
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 04

Article Received: 25 January 2022 Revised: 12 February 2022 Accepted: 30 March 2022

 90
IJRITCC | April 2022, Available @ http://www.ijritcc.org

Enhancing React Native: Architecture and

Performance Best Practices for Modern Mobile

Development

Vishnuvardhan Reddy Goli

Sr Lead Developer, Cargill Inc (Innovative Intelligent Solutions LLC), Texas, USA

ABSTRACT

Native React is considered one of the top frameworks for hybrid mobile development and provides a single source of code base for

iOS and Android. However, this comes at the expense of loss of possible performance and scalability, and such can only be gained

with careful architectural decisions and performance optimizations. State management, modules, Bridge optimization, and

performance improvements (reducer, memory fixed, Hermes JS engine, and asset sticking) are the subjects of this paper. Developers

can decrease computational overhead, increase application responsiveness, and improve efficiency by implementing these strategies.

From here on, as React Native matures, Fabric with AI will further alleviate running apps at high speed and relative scale to mobile

devices.

Keywords: React Native, Cross-Platform Development, Mobile Architecture, Performance Optimization, Hermes Engine

INTRODUCTION

Mobile application development has experienced swift

evolution, requiring frameworks to meet all three objectives

of performance, efficiency, and multi-platform functionality.

The traditional mobile application development practice used

native development approaches, which needed individual

codebases for each platform, so developers spent more time

working and keeping Android and iOS systems separate.

Facebook launched React Native in 2015 to provide

developers with a groundbreaking solution through

JavaScript codebases, which generated native components

for decreased development costs and native performance [3].

The implementation of React Native requires fixes that

resolve both architectural problems and performance

limitations to support expanded scalability and efficiency.

The main drawback of React Native occurs from its bridge-

based architecture that helps the JavaScript thread talk to

native components. The cross-platform compatibility of this

architectural approach becomes problematic when the bridge

becomes excessively overused, which leads to performance

issues in high-speed applications, according to [3]. Slow

application performance emerges from inadequate state

management practices, excessive re-redrawing of

components, and inefficient image-loading methods. The

implementation of proven React Native architecture methods,

together with performance enhancement approaches,

becomes essential due to these difficulties.

This research analyzes advanced Reactive Native application

structuring approaches that use efficient state management,

modular approaches, and effective bridge practices. The

paper also explores three key performance optimization

strategies involving re-render reduction, Hermes engine

utilization, and asset loading optimization practices. The

combination of best practices allows developers to maintain

React Native applications with high scalability,

responsiveness, and resource efficiency to fulfill present-day

mobile development needs.

REACT NATIVE ARCHITECTURE: BEST

PRACTICES FOR SCALABILITY

Core Architectural Components

The React Native platform executes applications through

three distinct threads, which supports fast operation and

native-level performance. A React Native system uses three

fundamental elements: JavaScript thread, Native thread, and

Bridge [3]. The JavaScript thread executes all commands that

regulate the UI display and handle business processes and

APIs to generate an interactive application experience. The

Native thread performs two functions, including element

display and native device feature access through components

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 04

Article Received: 25 January 2022 Revised: 12 February 2022 Accepted: 30 March 2022

 91
IJRITCC | April 2022, Available @ http://www.ijritcc.org

like camera GPS and Bluetooth operations. The Bridge

connects JavaScript components and native system calls,

although both JavaScript parameters and native requests go

through this communication interface.

This implementation method achieves reusable code and

platform independence at the cost of slower performance

because of Bridge's asynchronous operation [2]. The delay

increases when JavaScript talks to native modules since each

interaction causes a delay, especially during frequently

updated animations and large datasets. Bridge utilization that

is not efficient results in slowed frames together with sluggish

User Interfaces and elevated memory usage levels.

Developers must optimize Bridge communication through

reduced unnecessary calls and operation batch processing and

native module usage for performance-intensive tasks [4].

The Fabric renderer represents an important architectural

improvement because it enables JavaScript to communicate

directly with native components [3]. The performance

improvements, along with faster rendering speeds in React

Native, now make it work better for complex applications.

Developers who optimize React Native’s basic structure will

achieve better application scalability and lesser

computational delays.

State Management in React Native

A website's state management system serves three primary

functions: securing data consistency and stabilizing the

application and user interface user experience; the lack of

state management quality results in excessive re-rendering

operations and superfluous computations that cause system

slowdown. The choice of state management solutions among

React Native developers depends on application complexity,

and they tend to use Context API together with Redux and

Recoil [2]. Application developers use Context API as a

native React function to manage small applications, yet the

API leads to performance degradation in extensive projects

due to its global re-render activation [3]. Redux functions as

a popular state management tool to enhance data flow

organization and predictability so developers can maintain a

centralized state, but they need to write boilerplate code while

following strict action dispatching rules [2]. The recent recoil

addition offers improved state control by permitting

independent atom updates, leading to lower re-render counts

and faster performance [3].

The optimization of state management through development

requires developers to reduce dependence on global state-use

selectors and memorization to prevent unnecessary

component updates, according to [2]. The practice of lazy

state updates, which postpone UI refresh until crucial changes

occur, allows applications to run more efficiently while

boosting their performance level. State management

implemented correctly gives React Native applications both

long-term scalability and maintainability together with high-

performance capabilities.

Modular Application Structure

A modular application design enables developers to improve

maintainability, readability, and scalability. Programs built

with monolithic structures face performance challenges and

complications during debugging and complex codebase

difficulties. The programming design of React Native

applications should employ modular architecture, where

developers organize user interface elements into self-

contained modules [2].

A React Native application implements proper

modularization based on the separation of concerns model,

which permits each component to handle particular functions.

All user interface components must be stateless units for

reusability, ensuring service logic functions independently

[3]. The system stops unnecessary component changes,

reducing re-renders and memory resource usage. Lazy

loading features that activate components upon demand help

boost the initial application launch speeds and runtime

operational performance [4].

Code splitting stands as an important practice that enables

developers to split big application bundles into various

smaller loadable portions. The system optimizes memory

usage by preventing React Native from rendering superfluous

components, which leads to better runtime efficiency [3].

Modular architecture design enables React Native

applications to adapt and scale properly when development

complexity increases.

Optimizing Bridge Communication

The performance of React Native applications declines when

developers over-rely on the critical communication feature

known as the React Native Bridge. Any transaction involving

the Bridge will cause asynchronous processing delays, which

lead to user interface performance issues. The successful

functioning of the Bridge requires developers to combine

JavaScript requests into batches and minimize excessive

cross-thread interactions while implementing native solutions

for crucial performance tasks [2].

Native Modules should be utilized when dealing with

demanding operations like real-time animations, video

processing, and database queries [4]. The native environment

supports native modules as components that let developers

run performance-driven operations outside the Bridge

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 04

Article Received: 25 January 2022 Revised: 12 February 2022 Accepted: 30 March 2022

 92
IJRITCC | April 2022, Available @ http://www.ijritcc.org

framework. Developers use Fabric as a new rendering system

within React Native to optimize performance by decreasing

the number of asynchronous Bridge calls, according to [3].

Developers should minimize the number of event listeners

and decrease their contacts with native modules to achieve

optimization. By performing continuous event polling, the

Bridge platform can become congested, thus leading to

decreased performance levels [2]. A debouncing and

throttling system enables proper state updates when needed,

thus avoiding high Bridge usage rates.

Leveraging Hermes for Faster Execution

Facebook released the Hermes JavaScript Engine that

enhances React Native performance by refining how

JavaScript runs and maintaining lower memory demand and

automatic garbage collection [3] Startup times extend, and

CPU usage rises when traditional JavaScript engines need to

parse code into executable programs. The bytecode

compilation process that Hermes employs serves to decrease

the overall execution time of JavaScript applications.

Hermes technology enables businesses to cut application

startup delays by 30%, which makes it an optimal choice for

demanding applications [2]. Hermes contains a specialized

garbage collector that stops memory leaks and avoids

unwanted memory allocations, according to [3]. The

programming interface maintains React Native applications

in a state that requires low memory footprints.

The process to enable Hermes in a React Native project

requires customization of the Metro bundler configuration

elements for bytecode compilation support. Developers must

confirm testing with Hermes because various JavaScript

libraries need supplemental configuration settings, according

to [4]. Application developers who use Hermes can achieve

both substantial runtime efficiency and improved

performance.

Profiling and Debugging Architectural Bottlenecks

Performance monitoring throughout development and

debugging activities contributes to the effective operation of

React Native applications. Programming tools detect

performance problems within the rendering phase, state

management process, and memory allocation operations [2].

React DevTools and Flipper represent essential profiling

tools that enable developers to track component rendering

processes and detect advanced network requests, memory

leaks, and performance bottlenecks [3]. The Performance

Monitor of React Native detects problems with memory

consumption and congestion on the user interface thread.

Additionally, applying performance metrics analysis and

event listener cleanup alongside rendering cycle optimization

should be a routine practice for developers to achieve

effective memory management [4]. React Native

development processes become successful when developers

build performance and scalability through the integration of

profiling and debugging methods.

PERFORMANCE OPTIMIZATION IN REACT

NATIVE

Minimizing Unnecessary Re-Renders

One performance bottleneck of the React Native applications

that often occurs is excessive re-rendering, which increases

memory usage, CPU usage, and UI lag. React Virtual DOM:

It does not immediately render all the changes; instead, it

compares the old to the new state to not render (since there

are no changes) or to minimize the necessary changes.

However, re-renders will still degrade the performance if the

components' structuring is inefficient [2]. React Native will

automatically update its component tree when the condition

or props of a component change, which, if not optimized, will

lead to refreshing all parts of the UI.

To prevent re-renders, developers should deploy React.

Memo on functional components to avoid changing

components unless the prop changes.

ShouldComponentUpdate is overridden in class components

to control the re-rendering behavior manually [3].

Furthermore, in functional components, useCallback and

useMemo hooks can be used to memoize functions and

values, not to perform redundant computations and gain

performance. Another technique to optimize rendering is

FlatList and VirtualizedList, which only renders visible list

items and prevents unnecessary UI updates.

Inline function definitions in components also cause

unnecessary re-renders as they create new instances every

time the component renders. By extracting these functions out

of the render method, we ensure that the instantiation of these

components is not done at any time if we do not need them,

and by doing this, we optimize the component lifecycle [4].

By implementing these performance best practices, UI

responsiveness is significantly increased, CPU load reduced,

and the chances of your React Native application becoming

inefficient and not scalable are reduced.

Efficient Memory Management and Garbage Collection

Memory management is crucial because memory issues will

likely cause your React Native application to crash. Improper

resource deallocation results in memory leaks, excessive

memory consumption, poor performance, and responsiveness

[1]. Uncontrolled event listeners, components stuck with

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 04

Article Received: 25 January 2022 Revised: 12 February 2022 Accepted: 30 March 2022

 93
IJRITCC | April 2022, Available @ http://www.ijritcc.org

references after they have been unmounted, and poor image

management are the main reasons for memory leaks in React

Native. These leaks can be identified and mitigated to

improve long-term application efficiency.

As a best practice for memory optimization, event listeners,

timers, and subscriptions should be cleaned up when the

components unmount. The cleanup function of the useEffect

hooks prevents consuming the memory of the background

processes one does not need [2]. Lastly, using WeakMap for

caching objects leads to automatic memory deallocation

when an object is not referenced anymore, reducing further

memory retention. It is another critical optimization in JSON

data processing when large objects cause costly garbage

collection overhead.

Doing unnecessary object allocation and deallocation will

now create performance bottlenecks since React Native runs

on top of JavaScript and exploits JavaScript’s garbage

collection. Also, the Hermes JavaScript Engine implements

compacted memory allocation to reduce fragmentation,

improve garbage collection cycles, and thus improve the

efficiency of garbage collection [3]. By enabling Hermes,

applications need less memory and can run more efficiently

on devices with fewer resources. By utilizing these strategies,

developers can make sure that React Native applications do

not crash, consume fewer resources, and are free from

memory performance problems.

Leveraging the Hermes JavaScript Engine for Faster

Execution

Hermes JavaScript Engine is an exceptional optimization tool

for increasing React Native application’s execution speed,

memory efficiency, and overall application responsiveness.

Both parsing and execution overheads are introduced in

traditional JavaScript engines like V8 and JavaScriptCore,

thus causing longer startup times and more memory usage

[2]. Hermes precompiles JavaScript into bytecode to allow

faster execution without having to parse the JavaScript at

runtime.

Hermes’ advantage in one of its primary advantage lies in its

potential to reduce application startup times by up to 30%,

which makes it a critical performance optimization for

performance-critical applications [3]. Hermes also has

another cherry on top: an optimized garbage collector that

prevents memory fragmentation and makes the app stable.

Hermes applications are also lighter, requiring less RAM, and

thus, fit on any lower-end device.

In order to integrate Hermes, developers need to change the

Metro bundler configuration, so it works with React Native’s

bytecode compilation. Nevertheless, specific third-party

dependencies should be adjusted to support Hermes, and IT

should be considered meticulous when selecting the libraries

[4]. Although incompatibility issues are not airtight, Hermes

is by far one of the best solutions for React Native’s

performance boost, therefore making it a perfect fit for apps

that demand fast execution as well as minimized memory

usage.

CONCLUSION

The optimal performance of apps built with React Native

demands systematic architectural choices and regular work

on improvement. An analysis of state management efficiency

is contained in this paper, along with the study of Bridge

optimizations and modularization techniques while focusing

on performance optimizations involving re-render reduction

memory optimization net, work efficiency improvement, and

Hermes engine utilization. The application's speed,

scalability, and resource efficiency can be achieved by

adequately implementing best practices. The development of

React Native presents new features in Fabric and AI

optimization methods, which will improve execution speed

and performance responsiveness. As developers refine their

development methods, they will achieve the creation of high-

performance mobile applications that are ready for future

needs in the increasingly challenging market.

REFERENCES

[1] L. J. Cruz and R. Abreu, “Performance-Based Guidelines

for Energy Efficient Mobile Applications,” May 2017,

doi: https://doi.org/10.1109/mobilesoft.2017.19.

[2] A. Javeed, “Performance Optimization Techniques for

ReactJS,” 2019 IEEE International Conference on

Electrical, Computer and Communication Technologies

(ICECCT), Feb. 2019, doi:

https://doi.org/10.1109/icecct.2019.8869134.

[3] V. Kaushik, K. Gupta, and D. Gupta, “React Native

Application Development,” papers.ssrn.com, 2018.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=333

0011

[4] A. Luntovskyy, “Advanced software-technological

approaches for mobile apps development,” IEEE Xplore,

Feb. 01, 2018.

https://ieeexplore.ieee.org/abstract/document/8336168

(accessed Feb. 22, 2022).

http://www.ijritcc.org/
https://doi.org/10.1109/mobilesoft.2017.19
https://doi.org/10.1109/icecct.2019.8869134
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3330011
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3330011

