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Abstract: Given a graph 𝐺 = (𝑉, 𝐸), two subsets 𝑆1 and 𝑆2 of the vertex set 𝑉 are homometric, if their distance multi sets are equal. The 

homometric number 𝑕(𝐺) of a graph 𝐺 is the largest integer 𝑘 such that there exist two disjoint homometric subsets of cardinality 𝑘. We find 

lower bounds for the homometric number of the Mycielskian of a graph and the join and the lexicographic product of two graphs. We also 

obtain the homometric number of the double graph of a graph, the cartesian product of any graph with 𝐾2 and the complete bipartite graph. We 

also introduce a new concept called weak homometric number and find weak homometric number of some graphs. 
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I. Introduction 

Let 𝐺 = (𝑉 𝐺 , 𝐸(𝐺)) be a graph with vertex set 𝑉(𝐺) and 

edge set 𝐸(𝐺). If there is no ambiguity in the choice of  𝐺, 

then we write 𝑉(𝐺) and 𝐸(𝐺) as 𝑉 and 𝐸 respectively. For 

any set 𝑆 ⊆ 𝑉 the cardinality of 𝑆 is denoted by  |𝑆|. The 

distance multi set of  𝑆, denoted by 𝐷𝑀(𝑆), is the multi set 

of all pair-wise distances between any two vertices of 𝑆. 

Two subsets 𝑆1 and 𝑆2 of the vertex set 𝑉 are said to be 

homometric, if their distance multi sets are equal. The 

homometric number 𝑕(𝐺) of a graph 𝐺 is the largest integer 

𝑘 such that there exist two disjoint homometric subsets, 𝑆1 

and 𝑆2 of the vertex set 𝑉, each of cardinality 𝑘. Clearly, 

𝑕 𝐺 ≤ ⌊𝑛

2 
⌋, where ⌊𝑥⌋ denotes the greatest whole number 

less than or equal to 𝑥. Even though there is a concept of 

infinite distance in the case of disconnected graphs, to avoid 

ambiguity we consider only connected graphs. For a family 

of graphs 𝒢, 𝑕(𝒢) is the largest integer 𝑕 such that 𝑕(𝐺) ≥

𝑕, for every 𝐺 ∈ 𝒢. For any positive integer 𝑛, 𝑕 𝑛 =

𝑕(𝒢𝑛), where 𝒢𝑛  denotes the class of all graphs on 𝑛 

vertices. 

 

In 2010, Albertson, Pach and Young [1] initiated the study 

of homometric sets in graphs. They proved that every graph 

on 𝑛 vertices, 𝑛 > 3, contains homometric sets of size at 

least  
𝑐 𝑙𝑜𝑔  𝑛

log log 𝑛
 , for a constant 𝑐. On the other hand, they 

constructed a class of graphs where the size of homometric 

sets cannot exceed  
𝑛

4
 , where𝑛 > 3. The lower bound was 

apparently improved by Alon in [11] as 𝑕 𝑛 ≥
𝑐 (log 𝑛)2  

(log log 𝑛)2. 

Axenovich and Ӧzkahya [3] gave a better lower bound on 

the maximal size of homometric sets in trees. They showed 

that every tree on 𝑛 vertices contain homometric sets of size 

at least  𝑛
3

. A haircomb tree on 𝑛 vertices contains 

homometric sets of size at least  
 𝑛

2
 . They also proved that, 

for any graph 𝐺 of diameter 𝑑, 𝑕 𝐺 ≥ 𝑐𝑛
1

2𝑑−2 .  R. Fulek 

and S. Mitrović [6] improved the result on trees by proving 

that there exist disjoint homometric sets of size at least 

 
𝑛

2
−

1

2
 . A better lower bound for haircomb trees is also 

given in [6]. Lemke, Skiena and Smith [8] showed that if 𝐺 

is a cycle of length 2𝑛 then every subset of  𝑉(𝐺) with 𝑛 

vertices and its complement are homometric sets. In [2], it is 

proved that the above result works not only for cycles but 

for all vertex transitive graphs. 

 

1.1 Basic Definitions and Preliminaries 

For any graph 𝐺 the number of vertices in 𝐺 is denoted by 

𝑛(𝐺). For any vertex 𝑣 ∈ 𝑉 the degree of 𝑣, denoted by 

𝑑𝐺(𝑣), is the number of edges incident to 𝑣. The distance 

between any two vertices 𝑢 and 𝑣 in 𝑉 is the length of the 

shortest path joining 𝑢 and 𝑣 in 𝐺 and is denoted by 

𝑑𝐺(𝑢, 𝑣). The maximum distance between any pair of 

vertices in 𝐺 is the diameter of the graph 𝐺 and is denoted 

by 𝑑𝑖𝑎𝑚(𝐺). Any induced path 𝑃 = 𝑢1, 𝑢2, … , 𝑢𝑙  in 𝐺 

where 𝑑𝐺 𝑢1 , 𝑢𝑙 = 𝑑𝑖𝑎𝑚(𝐺) is called a diametral path with 

end vertices 𝑢1 and 𝑢𝑙 . Since {𝑢1, 𝑢2, … , 𝑢
 
𝑙

2
 
} and 

{𝑢
 
𝑙

2
 +1

, … , 𝑢
2 

𝑙

2
 
} are disjoint homometric subsets, 
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⌈
𝑑𝑖𝑎𝑚  𝐺 

2
⌉ ≤ 𝑕(𝐺), where ⌈𝑥⌉ denotes the least whole number 

greater than or equal to 𝑥. 

 

A subset 𝑆 ⊆ 𝑉 of vertices is said to be independent if no 

two vertices of 𝑆  are adjacent to each other in 𝐺. The 

maximum cardinality of an independent set of vertices in 𝐺 

is the independence number, denoted by ⍺(𝐺). The girth of 

a graph 𝐺 is the length of the shortest cycle in 𝐺 and is 

denoted by 𝑔(𝐺). 

 

The Mycielskian 𝑀(𝐺) of a graph 𝐺 is the graph with vertex 

set 𝑉 𝐺 ∪ 𝑉 ′ 𝐺 ∪ {𝑤} where 𝑉 ′ 𝐺 = {𝑣𝑖 : 𝑢𝑖 ∈ 𝑉(𝐺)} 

and edge set 𝐸 𝐺 ∪  𝑢𝑖𝑣𝑗 :  𝑢𝑖𝑢𝑗 ∈ 𝐸 𝐺  ∪ {𝑤𝑣𝑖 : 𝑣𝑖 ∈

𝑉 ′(𝐺)}. In [5], it has been proved that for a connected 

noncomplete graph 𝐺, 𝑑𝑖𝑎𝑚 𝑀 𝐺  = min⁡{𝑑𝑖𝑎𝑚 𝐺 , 4}. 

 

The join of two graphs 𝐺  and 𝐻, denoted by 𝐺 ∨ 𝐻, is 

defined as the graph with 𝑉 𝐺 ∨ 𝐻 = 𝑉(𝐺) ∪ 𝑉(𝐻) and 

𝐸 𝐺 ∨ 𝐻 = 𝐸 𝐺 ∪ 𝐸 𝐻 ∪ {𝑢𝑣, 𝑤𝑕𝑒𝑟𝑒 𝑢 ∈

𝑉 𝐺  𝑎𝑛𝑑 𝑣 ∈ 𝑉(𝐻)}. The cartesian product of two graphs 

𝐺 and 𝐻, denoted by 𝐺□𝐻, is the graph with vertex set 

𝑉(𝐺) × 𝑉(𝐻) and any two vertices (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are 

adjacent in 𝐺□𝐻 if (i) 𝑢1 = 𝑢2 and 𝑣1𝑣2 ∈ 𝐸(𝐻), or (ii) 

𝑢1𝑢2 ∈ 𝐸(𝐺) and 𝑣1 = 𝑣2 .  It is known that [7], if  (𝑢1, 𝑣1) 

and (𝑢2, 𝑣2) are two vertices in 𝐺□𝐻, then 𝑑𝐺□𝐻((𝑢1 , 𝑣1) 

(𝑢2, 𝑣2)) = 𝑑𝐺 𝑢1, 𝑢2 + 𝑑𝐻 𝑣1 , 𝑣2 . The lexicographic 

product of two graphs 𝐺 and 𝐻 is the graph 𝐺[𝐻] with 

vertex set 𝑉(𝐺) × 𝑉(𝐻) and any two vertices (𝑢1, 𝑣1) and 

(𝑢2, 𝑣2) are adjacent in 𝐺[𝐻] if and only if (i) 𝑢1𝑢2 ∈ 𝐸(𝐺), 

or (ii) 𝑢1 = 𝑢2 and 𝑣1𝑣2 ∈ 𝐸(𝐻). In [7], it is proved that 

if (𝑢1, 𝑣1) and (𝑢2, 𝑣2)  are two vertices in 𝐺[𝐻], then  

𝑑𝐺 𝐻  (𝑢1, 𝑣1 , (𝑢2, 𝑣2))

=  

𝑑𝐺 𝑢1, 𝑢2 ,                                                   𝑖𝑓  𝑢1 ≠ 𝑢2,

𝑑𝐻 𝑣1 , 𝑣2 ,                   𝑖𝑓  𝑢1 = 𝑢2 𝑎𝑛𝑑 𝑑𝐺 𝑢1 = 0,

min 𝑑𝐻 𝑣1 , 𝑣2 , 2 ,   𝑖𝑓  𝑢1 = 𝑢2  𝑎𝑛𝑑  𝑑𝐺 𝑢1 ≠ 0.

  

 

The double graph 𝐷(𝐺) [10]  of a graph 𝐺 is the 

lexicographic product of  𝐺 

and  𝐾2′, where 𝐾2′ denotes the complement of  𝐾2.  

 

 For any graph theoretic terminology and 

notations not mentioned here, the readers may refer [4]. 

 

1.2  Our Results 

In this paper, we prove that the homometric number of 

Mycielskian of a graph 𝐺 is at least twice as that of  𝐺. We 

also obtain lower bounds for the homometric number of the 

join and the lexicographic product of two graphs. Further, 

we find the homometric number of the double graph of a 

graph on 𝑛 vertices, the cartesian product of any graph on 𝑛 

vertices with 𝐾2, and the complete bipartite graph. Finally 

we introduce a new concept called weak homometric 

number and find weak homometric number of some graphs. 

 

 

II. Lower Bounds of Homometric Number 

In this section we find lower bounds for the homometric 

number of the Mycielskian of a graph 𝐺. We also obtain 

lower bounds for the homometric number of the join and the 

lexicographic product of two graphs. 

 

Theorem 2.1.  For any connected graph 𝐺,  𝑕(𝑀(𝐺)) ≥

2𝑕(𝐺). 

Proof.  Let  𝑢1 , 𝑢2 , … , 𝑢𝑛  be the vertex set of  𝐺. In  𝑀(𝐺), 

for 𝑖 = 1,2, … , 𝑛, let 𝑣𝑖  be the vertex corresponding to 𝑢𝑖  

and 𝑤 be the vertex adjacent to all the 𝑣𝑖’s. Let 𝑆1  =

  u11 , u12 , … , u1h  and 𝑆2 = {𝑢21 , 𝑢22 , … , 𝑢2𝑕} be two 

disjoint homometric subsets of 𝑉(𝐺) such that    𝑆1 =

 𝑆2 = 𝑕(𝐺). 

Consider two subsets 

𝑆1
′ = {𝑢11 , 𝑢12 , . . . , 𝑢1𝑕 , 𝑣11 , v12 , … 𝑣1𝑕 } and 𝑆2

′ =

{𝑢21 , 𝑢22 , … , 𝑢2𝑕 , 𝑣21 , 𝑣22 , … , 𝑣2𝑕 } of  𝑉(𝑀(𝐺)). 

Clearly,  𝑆1
′  =  𝑆2

′  = 2𝑕(𝐺). 

 

Case 1:  Consider  𝑢1𝑖 , 𝑢1𝑗 ∈ 𝑆1′. 

Since  𝑆1 and 𝑆2 are two disjoint homometric subsets of 

𝑉 𝐺 , there exist 𝑢2𝑘 , 𝑢2𝑙 ∈ 𝑆2 such that 𝑑𝐺 𝑢1𝑖 , 𝑢1𝑗 =

𝑑𝐺(𝑢2𝑘 , 𝑢2𝑙). If 𝑑𝐺 𝑢1𝑖 , 𝑢1𝑗 ≤ 4, then 𝑑𝑀(𝐺) 𝑢1𝑖 , 𝑢1𝑗  =

𝑑𝐺 𝑢1𝑖 , 𝑢1𝑗  = 𝑑𝐺(𝑢2𝑘 , 𝑢2𝑙) = 𝑑𝑀(𝐺)(𝑢2𝑘 , 𝑢2𝑙). If 

𝑑𝐺 𝑢1𝑖 , 𝑢1𝑗  > 4, then 

𝑑𝑀(𝐺) 𝑢1𝑖 , 𝑢1𝑗 =  𝑑𝑀(𝐺)(𝑢2𝑘 , 𝑢2𝑙) = 4. 

 

Case 2: Consider  𝑢1𝑖 , 𝑣1𝑗 ∈ 𝑆1′. 

Corresponding to every 𝑣1𝑗 ∈ 𝑆1′ there exists 𝑢1𝑗 ∈ 𝑆1′ . By 

Case 1, there exist 𝑢2𝑘 , 𝑢2𝑙 ∈ 𝑆2′ such that 

𝑑𝑀(𝐺) 𝑢1𝑖 , 𝑢1𝑗 = 𝑑𝑀(𝐺)(𝑢2𝑘 , 𝑢2𝑙). Corresponding to every 

𝑢2𝑙 ∈ 𝑆2′ there exists 𝑣2𝑙 ∈ 𝑆2′. Clearly,  𝑑𝑀(𝐺) 𝑢1𝑖 , 𝑣1𝑗  =

𝑑𝑀(𝐺)(𝑢2𝑙 , 𝑣2𝑘). 

Case 3: Consider 𝑣1𝑖 , 𝑣1𝑗 ∈ 𝑆1′. 

Clearly,  𝑑𝑀(𝐺) 𝑣1𝑖 , 𝑣1𝑗  = 2. Choose 𝑣2𝑖 , 𝑣2𝑗 ∈ 𝑆2′. By the 

construction of 𝑀(𝐺), 𝑑𝑀(𝐺) 𝑣2𝑖 , 𝑣2𝑗   is also two. 

 

Thus, 𝑆1′ and 𝑆2′ are disjoint homometric subsets of 

𝑉(𝑀(𝐺)) each of cardinality 2𝑕(𝐺). Hence, 𝑕(𝑀(𝐺)) ≥

2𝑕(𝐺).                                                                                       

□ 

 

Theorem 2.2.  For any two connected graphs 𝐺 and 𝐻, the 

homometric number of 𝐺 ∨ 𝐻, 

𝑕(𝐺 ∨ 𝐻) ≥

max⁡{min   𝛼 𝐺 , 𝛼 𝐻  , min⁡{𝑑𝑖𝑎𝑚(𝐺), 𝑑𝑖𝑎𝑚(𝐻)}}. 
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Proof.  If 𝑆1 and 𝑆2 are independent subsets of 𝑉(𝐺) and 

𝑉(𝐻) respectively and  𝑆1 = |𝑆2|, then 𝐷𝑀(𝑆1) and 

𝐷𝑀(𝑆2) in 𝐺 ∨ 𝐻 contains only the element 2, repeated the 

same number of times. Hence 𝑆1 and 𝑆2 are two disjoint 

homometric subsets of 𝑉(𝐺 ∨ 𝐻). Therefore, 𝑕(𝐺 ∨ 𝐻) ≥

min   𝛼 𝐺 , 𝛼 𝐻   . 

 

Let 𝑑 = 𝑚𝑖𝑛⁡{𝑑𝑖𝑎𝑚(𝐺), 𝑑𝑖𝑎𝑚(𝐻)}. Let 𝑆1 and 𝑆2 be the 

vertices in an induced path of length 𝑑 in 𝐺 and 𝐻 

respectively. Then, in 𝐺 ∨ 𝐻, 𝐷𝑀 𝑆1 = 𝐷𝑀 𝑆2 =

{1, … ,1, 2, … , 2}, where 1 is repeated 𝑑 times and 2 is 

repeated 
d+1𝐶2 − 𝑑 times. Thus, 𝑆1 and 𝑆2 are disjoint 

homometric subsets of 𝑉(𝐺 ∨ 𝐻) of cardinality 

min{𝑑𝑖𝑎𝑚 𝐺 , 𝑑𝑖𝑎𝑚(𝐻)}. Therefore, 𝑕(𝐺 ∨ 𝐻) ≥

𝑚𝑖𝑛⁡{𝑑𝑖𝑎𝑚(𝐺), 𝑑𝑖𝑎𝑚(𝐻)}. 

 

Hence, 𝑕(𝐺 ∨ 𝐻) ≥

max⁡{min   𝛼 𝐺 , 𝛼 𝐻  , 𝑚𝑖 𝑛 𝑑𝑖𝑎𝑚 𝐺 , 𝑑𝑖𝑎𝑚 𝐻  }.                 

□ 

 

Theorem 2.3. For any two connected graphs 𝐺 and 𝐻, 

𝑕(𝐺 𝐻 ) ≥ 𝑕 𝐺 𝑛(𝐻). 

Proof.  Let 𝑆1 = {𝑢11 , 𝑢12 , … , 𝑢1𝑕} and 

𝑆2 = {𝑢21 , 𝑢22 , … , 𝑢2𝑕} be two disjoint homometric subsets 

of  𝑉(𝐺). Let 𝑉 𝐻 = {𝑣1, 𝑣2 , … , 𝑣𝑛}. Consider two subsets 

of 𝑉(𝐺[𝐻]), 𝑆1′ = {(𝑢1𝑖 , 𝑣𝑗 ) ∕ 𝑖 = 1, 2, … , 𝑕 𝑎𝑛𝑑 𝑗 =

1, 2, … , 𝑛} and 𝑆2′ = {(𝑢2𝑖 , 𝑣𝑗 ) ∕ 𝑖 = 1, 2, … , 𝑕 𝑎𝑛𝑑 𝑗 =

1, 2, … , 𝑛}. Clearly,  𝑆1′ = |𝑆2′| = 𝑕 𝐺 𝑛(𝐻).  Let (𝑢1𝑖 , 𝑣𝑥) 

and (𝑢1𝑗 , 𝑣𝑦 )  be any two vertices in  𝑆1′. 

 

Case 1: i ≠ j. 

In this case, 𝑑𝐺 𝐻   𝑢1𝑖 , 𝑣𝑥 ,  𝑢1𝑗 , 𝑣𝑦  = 𝑑𝐺(𝑢1𝑖 , 𝑢1𝑗 ). 

Since 𝑆1 and 𝑆2 are two homometric subsets of 𝑉(𝐺) there 

exist two vertices  𝑢2𝑘 , 𝑢2𝑙  ∈  𝑆2 such that 𝑑𝐺 𝑢1𝑖 , 𝑢1𝑗 =

𝑑𝐺 𝑢2𝑘 , 𝑢2𝑙 . So,  𝑑𝐺 𝐻   𝑢2𝑘 , 𝑣𝑥 ,  𝑢2𝑙 , 𝑣𝑦    =

  𝑑𝐺 𝐻   𝑢1𝑖 , 𝑣𝑥 ,  𝑢1𝑗 , 𝑣𝑦     . Also,  𝑢2𝑘 , 𝑣𝑥 , (𝑢2𝑙 , 𝑣𝑦) ∈

𝑆2′ . 

 

Case 2: i = j. 

In this 

case,  𝑑𝐺 𝐻   𝑢1𝑖 , 𝑣𝑥 ,  𝑢1𝑗 , 𝑣𝑦    = min 𝑑𝐻 𝑣𝑥 , 𝑣𝑦 , 2 =

𝑑𝐺𝐻𝑢2𝑖, 𝑣𝑥,  𝑢2𝑗, 𝑣𝑦  . Also, 𝑢2𝑖, 𝑣𝑥,(𝑢2𝑗, 𝑣𝑦 ∈𝑆2′. 

 

Hence, we have proved that corresponding to any two 

vertices in 𝑆1′, there exists a pair of vertices in 𝑆2′ such that 

the distance is preserved. Thus 𝑆1′ and 𝑆2′ are two disjoint 

homometric subsets of  𝑉(𝐺[𝐻]). Hence, 𝑕(𝐺 𝐻 ) ≥

𝑕 𝐺 𝑛(𝐻).                                        □ 

III. Homometric Number of Some Graphs 

In this section we obtain the homometric number of the 

double graph of a graph, the cartesian product of a graph 

with  𝐾2 and the complete bipartite graph. 

 

Theorem 3.1. For any connected graph 𝐺, 𝑕 𝐷 𝐺  = 𝑛, 

where 𝑛 denotes the number of vertices of 𝐺. 

Proof. Let 𝐺 be any connected graph with vertex set 

{𝑢1, 𝑢2, … , 𝑢𝑛} and let the vertices of   𝐾2′ be 𝑣1 and 𝑣2. 

Consider the subsets 𝑆1 = { 𝑢1, 𝑣1 ,  𝑢2, 𝑣1 , … ,  𝑢𝑛 , 𝑣1 }  

and 𝑆2 = { 𝑢1, 𝑣2 ,  𝑢2, 𝑣2 , … ,  𝑢𝑛 , 𝑣2 } of 𝑉(𝐷(𝐺)). 

Clearly, 𝐷𝑀 𝑆1 = 𝐷𝑀 𝑆2 = 𝐷𝑀(𝑉(𝐺)). Therefore, 

𝑕(𝐷(𝐺)) ≥ 𝑛. But, the maximum value of the homometric 

number of any graph cannot exceed the half of its order. 

Thus, 𝑕 𝐷 𝐺  ≤  
2𝑛

2
 = 𝑛   always. Hence the result. □  

 

Theorem 3.2. For any connected graph 𝐺, 𝑕 𝐺 □ 𝐾2 =  𝑛, 

where 𝑛 denotes the number of vertices of 𝐺. 

Proof. Let 𝐺 be any connected graph with vertex set 

{𝑢1, 𝑢2, … , 𝑢𝑛} and the vertices of 𝐾2 be 𝑣1 and 𝑣2. Consider 

the subsets 𝑆1 = { 𝑢1 , 𝑣1 ,  𝑢2, 𝑣1 , … ,  𝑢𝑛 , 𝑣1 }  and 

𝑆2 = { 𝑢1, 𝑣2 ,  𝑢2, 𝑣2 , … ,  𝑢𝑛 , 𝑣2 } of  𝑉 𝐺 □ 𝐾2 . 

Clearly, 𝐷𝑀 𝑆1 = 𝐷𝑀 𝑆2 = 𝐷𝑀(𝑉(𝐺)). Therefore, 

 𝑕 𝐺 □ 𝐾2 ≥  𝑛. But, the maximum value of the 

homometric number of any graph cannot exceed the half of 

its order. Thus, 𝑕(𝐺□𝐻) ≤  
2𝑛

2
 = 𝑛 always. Hence the 

result.                                                                                                                                      

□ 

 

Theorem 3.3. For any complete bipartite graph 𝐾𝑚,𝑛 , 

𝑕 𝐾𝑚,𝑛 =  
𝑚,                   𝑖𝑓 𝑚 = 𝑛,

 
𝑚

2
 +   

𝑛

2
 ,   𝑖𝑓 𝑚 ≠ 𝑛.

  

Proof. Let 𝑋 =  𝑢1, 𝑢2, … , 𝑢𝑚   and 𝑌 =  𝑣1, 𝑣2 , … , 𝑣𝑛  be a 

bipartition of 𝐾𝑚,𝑛  . If 𝑚 = 𝑛, then 𝑋 and 𝑌 itself are 

disjoint homometric sets. Now without loss of generality let 

𝑚 > 𝑛. Let 𝑆1 =  𝑢1 , 𝑢2, … , 𝑢
 
𝑚

2
  

, 𝑣1 , 𝑣2 , … , 𝑣
 
𝑛

2
  
  and 

𝑆2 =  𝑢
 
𝑚

2
 +1 

, … , 𝑢
2 

𝑚

2
  

, 𝑣
 
𝑛

2
 +1 

, … 𝑣
2 

𝑛

2
 
 . Then S1 and S2 are 

disjoint homometric sets with distance multi set containing 

⌊m/2⌋𝐶2 +⌊n/2⌋𝐶2  two’s and  
𝑚

2
   

𝑛

2
    one’s. Hence 

homometric number is at least  
𝑚

2
 +   

𝑛

2
 .  If 𝑚 or 𝑛 is even 

then  
𝑚

2
 +   

𝑛

2
 =  

𝑚+𝑛

2
 , which is the maximum possible 

value. Therefore, we need only consider the case where both 

𝑚 and 𝑛 are odd. If possible assume that 𝑆1 and 𝑆2 are 

disjoint homometric sets such that 𝑆1 ∪ 𝑆2 = 𝑉(𝐾𝑚,𝑛). Let 

 𝑆1 ∩ 𝑋 = 𝑚1,  𝑆1 ∩ 𝑌 = 𝑛1,  𝑆2 ∩ 𝑋 = 𝑚2  and  𝑆2 ∩

𝑌 = 𝑛2.    Since 𝑆1 and 𝑆2  are homometric,  𝑆1 = 𝑚1 +

𝑛1 = 𝑚2 + 𝑛2 = |𝑆2|. Also, since the number of one’s in 
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𝐷𝑀(𝑆1) is 𝑚1𝑛1 and that in 𝐷𝑀(𝑆2) is 𝑚2𝑛2, 𝑚1𝑛1 =

𝑚2𝑛2. Using these two equations and the fact that,  𝑚1 ≠

𝑚2, we get  𝑚1 = 𝑛2 and 𝑚2 = 𝑛1. But this contradicts the 

fact that  𝑚1 + 𝑚2 = 𝑚 ≠ 𝑛 = 𝑛1 + 𝑛2. Hence we can 

conclude that the homometric number in this case is 

 
𝑚

2
 +   

𝑛

2
  .                                                                                                                              

□ 

 

IV. Weak Homometric Number 

In the definition of homometric number we consider 

distance multi set of subsets of the vertex set. In some 

practical situations only distances are important and not the 

number of pairs of vertices at a particular distance. For 

example, while considering communication delay we are 

interested in how far the communication centers are, but not 

in how many communication centers are there at a fixed 

distance. With this in mind, we are introducing a new 

concept called weak homometric number. 

For any set 𝑆 ⊆ 𝑉,  the distance set of  𝑆, denoted by 𝐷(𝑆), 

is the set of all pair-wise distances between any two vertices 

of  𝑆. Two subsets 𝑆1 and 𝑆2 of the vertex set 𝑉 are said to 

be weakly homometric if their distance sets are equal [9]. 

The weak homometric number of a graph 𝐺 is the largest 

integer 𝑘 such that there exist two disjoint weakly 

homometric subsets 𝑆1  and 𝑆2  of the vertex set  𝑉 each of 

cardinality 𝑘  and it is denoted by  𝑕𝑤(𝐺). Clearly 𝑕 𝐺 ≤

𝑕𝑤 𝐺 ≤   
𝑛

2
 . 

 

Theorem 4.1. If  𝐺 is a connected graph with 𝑛 vertices, 

𝑔(𝐺) ≥ 5 and 𝑑(𝑣) ≠ 2, ∀ 𝑣 ∈ 𝑉(𝐺), then 𝑕𝑤 𝐺 =  
𝑛

2
 .  

Proof.  Let 𝑣1𝑣2 …𝑣𝑑+1 be a diametral path in 𝐺. 

 

Case 1. 𝑑 is even. 

Let 𝑣1, 𝑣2,…,𝑣𝑑

2
+1

∈ 𝑆1   and 𝑣𝑑

2
+2

,…,𝑣𝑑+1 ∈ 𝑆2. Since  

𝑑 𝑣𝑖 ≠ 2, every 𝑣𝑖 , 𝑖 = 2, … , 𝑑, has at least one neighbour 

other than 𝑣𝑖−1 and 𝑣𝑖+1. For each 𝑖 = 2, … , 𝑑, let 𝑢𝑖  be 

adjacent to 𝑣𝑖 . Put 𝑢2,…,𝑢𝑑

2
+1

 in 𝑆2 and 𝑢𝑑

2
+2

, … , 𝑢𝑑  in 𝑆1.  

Clearly, 𝑑 𝑣1 , 𝑣𝑖 = 𝑖 − 1, ∀𝑖 = 2, … ,
𝑑

2
+ 1. Hence, 

1, 2, … ,
𝑑

2
∈ 𝐷(𝑆1). Also,  𝑑 𝑣1 , 𝑢𝑖 = 𝑖, ∀𝑖 =

𝑑

2
+ 2, … , 𝑑. 

Hence, 
𝑑

2
+ 2, … , 𝑑 ∈ 𝐷(𝑆1). Again, 𝑑  𝑣2 , 𝑢𝑑

2
+2

 =
𝑑

2
+ 1. 

Therefore,  
𝑑

2
+ 1 ∈ 𝐷(𝑆1). Hence,  𝐷 𝑆1 = {1, 2, … , 𝑑}. 

 

 Now,  𝑑 𝑣𝑑+1, 𝑣𝑖 = 𝑑 + 1 − 𝑖, ∀𝑖 =
𝑑

2
+ 2, … , 𝑑. Hence,  1,2, … ,

𝑑

2
− 1 ∈ 𝐷(𝑆2). Also,  𝑑 𝑣𝑑+1 , 𝑢𝑖 = 𝑑 + 2 − 𝑖, ∀𝑖 = 2, … ,

𝑑

2
+ 1. Hence, 

𝑑

2
+ 1,

𝑑

2
+ 2, … , 𝑑 ∈ 𝐷(𝑆2). Again, 𝑑  𝑣𝑑 , 𝑢𝑑

2
+1

 =
𝑑

2
. Therefore,  

𝑑

2
∈ 𝐷(𝑆2). Hence, 𝐷 𝑆2 = {1, 2, … , 𝑑}. 

 

Thus, 𝐷 𝑆1 = 𝐷(𝑆2). Now there are 𝑛 − 2𝑑 vertices 

remaining in 𝑉.  Put  
𝑛−2𝑑

2
  vertices in 𝑆1 and 𝑆2 so that  

 𝑆1 =  𝑆2 =  
𝑛

2
 .  

 

Case 2. 𝑑 is odd. 

Let 𝑣1, 𝑣2,…,𝑣𝑑+1

2

∈ 𝑆1   and 𝑣𝑑+3

2

,…, 𝑣𝑑+1 ∈ 𝑆2. Since  

𝑑 𝑣𝑖 ≠ 2, every 𝑣𝑖 , 𝑖 = 2, … , 𝑑, has at least one neighbour 

other than 𝑣𝑖−1 and 𝑣𝑖+1. For each 𝑖 = 2, … , 𝑑, let 𝑢𝑖  be 

adjacent to 𝑣𝑖 . Put 𝑢2,…,𝑢𝑑+1

2

 in 𝑆2 and 𝑢𝑑+3

2

, … , 𝑢𝑑  in 𝑆1.  

Clearly, 𝑑 𝑣1 , 𝑣𝑖 = 𝑖 − 1, ∀𝑖 = 2, … ,
𝑑+1

2
. Hence, 

1, 2, … ,
𝑑−1

2
∈ 𝐷(𝑆1). Also, 𝑑 𝑣1 , 𝑢𝑖 = 𝑖, ∀𝑖 =

𝑑+3

2
, … , 𝑑. 

Hence, 
𝑑+3

2
, … , 𝑑 ∈ 𝐷(𝑆1). Again, 𝑑  𝑣2 , 𝑢𝑑+3

2

 =
𝑑+1

2
. 

Therefore, 
𝑑+1

2
∈ 𝐷(𝑆1). Hence, 𝐷 𝑆1 = {1, 2, … , 𝑑}.  

 

Now, 𝑑 𝑣𝑑+1 , 𝑣𝑖 = 𝑑 + 1 − 𝑖, ∀𝑖 =
𝑑+3

2
, … , 𝑑. Hence, 

1,2, … ,
𝑑−1

2
∈ 𝐷(𝑆2). Also, 𝑑 𝑣𝑑+1, 𝑢𝑖 = 𝑑 + 2 − 𝑖, ∀𝑖 =

2, … ,
𝑑+1

2
. Hence, 

𝑑+3

2
, … , 𝑑 ∈ 𝐷(𝑆2). Again, 𝑑  𝑣𝑑 , 𝑢𝑑+1

2

 =

𝑑+1

2
. Therefore, 

𝑑+1

2
∈ 𝐷(𝑆2). Hence, 𝐷 𝑆2 = {1, 2, … , 𝑑}. 

Thus, 𝐷 𝑆1 = 𝐷(𝑆2). Now there are 𝑛 − 2𝑑 vertices 

remaining in 𝑉.  Put  
𝑛−2𝑑

2
  vertices in 𝑆1 and 𝑆2 so that 

 𝑆1 =  𝑆2 =  
𝑛

2
 . 

 

Thus, in both the cases we have proved that 𝑆1 and 𝑆2 are 

two disjoint weakly homometric subsets of  𝑉(𝐺) and hence  

𝑕𝑤 𝐺 =  
𝑛

2
  .                                                       □ 

 

Theorem 4.2. If 𝐺 and 𝐻 are any two noncomplete graphs 

with 𝑛1 and 𝑛2 vertices respectively, then 𝑕𝑤 𝐺 ∨ 𝐻 =

 
𝑛1+𝑛2

2
 . 

Proof. Let 𝑉 𝐺 = {𝑢1, 𝑢2, … , 𝑢𝑛1
}  and 𝑉 𝐻 =

{𝑣1 , 𝑣2 , … , 𝑣𝑛2
}. Suppose that 𝑢1 and 𝑢2 are two nonadjacent 

vertices in 𝐺 and 𝑣1 and 𝑣2 are two nonadjacent vertices in 

𝐻. 

 

Case 1. n1 , n2 ≥ 3. 

Put 𝑢1, 𝑢2  and 𝑣3 in  𝑆1 and 𝑣1, 𝑣2 and 𝑢3 in 𝑆2. 

Hence 𝐷 𝑆1 = 𝐷 𝑆2 = {1, 2}. Now there are 𝑛1 + 𝑛2 − 6 

vertices remaining in 𝑉(𝐺 ∨ 𝐻). Distribute these vertices in 

𝑆1 and  𝑆2 so that  𝑆1 =  𝑆2 =  
𝑛1+𝑛2

2
 . 

 

Case 2.  Either 𝑛1 or 𝑛2 (but not both) is 2. 

Let 𝑛1 = 2. (The other case follows similarly.) If  𝑛2 = 3, 

then take 𝑆1 = {𝑢1, 𝑢2} and 𝑆2 = {𝑣1 , 𝑣2}. Now, suppose 

𝑛2 ≥ 4. If 𝑣𝑖  and 𝑣𝑗  , 𝑖, 𝑗 ≠ 1,2, are non adjacent in 𝐻, then 
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put  𝑣1 , 𝑣2 and 𝑢1 in 𝑆1 and 𝑣𝑖 , 𝑣𝑗   and 𝑢2 in 𝑆2. Hence, 

𝐷 𝑆1 = 𝐷 𝑆2 = {1, 2}. Distribute the remaining 𝑛2 − 4 

vertices in  𝑆1 and  𝑆2 so that  𝑆1 =  𝑆2 =  
𝑛1+𝑛2

2
 . 

Otherwise, {𝑣3 , 𝑣4, … , 𝑣𝑛2
} will induce a complete subgraph 

𝐻1 in 𝐻. If there is no 𝑣1𝑣𝑖   and 𝑣2𝑣𝑖 , 𝑖 = 3, 4, … , 𝑛2, edge, 

then put 𝑢1 and 𝑣1 in 𝑆1 and 𝑢2 and 𝑣2 in 𝑆2. Thus, 𝐷 𝑆1 =

𝐷 𝑆2 = {1}. Distribute the remaining 𝑛2 − 2 vertices in  𝑆1 

and  𝑆2 so that  𝑆1 =  𝑆2 =  
𝑛1+𝑛2

2
  . Then 𝐷 𝑆1 =

𝐷 𝑆2 = {1, 2}. Now, suppose there is an edge from 𝑣1 (or 

𝑣2 or both) to some vertex 𝑣𝑖  in 𝐻1. Then put 𝑢1 and 𝑢2 in 

𝑆1 and 𝑣1, 𝑣2 and 𝑣𝑖  in 𝑆2. Distribute the remaining 𝑛2 − 3 

vertices in  𝑆1 and  𝑆2 so that  𝑆1 =  𝑆2 =  
𝑛1+𝑛2

2
 . 

Then 𝐷 𝑆1 = 𝐷 𝑆2 = {1, 2}. 

 

If 𝑛1 = 𝑛2 = 2, then 𝐺 ∨ 𝐻 will be the complete bipartite 

graph 𝐾2,2 which is discussed earlier. 
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