
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1194
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Towards Zero Trust in Cloud-Native Faas: Evaluating

Vulnerabilities and Adaptive Mitigations

Gokul Chandra Purnachandra Reddy1

1Senior Specialist, Solutions Architect, San Francisco, CA, USA

Ravi Sastry Kadali2

2Software Engineer, Technical Lead, San Francisco, USA

Abstract

Cloud-native Function as a Service (FaaS) has rapidly emerged as a key paradigm in modern application architecture, enabling

developers to deploy code without managing the underlying infrastructure. However, the distributed and ephemeral nature of FaaS

introduces unique security challenges that traditional perimeter-based security models fail to address adequately. This paper presents

a comprehensive analysis of vulnerabilities in cloud-native FaaS environments and proposes an adaptive zero trust framework

specifically tailored for serverless computing. We evaluate these vulnerabilities through empirical testing across major cloud

providers, identify critical attack vectors, and demonstrate the effectiveness of our proposed mitigations through a series of

controlled experiments. Our findings show that applying fine-grained authentication and authorization at the function level, coupled

with dynamic runtime monitoring and behavioral analysis, can significantly reduce the attack surface while maintaining

performance. The study contributes to the growing body of knowledge on zero trust architectures by extending the model to

encompass the specific requirements of serverless computing environments, with quantifiable improvements in security posture

without significant performance degradation.

Keywords: Zero Trust Architecture, Function as a Service (FaaS), Cloud Security, Serverless Security, Cloud-Native, Runtime

Protection, Adaptive Authentication.

I. INTRODUCTION

The paradigm shift toward Function as a Service (FaaS) has

fundamentally transformed how organizations develop,

deploy, and scale applications in cloud environments. FaaS

platforms enable developers to focus on code rather than

infrastructure management, with benefits including reduced

operational overhead, improved scalability, and potential cost

optimizations [1]. Major cloud providers including AWS

Lambda, Google Cloud Functions, Azure Functions, and IBM

Cloud Functions have embraced this model, driving

widespread adoption across industries.

However, FaaS architectures introduce complex security

challenges that diverge significantly from traditional

deployment models. The ephemeral nature of function

instances, high distribution of microservices, and shared

tenancy characteristics create new attack surfaces and

vulnerabilities [2]. Traditional security approaches relying on

network perimeters become ineffective in these highly

distributed environments where the concept of a "secure

network" becomes increasingly abstract.

Zero Trust Architecture (ZTA) has emerged as a promising

security model that assumes no implicit trust regardless of

network location or asset ownership [3]. While ZTA

principles have been applied to traditional cloud

deployments, their application to FaaS environments remains

underexplored, particularly regarding the unique execution

characteristics of serverless functions.

This research addresses this gap by systematically analyzing

FaaS-specific vulnerabilities and developing adaptive

security controls aligned with zero trust principles. We make

the following contributions:

i.A comprehensive taxonomy of FaaS-specific vulnerabilities

based on empirical testing across major cloud providers

ii.A zero-trust architectural framework specifically tailored for

serverless computing environments

iii.Novel adaptive mitigation techniques addressing FaaS-

specific security challenges

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1195
IJRITCC | October 2023, Available @ http://www.ijritcc.org

iv.An experimental evaluation demonstrating security efficacy

and performance impacts

v.Open-source implementations of key components to facilitate

further research

The remainder of this paper is organized as follows: Section

II reviews related work on serverless security and zero trust

models. Section III details our methodology for vulnerability

assessment and framework development. Section IV presents

our proposed adaptive zero trust framework for FaaS. Section

V provides experimental results and analysis. Section VI

discusses implications, limitations, and future research

directions, followed by our conclusion in Section VII.

II. RELATED WORK

A. Serverless Security Challenges

The unique characteristics of serverless architectures

introduce distinct security challenges compared to traditional

deployment models. Baldini et al. [4] provided an early

analysis of serverless computing security, identifying issues

related to function isolation, dependency management, and

event-driven security. Subsequent research has expanded on

these foundations.

Datta et al. [5] conducted a systematic review of serverless

security challenges, categorizing them into design-time,

deploy-time, and runtime concerns. Their findings

emphasized inadequacies in existing security tools for

addressing serverless-specific vulnerabilities. Similarly,

Alpernas et al. [6] identified information flow control

challenges in serverless applications, highlighting the

difficulty of tracking data across ephemeral function

instances.

Several studies have explored specific attack vectors in

serverless environments. Puri et al. [7] demonstrated practical

attacks exploiting function execution environments,

including container escape vulnerabilities and insecure

configurations. Shilkov [8] analyzed cold start

vulnerabilities, showing how timing variations could leak

information about infrastructure configuration. Akhunzada et

al. [9] highlighted authorization vulnerabilities in event-

driven serverless architectures.

While these studies provide valuable insights into serverless

security challenges, they primarily focus on identifying

problems rather than developing comprehensive solutions.

Additionally, few have explicitly connected these challenges

to zero trust architectural principles.

B. Zero Trust Architecture

Zero Trust Architecture (ZTA) represents a paradigm shift

from perimeter-based security to a model that eliminates

implicit trust regardless of network location. The concept,

originally proposed by Kindervag [10], has evolved

significantly over the past decade.

Rose et al. [11] formalized ZTA principles in NIST Special

Publication 800-207, establishing a foundation for

implementing zero trust across diverse environments. Key

principles include strict identity verification, least privilege

access, and continuous monitoring. Building on this

foundation, Ward and Beyer [12] described Google's

BeyondCorp implementation, demonstrating practical

applications of zero trust in large-scale environments.

Several researchers have explored zero trust implementations

in cloud environments. Khan et al. [13] proposed a cloud-

specific zero trust framework focusing on resource-level

access controls and continuous authentication. Similarly,

Vanickis et al. [14] developed a risk-adaptive access control

model for cloud resources based on zero trust principles.

However, most existing zero trust research focuses on

traditional cloud deployments or Infrastructure as a Service

(IaaS) models. The application of zero trust principles to FaaS

environments remains underexplored, particularly regarding

the event-driven and ephemeral nature of serverless

functions.

C. Security in Function Execution Environments

Function execution environments represent a critical security

boundary in FaaS platforms. Several studies have

investigated isolation mechanisms and their effectiveness.

Wang et al. [15] analyzed container-based isolation in

commercial FaaS platforms, identifying several cross-

function side-channel vulnerabilities. Brenner et al. [16]

proposed alternative isolation mechanisms using lightweight

virtualization technologies to enhance security without

sacrificing performance.

Runtime protection mechanisms for serverless functions have

also received attention. Palade et al. [17] developed a runtime

monitoring framework for serverless functions that analyzes

behavioral patterns to detect anomalies. Datta et al. [18]

proposed a function-level firewall that enforces security

policies based on observed behaviors rather than static rules.

While these approaches address aspects of function execution

security, they generally operate in isolation rather than as part

of a comprehensive security framework. Additionally, few

explicitly incorporate zero trust principles into their design.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1196
IJRITCC | October 2023, Available @ http://www.ijritcc.org

D. Gaps in Current Research

Our literature review reveals several important gaps in

current research:

a. Limited integration of zero trust principles with

FaaS-specific security requirements

b. Insufficient empirical evaluation of security

measures across commercial FaaS platforms

c. Lack of adaptive security mechanisms that account

for the dynamic nature of serverless execution

d. Absence of comprehensive frameworks that address

the full lifecycle of serverless function security

Our research aims to address these gaps by developing and

evaluating an adaptive zero trust framework specifically

designed for cloud-native FaaS environments.

III. METHODOLOGY

A. Research Design

We employed a mixed-methods approach combining

qualitative vulnerability assessment with quantitative

experimental evaluation. Our research process consisted of

four phases:

a. Systematic vulnerability assessment across major

FaaS platforms

b. Framework development based on identified

vulnerabilities and zero trust principles

c. Implementation of prototypical security controls

d. Experimental evaluation of security efficacy and

performance impact

This approach allowed us to ground our framework in real-

world vulnerabilities while providing empirical validation of

proposed mitigations.

B. Vulnerability Assessment

We conducted a comprehensive vulnerability assessment

across five major FaaS platforms: AWS Lambda, Google

Cloud Functions, Microsoft Azure Functions, IBM Cloud

Functions, and Oracle Cloud Functions. Our assessment

methodology combined:

a. Static analysis: We examined platform

documentation, security best practices, and default

configurations to identify potential security weaknesses.

b. Dynamic testing: We deployed instrumented

functions to each platform and conducted controlled attacks

to validate vulnerabilities.

c. Threat modeling: We applied STRIDE (Spoofing,

Tampering, Repudiation, Information disclosure, Denial of

service, Elevation of privilege) methodology to identify

potential attack vectors specific to FaaS environments.

The test covered three primary attack surfaces:

a. Function invocation and API gateways

b. Function execution environments

c. Event sources and triggers

For ethical considerations, all testing was conducted in

isolated environments with explicit permission from cloud

providers. No production systems were targeted, and all

identified vulnerabilities were disclosed to the respective

providers before publication.

C. Framework Development

Based on our vulnerability assessment, we developed a zero-

trust framework specifically tailored for FaaS environments.

Framework development followed a structured approach:

a. Principles definition: We adapted core zero trust

principles from NIST SP 800-207 to address FaaS-specific

requirements.

b. Architecture specification: We defined architectural

components and their interactions, focusing on function-level

security controls.

c. Control mechanisms: We designed specific security

controls addressing identified vulnerabilities.

d. Integration patterns: We developed patterns for

integrating our framework with existing FaaS platforms.

The framework development process incorporated feedback

from security practitioners and cloud architects through a

series of structured interviews and design reviews.

 D. Experimental Evaluation

We evaluated our framework through a series of controlled

experiments designed to measure:

a. Security efficacy: Ability to detect and prevent

attacks targeting identified vulnerabilities

b. Performance impact: Overhead introduced by

security controls

c. False positive rates: Accuracy of detection

mechanisms

d. Operational complexity: Effort required to

implement and maintain security controls

Experiments were conducted across three major FaaS

platforms (AWS Lambda, Google Cloud Functions, and

Azure Functions) using a set of representative serverless

applications encompassing diverse workloads:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1197
IJRITCC | October 2023, Available @ http://www.ijritcc.org

a. API-driven application: RESTful service with

multiple interconnected functions

b. Event-processing pipeline: Event-driven workflow

processing structured data

c. ML inference service: Machine learning model

serving requests via functions

Each application was deployed in four configurations:

a. Baseline (no additional security controls)

b. Traditional security controls (API authentication,

role-based access)

c. Basic zero trust implementation (all controls static)

d. Adaptive zero trust implementation (our proposed

framework)

Metrics were collected over a 30-day period under simulated

workloads representing typical production patterns.

 IV. PROPOSED FRAMEWORK

A. Core Principles

Our zero-trust framework for FaaS environments is founded

on six core principles adapted from traditional zero trust

models but tailored to the unique characteristics of serverless

computing:

a. Verify explicitly: Authenticate and authorize every

function invocation regardless of source or network path.

b. Function-level granularity: Apply security controls

at the individual function level rather than at service or

application boundaries.

c. Least privilege by default: Automatically constrain

function permissions to the minimum required based on

observed behaviors.

d. Continuous verification: Monitor function behavior

during execution and adapt security controls based on

observed patterns.

e. Context-aware authorization: Incorporate execution

context (time, source, payload characteristics) into

authorization decisions.

f. Assume compromise: Design controls assuming that

any component may be compromised, with special attention

to the ephemeral nature of function instances.

These principles guide the architectural design and specific

control mechanisms within our framework.

B. Architectural Components

Our framework comprises five primary architectural

components that work together to implement zero trust

principles in FaaS environments (Fig. 1):

Figure 1: Architectural components of the adaptive zero trust framework for FaaS environments

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1198
IJRITCC | October 2023, Available @ http://www.ijritcc.org

i.Identity and Access Proxy (IAP): Intercepts function

invocation requests, performs authentication, and enforces

context-aware authorization policies. The IAP validates the

identity of both human and non-human entities (e.g., other

functions, external services) attempting to invoke functions.

ii.Function Security Context (FSC): Maintains a

comprehensive security profile for each function, including:

- Expected behavior patterns

- Required permissions and resources

- Historical invocation patterns

- Dependency relationships with other functions or

services

iii.Runtime Behavior Monitor (RBM): Observes function

execution in real-time, collecting telemetry on:

- Resource utilization patterns

- Network communication

- File system access

- API calls and service interactions

- Execution timing characteristics

iv.Adaptive Policy Engine (APE): Analyzes data from the RBM

and updates security policies based on observed behaviors.

The APE employs machine learning techniques to establish

behavioral baselines and detect anomalous activities that may

indicate security threats.

v.Security Orchestration Layer (SOL): Coordinates the

deployment and configuration of security controls across the

FaaS environment, ensuring consistent policy enforcement

and providing centralized visibility into security posture.

These components are designed to operate with minimal

modification to existing serverless applications, allowing

incremental adoption of zero trust principles.

C. Identity and Authentication

Strong identity verification forms the foundation of our zero-

trust approach. We implement multi-dimensional identity

verification that extends beyond traditional API keys or

tokens:

i.Entity authentication: Verifies the identity of the invoking

entity using industry-standard protocols (OAuth 2.0, OIDC)

with additional contextual validation.

ii.Function authentication: Validates the identity and integrity

of the function itself through binary attestation and runtime

verification.

iii.Contextual validation: Incorporates additional factors such

as:

- Temporal patterns (time of day, frequency of

invocation)

- Network characteristics (source IP, TLS fingerprint)

- Invocation patterns (payload structure, parameter

values)

- Historical behavior consistency

Authentication decisions employ a risk-based approach

where higher-risk operations require stronger verification.

This is particularly important for functions that access

sensitive data or perform privileged operations.

D. Fine-Grained Authorization

Traditional role-based access control (RBAC) is insufficient

for FaaS environments due to the granular nature of functions

and their diverse permission requirements. Our framework

implements:

i.Function-level authorization: Permissions are defined and

enforced at the individual function level rather than at the

application or service level.

ii.Just-in-time permissions: Temporary credentials with

minimal scope are generated for each function invocation,

valid only for the duration of execution.

iii.Intent-based permissions: Authorization decisions consider

not only identity but also the declared intent of the invocation,

validated against expected behavior patterns.

iv.Dynamic permission boundaries: Permission scopes

automatically adjust based on observed function behaviors,

constraining access to the minimum required resources.

To implement these capabilities, we extended existing

authorization frameworks (OAuth 2.0, AWS IAM, GCP

IAM) with additional context-aware policies and runtime

enforcement mechanisms.

E. Runtime Protection

The ephemeral nature of FaaS environments requires robust

runtime protection mechanisms that can detect and respond

to threats during function execution. Our framework

provides:

i.Behavioral baseline: Automatically establishes normal

behavior patterns for each function across multiple

dimensions (resource usage, network activity, API calls).

ii.Anomaly detection: Identifies deviations from established

baselines that may indicate security threats, employing both

rule-based heuristics and machine learning models.

iii.Runtime policy enforcement: Enforces security policies

during execution, including:

• Network egress controls

• File system access restrictions

• API call validation

• Resource utilization limits

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1199
IJRITCC | October 2023, Available @ http://www.ijritcc.org

iv.Execution flow integrity: Validates the control flow of

functions against expected patterns to detect code injection or

manipulation attempts.

Runtime protection components operate with minimal

performance overhead through selective instrumentation and

adaptive monitoring based on risk assessment.

F. Secure Communications

Serverless functions frequently communicate with other

services and functions, creating potential vulnerability points.

Our framework ensures secure communication through:

i.Mutual TLS authentication: Requires certificate-based

authentication for all inter-function and service

communications.

ii.Dynamic secrets management: Automatically provisions and

rotates credentials required for external service access.

iii.Communication verification: Validates that communication

patterns match expected behaviors defined in the function

security context.

iv.Payload validation: Inspects message contents against

predefined schemas to prevent injection attacks and data

leakage.

These mechanisms ensure that all data flows between

functions and external services maintain confidentiality,

integrity, and authenticity in accordance with zero trust

principles.

G. Adaptive Security Controls

A key innovation in our framework is the use of adaptive

security controls that evolve based on observed behaviors and

emerging threats. This approach addresses the dynamic

nature of FaaS environments where function behavior may

legitimately change over time.

Adaptive controls operate through a continuous feedback

loop:

i.Observation: Collecting telemetry data from function

executions

ii.Analysis: Processing telemetry to identify patterns and

anomalies

iii.Model update: Refining behavioral models and risk

assessments

iv.Policy adjustment: Automatically updating security policies

based on new models

v.Enforcement: Applying updated policies to subsequent

function invocations

To prevent adversarial manipulation, adaptive controls

incorporate safeguards that limit the rate and scope of policy

changes and require multiple confirmations for significant

security relaxations.

V. EXPERIMENTAL RESULTS

A. Security Efficacy Evaluation

We evaluated the security efficacy of our framework against

a representative set of attacks targeting FaaS environments.

Table I summarizes the detection and prevention rates across

different security configurations.

Table 1: Attack Detection and Prevention Rates (Format: Detection Rate/Prevention Rate)

Attack Vector Baseline Traditional

Controls

Basic Zero Trust Adaptive Zero Trust

Function event injection 12% / 0% 45% / 30% 87% / 76% 96% / 92%

Dependency confusion 0% / 0% 23% / 15% 68% / 56% 89% / 82%

Excessive permission

exploitation

8% / 0% 42% / 35% 75% / 70% 94% / 88%

Container escape 0% / 0% 15% / 10% 62% / 45% 87% / 76%

Data exfiltration 5% / 0% 37% / 25% 78% / 65% 93% / 87%

Cross-function side-

channel

0% / 0% 0% / 0% 54% / 40% 82% / 75%

Cold start timing attacks 0% / 0% 0% / 0% 37% / 25% 76% / 65%

Average 3.6% / 0% 23.1% / 16.4% 65.9% / 53.9% 88.1% / 80.7%

Our adaptive zero trust implementation significantly

outperformed both traditional security controls and basic

(static) zero trust implementations across all attack vectors.

The most notable improvements were observed in detecting

and preventing sophisticated attacks such as cross-function

side-channels and cold start timing attacks, which traditional

controls failed to address entirely.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1200
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 2: Comparison of security efficacy across different security configurations and attack categories

B. Performance Impact

A critical concern for FaaS security controls is their impact

on function performance, particularly regarding execution

latency and cold start times. We measured these metrics

across our test configurations and workloads. Fig. 3 shows

the average latency impact for different function types.

Figure 3: Average latency impact of security controls by function type

Key observations regarding performance impact include:

i.Our adaptive zero trust implementation introduced an average

latency increase of 12.3% compared to the baseline

configuration, which is significantly lower than the 18.7%

increase observed with the basic zero trust implementation.

ii.Performance impact varied by function type, with compute-

intensive functions experiencing lower relative overhead

(7.8%) compared to I/O-bound functions (14.6%).

iii.Cold start latency showed higher variability, with increases

ranging from 15.2% to 28.7% depending on function

complexity and runtime environment.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1201
IJRITCC | October 2023, Available @ http://www.ijritcc.org

iv.Performance impact decreased over time in the adaptive

implementation as the system optimized security controls

based on observed patterns, demonstrating the efficacy of our

adaptive approach.

Table II provides detailed performance metrics across

different workload characteristics.

Table 2: Performance Impact by Workload Type (Percentages indicate increase relative to baseline)

Metric Workload Type Baseline Traditional Controls Basic Zero Trust Adaptive Zero Trust

Average Latency (ms) API (simple) 42.3 48.7 (15.1%) 53.2 (25.8%) 46.9 (10.9%)

API (complex) 78.5 91.2 (16.2%) 97.6 (24.3%) 88.7 (13.0%)

Data processing 156.2 172.8 (10.6%) 189.5 (21.3%) 174.3 (11.6%)

ML inference 243.8 259.5 (6.4%) 282.4 (15.8%) 265.2 (8.8%)

Cold Start (ms) API (simple) 387.5 423.2 (9.2%) 482.6 (24.5%) 453.8 (17.1%)

API (complex) 542.3 598.5 (10.4%) 672.8 (24.1%) 624.5 (15.2%)

Data processing 723.6 815.7 (12.7%) 912.3 (26.1%) 856.7 (18.4%)

ML inference 1256.4 1387.2 (10.4%) 1578.5 (25.6%) 1485.3 (18.2%)

Memory Usage (MB) API (simple) 86.2 92.4 (7.2%) 112.6 (30.6%) 98.7 (14.5%)

API (complex) 124.5 132.8 (6.7%) 158.3 (27.1%) 138.2 (11.0%)

Data processing 218.3 232.5 (6.5%) 274.6 (25.8%) 243.7 (11.6%)

ML inference 485.7 512.4 (5.5%) 582.3 (19.9%) 532.6 (9.7%)

These results demonstrate that our adaptive approach

significantly reduces the performance penalty typically

associated with comprehensive security controls in FaaS

environments.

C. False Positive Evaluation

False positives represent a significant challenge for security

controls, potentially disrupting legitimate operations. We

evaluated false positive rates across different security

configurations using benign workloads that mimicked

production patterns. Table III summarizes our findings.

Table 3: False Positive Rates by Detection Mechanism

Detection Mechanism Traditional Controls Basic Zero Trust Adaptive Zero Trust

Authentication anomaly 0.8% 2.3% 0.5%

Authorization violation 1.2% 2.7% 0.7%

Behavioral anomaly N/A 5.8% 1.2%

Resource usage anomaly 2.5% 4.2% 0.9%

Network communication anomaly 3.1% 3.8% 0.8%

API usage anomaly 1.7% 3.5% 0.6%

Overall 1.9% 3.7% 0.8%

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1202
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Notably, our adaptive zero trust implementation achieved the

lowest false positive rates across all detection mechanisms,

outperforming both traditional controls and basic zero trust

implementations. This improvement is attributed to:

i.Continuous refinement of behavioral models based on

observed patterns

ii.Context-aware detection thresholds that adjust based on

function characteristics

iii.Multi-dimensional analysis that reduces the impact of single-

factor anomalies

iv.Progressive learning capabilities that recognize legitimate

behavior changes

The significant reduction in false positives enhances the

operational viability of our framework, addressing a common

concern with advanced security controls.

D. Case Study: Detecting Novel Attack Patterns

To evaluate our framework's ability to detect novel attacks not

used during development, we collaborated with a red team to

develop and execute previously undocumented attack

scenarios. One representative scenario involved:

i.A multi-stage attack beginning with a seemingly benign

function invocation

ii.Gradual escalation of privileges through subtle behavioral

changes

iii.Exploitation of cross-function dependencies to access

unauthorized resources

iv.Data exfiltration through legitimate communication channels

at altered rates

Figure 4: Detection timeline for novel multi-stage attack

Key observations:

i.Traditional controls detected the attack only at the final

exfiltration stage, 47 minutes after initial compromise.

ii.Basic zero trust controls detected suspicious behavior at the

privilege escalation stage, 23 minutes after initial

compromise.

iii.Our adaptive zero trust framework detected anomalous

patterns within 4 minutes of initial compromise, before any

significant privilege escalation occurred.

This case study demonstrates the ability of our adaptive

approach to identify subtle attack patterns that evade

traditional detection mechanisms, providing early warning of

potential compromises.

VI. DISCUSSION

A. Key Findings and Implications

Our research demonstrates several important findings

regarding zero trust security in FaaS environments:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1203
IJRITCC | October 2023, Available @ http://www.ijritcc.org

i.FaaS-specific vulnerabilities require specialized controls:

Traditional security approaches fail to address many FaaS-

specific vulnerabilities, particularly those related to function

isolation, cold start characteristics, and event-driven

architectures. Our results show that security controls must be

specifically designed for serverless environments to be

effective.

ii.Adaptive controls outperform static approaches: The

dynamic nature of FaaS workloads makes static security

policies insufficient. Our adaptive zero trust implementation

consistently outperformed static configurations across all

security and performance metrics, with particularly

significant improvements in false positive reduction.

iii.Function-level granularity is essential: Applying security

controls at the function level rather than at service or

application boundaries significantly improves security

efficacy without corresponding performance penalties. This

granular approach aligns well with the microservice nature of

FaaS architectures.

iv.Performance impact can be minimized through adaptation: A

common concern with comprehensive security controls is

their performance impact. Our results demonstrate that

adaptive approaches can significantly reduce this overhead by

optimizing controls based on observed behaviors and risk

assessments.

v.Cross-provider consistency remains challenging: While our

framework successfully deployed across multiple cloud

providers, we observed significant variations in the

underlying security capabilities, requiring provider-specific

adaptations. This highlights the need for standardized

security interfaces across FaaS platforms.

These findings have important implications for organizations

adopting FaaS architectures:

i.Security architecture must evolve with deployment models:

Organizations transitioning to serverless computing need to

fundamentally rethink their security approaches rather than

attempting to adapt traditional models.

ii.Function design should incorporate security considerations:

The efficacy of security controls is influenced by function

design decisions, suggesting that security should be a primary

consideration during function development.

iii.Observability is foundational to security: Our adaptive

approach relies heavily on comprehensive telemetry data,

highlighting the importance of robust observability

infrastructure for FaaS security.

B. Limitations

Our research has several limitations that should be considered

when interpreting results:

i.Limited deployment scale: While our test environments were

designed to represent realistic workloads, they did not reach

the scale of large enterprise deployments. Security and

performance characteristics may vary at extreme scales.

ii.Provider-specific optimizations: Our implementation

required provider-specific adaptations that may not

generalize to all FaaS platforms, particularly newer or less

common offerings.

iii.Workload diversity: Although we tested diverse function

types, the infinite variety of possible FaaS workloads means

that some specialized use cases may experience different

security or performance characteristics.

iv.Long-term adaptation effects: Our evaluation period (30

days) may not fully capture the long-term effects of adaptive

security controls, particularly regarding potential drift or

overfitting to specific patterns.

C. Future Research Directions

Based on our findings and limitations, we identify several

promising directions for future research:

i.Cross-provider standardization: Developing standardized

security interfaces and controls that operate consistently

across FaaS providers would significantly improve the

practical implementation of zero trust architectures.

ii.Hardware-assisted security: Exploring the integration of

hardware security features (e.g., confidential computing,

TPMs) with FaaS security controls to enhance function

isolation and attestation capabilities.

iii.Formal verification of security properties: Developing formal

methods to verify security properties of serverless

applications, considering both the application logic and the

underlying platform security mechanisms.

iv.Collaborative security models: Investigating multi-tenant

security models where functions from different applications

or organizations can share security intelligence while

maintaining isolation guarantees.

v.Developer tooling integration: Creating developer-focused

tools that integrate security considerations into the function

development lifecycle, encouraging security-by-design

approaches.

VII. CONCLUSION

This paper presented a comprehensive analysis of security

challenges in cloud-native FaaS environments and proposed

an adaptive zero trust framework addressing these challenges.

Our empirical evaluation demonstrated significant

improvements in security efficacy across diverse attack

vectors while maintaining acceptable performance

characteristics.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 1204
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Key contributions of this work include:

i.A detailed taxonomy of FaaS-specific vulnerabilities based

on empirical testing across major cloud providers

ii.An architectural framework for implementing zero trust

principles in serverless environments

iii.Novel adaptive security controls that evolve based on

observed function behaviors

iv.Empirical validation of security efficacy and performance

impacts across diverse workloads

As organizations increasingly adopt serverless computing

models, the security challenges identified in this research will

become more prominent. Our adaptive zero trust framework

provides a foundation for addressing these challenges,

enabling organizations to realize the benefits of FaaS while

maintaining robust security postures.

Future work will focus on standardizing security interfaces

across providers, integrating hardware security capabilities,

and developing formal verification methods for serverless

security properties. These advancements will further enhance

the security of cloud-native FaaS environments, enabling

broader adoption across security-sensitive domains.

REFERENCES

[1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski,

"The rise of serverless computing," Communications of

the ACM, vol. 62, no. 12, pp. 44-54, 2019.

[2] N. Bila, P. Dettori, A. Kanso, Y. Watanabe, and A.

Youssef, "Leveraging the serverless architecture for

securing linux containers," in 2017 IEEE 37th

International Conference on Distributed Computing

Systems Workshops (ICDCSW), 2017, pp. 401-404.

[3] J. Kindervag, "Build security into your network's DNA:

The zero trust network architecture," Forrester Research

Inc, vol. 3, 2010.

[4] I. Baldini et al., "Serverless computing: Current trends and

open problems," in Research Advances in Cloud

Computing, 2017, pp. 1-20.

[5] P. Datta, P. Kumar, T. Morris, M. Grace, A. Rahmati, and

A. Bates, "Valve: Securing function workflows on

serverless computing platforms," in Proceedings of The

Web Conference 2020, 2020, pp. 939-950.

[6] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M.

Sagiv, T. Schmitz, and K. Winstein, "Secure serverless

computing using dynamic information flow control,"

Proceedings of the ACM on Programming Languages,

vol. 2, no. OOPSLA, pp. 1-26, 2018.

[7] N. Puri, P. Desai, A. Garg, and D. Garg, "Security analysis

of serverless applications," in 2021 IEEE Security and

Privacy Workshops (SPW), 2021, pp. 170-177.

[8] M. Shilkov, "Cold starts in serverless functions," in 2019

IEEE International Conference on Cloud Engineering

(IC2E), 2019, pp. 156-161.

[9] A. Akhunzada et al., "Securing serverless computing:

Challenges, threats, and opportunities," IEEE Cloud

Computing, vol. 7, no. 4, pp. 62-71, 2020.

[10] J. Kindervag, "No more chewy centers: Introducing the

zero trust model of information security," Forrester

Research, vol. 14, 2010.

[11] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, "Zero

trust architecture," NIST Special Publication, vol. 800, p.

207, 2020.

[12] R. Ward and B. Beyer, "BeyondCorp: A new approach to

enterprise security," ;login:, vol. 39, no. 6, pp. 6-11, 2014.

[13] M. A. Khan and M. Sarfaraz, "A framework for cloud-

based zero-trust architecture for government

infrastructure," in 2021 International Conference on

Cyber Warfare and Security (ICCWS), 2021, pp. 1-6.

[14] R. Vanickis, P. Jacob, S. Dehghanzadeh, and B. Lee,

"Access control policy enforcement for zero-trust-

http://www.ijritcc.org/

