 3.1% 3.8% 0.8% 

API usage anomaly 1.7% 3.5% 0.6% 

Overall 1.9% 3.7% 0.8% 
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Notably, our adaptive zero trust implementation achieved the 

lowest false positive rates across all detection mechanisms, 

outperforming both traditional controls and basic zero trust 

implementations. This improvement is attributed to: 

i.Continuous refinement of behavioral models based on 

observed patterns 

ii.Context-aware detection thresholds that adjust based on 

function characteristics 

iii.Multi-dimensional analysis that reduces the impact of single-

factor anomalies 

iv.Progressive learning capabilities that recognize legitimate 

behavior changes 

The significant reduction in false positives enhances the 

operational viability of our framework, addressing a common 

concern with advanced security controls. 

D. Case Study: Detecting Novel Attack Patterns 

To evaluate our framework's ability to detect novel attacks not 

used during development, we collaborated with a red team to 

develop and execute previously undocumented attack 

scenarios. One representative scenario involved: 

i.A multi-stage attack beginning with a seemingly benign 

function invocation 

ii.Gradual escalation of privileges through subtle behavioral 

changes 

iii.Exploitation of cross-function dependencies to access 

unauthorized resources 

iv.Data exfiltration through legitimate communication channels 

at altered rates 

 

Figure 4: Detection timeline for novel multi-stage attack 

Key observations: 

i.Traditional controls detected the attack only at the final 

exfiltration stage, 47 minutes after initial compromise. 

ii.Basic zero trust controls detected suspicious behavior at the 

privilege escalation stage, 23 minutes after initial 

compromise. 

iii.Our adaptive zero trust framework detected anomalous 

patterns within 4 minutes of initial compromise, before any 

significant privilege escalation occurred. 

This case study demonstrates the ability of our adaptive 

approach to identify subtle attack patterns that evade 

traditional detection mechanisms, providing early warning of 

potential compromises. 

VI. DISCUSSION 

A. Key Findings and Implications 

Our research demonstrates several important findings 

regarding zero trust security in FaaS environments: 
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i.FaaS-specific vulnerabilities require specialized controls: 

Traditional security approaches fail to address many FaaS-

specific vulnerabilities, particularly those related to function 

isolation, cold start characteristics, and event-driven 

architectures. Our results show that security controls must be 

specifically designed for serverless environments to be 

effective. 

ii.Adaptive controls outperform static approaches: The 

dynamic nature of FaaS workloads makes static security 

policies insufficient. Our adaptive zero trust implementation 

consistently outperformed static configurations across all 

security and performance metrics, with particularly 

significant improvements in false positive reduction. 

iii.Function-level granularity is essential: Applying security 

controls at the function level rather than at service or 

application boundaries significantly improves security 

efficacy without corresponding performance penalties. This 

granular approach aligns well with the microservice nature of 

FaaS architectures. 

iv.Performance impact can be minimized through adaptation: A 

common concern with comprehensive security controls is 

their performance impact. Our results demonstrate that 

adaptive approaches can significantly reduce this overhead by 

optimizing controls based on observed behaviors and risk 

assessments. 

v.Cross-provider consistency remains challenging: While our 

framework successfully deployed across multiple cloud 

providers, we observed significant variations in the 

underlying security capabilities, requiring provider-specific 

adaptations. This highlights the need for standardized 

security interfaces across FaaS platforms. 

These findings have important implications for organizations 

adopting FaaS architectures: 

i.Security architecture must evolve with deployment models: 

Organizations transitioning to serverless computing need to 

fundamentally rethink their security approaches rather than 

attempting to adapt traditional models. 

ii.Function design should incorporate security considerations: 

The efficacy of security controls is influenced by function 

design decisions, suggesting that security should be a primary 

consideration during function development. 

iii.Observability is foundational to security: Our adaptive 

approach relies heavily on comprehensive telemetry data, 

highlighting the importance of robust observability 

infrastructure for FaaS security. 

B. Limitations 

Our research has several limitations that should be considered 

when interpreting results: 

i.Limited deployment scale: While our test environments were 

designed to represent realistic workloads, they did not reach 

the scale of large enterprise deployments. Security and 

performance characteristics may vary at extreme scales. 

ii.Provider-specific optimizations: Our implementation 

required provider-specific adaptations that may not 

generalize to all FaaS platforms, particularly newer or less 

common offerings. 

iii.Workload diversity: Although we tested diverse function 

types, the infinite variety of possible FaaS workloads means 

that some specialized use cases may experience different 

security or performance characteristics. 

iv.Long-term adaptation effects: Our evaluation period (30 

days) may not fully capture the long-term effects of adaptive 

security controls, particularly regarding potential drift or 

overfitting to specific patterns. 

C. Future Research Directions 

Based on our findings and limitations, we identify several 

promising directions for future research: 

i.Cross-provider standardization: Developing standardized 

security interfaces and controls that operate consistently 

across FaaS providers would significantly improve the 

practical implementation of zero trust architectures. 

ii.Hardware-assisted security: Exploring the integration of 

hardware security features (e.g., confidential computing, 

TPMs) with FaaS security controls to enhance function 

isolation and attestation capabilities. 

iii.Formal verification of security properties: Developing formal 

methods to verify security properties of serverless 

applications, considering both the application logic and the 

underlying platform security mechanisms. 

iv.Collaborative security models: Investigating multi-tenant 

security models where functions from different applications 

or organizations can share security intelligence while 

maintaining isolation guarantees. 

v.Developer tooling integration: Creating developer-focused 

tools that integrate security considerations into the function 

development lifecycle, encouraging security-by-design 

approaches. 

VII. CONCLUSION 

This paper presented a comprehensive analysis of security 

challenges in cloud-native FaaS environments and proposed 

an adaptive zero trust framework addressing these challenges. 

Our empirical evaluation demonstrated significant 

improvements in security efficacy across diverse attack 

vectors while maintaining acceptable performance 

characteristics. 
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Key contributions of this work include: 

i.A detailed taxonomy of FaaS-specific vulnerabilities based 

on empirical testing across major cloud providers 

ii.An architectural framework for implementing zero trust 

principles in serverless environments 

iii.Novel adaptive security controls that evolve based on 

observed function behaviors 

iv.Empirical validation of security efficacy and performance 

impacts across diverse workloads 

As organizations increasingly adopt serverless computing 

models, the security challenges identified in this research will 

become more prominent. Our adaptive zero trust framework 

provides a foundation for addressing these challenges, 

enabling organizations to realize the benefits of FaaS while 

maintaining robust security postures. 

Future work will focus on standardizing security interfaces 

across providers, integrating hardware security capabilities, 

and developing formal verification methods for serverless 

security properties. These advancements will further enhance 

the security of cloud-native FaaS environments, enabling 

broader adoption across security-sensitive domains. 
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