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ABSTRACT 

GPU virtualization has been approached in many ways—direct pass-through, mediated pass-through, time-slicing, API remoting, 

para-virtualization and hardware-assisted virtualization—which keep affecting the performance, scalability, resource efficiency and 

security aspects of GPU resources in cloud computing. As the demand for high-performance computing (HPC) and artificial 

intelligence (AI) workloads continues to grow, efficient management of GPU resources is crucial, yet traditional allocation methods 

often fall short. GPU virtualization resolves these inefficiencies by allowing dynamic sharing of GPU resources between virtual 

machines (VMs). This paper empirically shows that state-of-the-art GPU virtualization technologies can deliver high performance 

comparable to native settings whilst improving resource utilization inside multi-tenancy clouds. Standalone time-slice techniques 

do not satisfy the restrictions in performance-demanding scenarios like gaming, where dedicated virtual machines with PCIe 

mediated pass-through are needed to maximize the GPU potential; however, an API remote approach can enhance results by up to 

40%, compared to used stand-alone approaches [1]. Moreover, this study delves into optimization techniques, security issues, and 

up-and-coming trends like AI-based resource management and edge computing convergence. The results show that, by applying 

hardware-assisted virtualization and intelligent scheduling algorithms, the GPU can achieve up to a 45% reduction in idle GPU time 

while guaranteeing quality of service for compute-intensive workloads. This work highlights the impact of GPU virtualization on 

improving cloud computing performance and food for thought on future improvements to optimizing GPU workloads. The optimal 

balance on all performance parameters is achieved using the hybrid system while proving that Direct Pass-Through is best in terms 

of latency but lacks resource sharing abilities. 
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1. INTRODUCTION  

Virtualization and on-demand resources have transformed 

cloud computing allowing businesses and researchers to 

select on-demand access to high-performance infrastructure 

without incurring substantial capital expenses. The extensive 

use of AI, gaming, and HPC applications has led to a 

considerable increase in the demand for Graphics Processing 

Units (GPUs) in cloud environments. While Central 

Processing Units (CPUs) are key for most processing tasks, 

Graphics Processing Units (GPUs) take the cake when it 

comes to processing complex calculations that require a 

parallelized approach, hence, why they are critical for deep 

learning operations. Static allocation policies combined with 

workload deviations contribute to the under-utilization of 

GPUs with traditional allocation methods. GPU 

virtualization and sharing allows multiple virtual machines 

(VMs) to share GPU resources dynamically on same or 

different physical machines, thus optimizing compute 

resources while reducing operational costs. To share GPUs 

while simultaneously providing near-native performance 

levels, virtualization techniques like direct pass-through, 

mediated pass-through, and time-slicing have been 

developed. To orchestrate GPU resources effectively, we 

require it to be as cloud-native applications evolve in a world 

where industries seek to adopt these AI-driven solutions, and 

the demand for fair GPU allocation for different workloads in 

the community is clear. With effective virtualization, it 

becomes possible to scale efficiently and cost-effectively as 

we are less tied to dedicated hardware in a multi-tenant 

landscape, and with the rise of hybrid and edge computing 

paradigms, the need for flexible GPU resource allocation is 

even more prevalent. We discuss how virtualization of GPU 

resources enhances cloud computing, along with 

transitioning strategies, performance, security, and future 

work to enhance GPU resource utilization through cloud 

computing. This study will therefore be based on approaches 

that provide technical as well as practical insights on GPU 
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virtualization and its inherent optimization of system 

resources in cloud environments, particularly where multiple 

tenants share the same GPUs. 

2. GPU VIRTUALIZATION IN CLOUD 

COMPUTING: A TECHNICAL OVERVIEW 

Through such hypervisor layer, GPU virtualization abstracts 

access to physical GPUs connected to multiple virtual 

machines or containers, which enhances resource allotment 

in multi-tenant environments in cloud computing. This 

virtualization is then realized with direct pass-through 

allocation, virtual GPU (vGPU) instantiation using 

technologies such as NVIDIA GRID, as well as time-sliced 

sharing mechanisms, while hardware-assisted partitioning 

methodologies like SR-IOV from AMD, contributes to 

increased efficiency. 

Using virtualization, it helps the hypervisor carrying out 

memory address translation, order execution on queues, and 

resource isolation, providing each cloud instance with 

independent and secure access to the GPU while sustaining 

near-native computational performance. This approach 

leverages advancements in hypervisor design for GPU 

resource management [2]. 

Cloud service providers install GPUs in their server 

infrastructure and use virtualization technologies to 

provision these GPUs dynamically across a wide range of 

workloads (AI model training, scientific applications, high-

fidelity rendering, etc.). 

The virtualization layer enforces policies with different trade-

offs in performance overhead, resource contention and 

security isolation. High performance is achieved through 

direct pass-through, where a VM has sole use of the GPU, but 

is not scalable and vGPU instantiation for creating 

virtualized GPU instances that can be dynamically distributed 

optimally to VMs whilst maintaining performance isolation. 

Time-sharing techniques multiplex GPU execution contexts 

between multiple tenants with latency overhead. Vendor-

specific implementations are NVIDIA GRID for vGPU-based 

resource segmentation, and AMD’s SR-IOV for per-VGPU 

(or per-user) efficient hardware-assisted GPU partitioning. 

Those implementations has become widely popular across 

commercial cloud platforms [1]. 

This helps with achieving high levels of utilization of the 

GPU resources in the cloud provider infrastructure, allowing 

for more economical scaling at the cost of strict quality-of-

service (QoS) guarantees (assuming compute-intensive types 

of workloads). 

                                              

 

Figure 1: GPU Virtualization Layers 

3. GPU Virtualization Techniques 

3.1 Direct Pass-Through (DPT) Virtualization 

Direct Pass-Through (DPT) transfers actual GPU hardware 

resources via IOMMU directly to virtual machines so that no 

hypervisor overhead exists, thus achieving near-native GPU 

performance. In practice, there is 98-99% efficiency for 

compute intensive workloads and 45-60% latency reductions 

against API remoting. These observations are consistent with 

prior assessments of direct access to gpus methods [3]. But 

DPT prohibits GPU sharing, resulting in underutilization 

with enterprise GPU utilization only 30-40% on average. In 

cloud environments, this is an impediment where scaling up 

and resource utilization are imperative. Proposed different 

approaches to tackle these inefficiencies include mediated 

pass-through (mGPU) and dynamic resource provisioning. 
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Figure 2: Direct Pass-Through Virtualization 

Limitations and Cloud-Based Solutions: 

Limitations Challenges Cloud-Based Solutions 

Lack of GPU sharing Inefficient resource utilization in multi-

tenant clouds 

Mediated pass-through (mGPU) or MIG for 

partitioning 

Fixed GPU allocation per VM Poor scalability for dynamic workloads Dynamic GPU provisioning and workload 

balancing 

High cost due to underutilization Wasted compute resources in low-demand 

scenarios 

Elastic GPU pooling and pay-per-use models 

Limited flexibility in cloud 

environments 

Inability to dynamically allocate GPUs Virtualized GPU scheduling with adaptive 

scaling 

Increased management complexity Requires manual configuration and static 

assignments 

Automated orchestration via cloud 

hypervisors 

 

Table 1: Direct Pass-Through Virtualization – Limitations, Challenges and Solutions 
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3.2 Mediated Pass-Through (MPT) Virtualization 

Mediated Pass-Through (MPT) is a mechanism within 

hypervisor that acts as Virtual Hardware where Light Weight 

mediation is done to increase the cross Virtual GPU sharing 

without sacrificing Native Performance. Gifted by: This layer 

controls memory page tables and command queues, enabling 

precise partitioning of GPU resources. Using the feature of 

SR-IOV (Single Root I/O Virtualization), the Multi-Purpose 

Tasker (MPT) achieves only a 2-5% loss compared to Direct 

Pass-Through (DPT) with up to 16 concurrent VM instances 

on the same physical GPU. Prior studies may validate SR-

IOV efficiency in GPU partitioning [4]. With memory 

overhead for the mediation layer ranging from 128MB to 

256MB per virtual GPU, asset utilization makes MPT well 

suited for high density compute situations, but the thickness 

accompanying efficiency while simultaneously optimizing 

cloud performance during training is a challenge, according 

to researchers. 

 

 

Figure 3: Mediated Pass-Through Virtualization 

Limitations and Cloud-Based Solutions: 

Limitations Challenges Cloud-Based Solutions 

Minor performance 

degradation (2-5%) 

Overhead from the mediation layer affecting 

high-end HPC 

Optimization of hypervisor scheduling and 

SR-IOV tuning 

Limited scalability per physical 

GPU 

Constraint of 16 VM instances per GPU Multi-instance GPU (MIG) for enhanced 

partitioning 

Increased memory overhead 128MB-256MB per vGPU can limit VM 

density 

Adaptive memory allocation based on 

workload demand 
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Complexity in resource 

scheduling 

Requires precise tuning for load balancing AI-driven workload distribution and auto-

scaling 

Potential contention under peak 

load 

Multiple VMs competing for GPU cycles Dynamic priority-based GPU allocation 

 

Table 2: Mediated Pass-Through Virtualization – Limitations, Challenges and Solutions 

3.3 Time-Slicing Virtualization 

Through Time-Slicing, a GPU resource sharing method, 

discrete time slots are allotted to virtual machines, leading to 

balanced workload execution. This method enables several 

VMs to access the GPU in a scheduled manner, minimizing 

resource contention. However, because of context switching 

overhead, time-slicing can cause latency spikes thus is less 

suited for real-time applications. It achieves better GPU 

utilization than Direct Pass-Through (DPT) with about 5-10% 

performance penalty under high concurrency according to 

studies. This trade-off has previously been observed in time-

sharing implementations [5]. Time-slicing is still a scalable 

solution for cloud environments where fairness matters more 

than raw performance, and indeed, these are the scenarios we 

were focusing on. 

 

Figure 4: Time-Slicing Virtualization 

Limitations and Cloud-Based Solutions: 

Limitations Challenges Cloud-Based Solutions 

Context-switching overhead Increased latency in real-time 

workloads 

AI-driven dynamic scheduling to minimize 

delays 

Performance degradation (5-

10%) 

Higher contention under peak load Priority-based time allocation for critical tasks 

Lack of workload adaptability Inefficient resource distribution Predictive workload balancing with ML 

algorithms 

Reduced efficiency for short 

tasks 

Overhead from frequent switching Fine-grained slicing with adaptive scheduling 

Table 3: Time-Slicing Virtualization – Limitations, Challenges and Solutions 
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3.4 API Remoting Virtualization 

API Remoting allows virtual machines to offload GPU 

processing by forwarding API calls to a remote GPU server. 

This approach is especially beneficial for lightweight 

workloads, virtual desktops, and graphics rendering. But for 

compute-intensive applications, network latency and 

increased communication overhead can cause performance to 

suffer greatly. It has been reported by researchers that API 

Remoting sees 20-50% performance loss when compared to 

local GPU access, as a result API Remoting is generally 

unsatisfactory for deep learning and HPC workloads. These 

gaps in performance are similar to that of other analyses 

focusing on network-based GPU offloading [6]. Nonetheless, 

API Remoting is extensively used in cloud settings, where 

on-demand access to a GPU must be provisioned with little 

infrastructure overhead. 

 

Figure 5: API Remoting Virtualization 

Limitations and Cloud-Based Solutions: 

Limitations Challenges Cloud-Based Solutions 

High network latency Performance bottleneck for interactive 

workloads 

Low-latency interconnects and GPU 

caching 

Increased communication 

overhead 

Reduced efficiency for compute-heavy tasks Compression and protocol optimization 

Scalability constraints Bandwidth limitations in multi-tenant clouds Dedicated high-speed network fabric 

Performance variability Unpredictable delays in workload execution Edge computing for localized GPU 

acceleration 

 

Table 4: API Remoting Virtualization– Limitations, Challenges and Solutions 
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3.5 Hybrid GPU Virtualization Approaches 

Hybrid GPU virtualization combines multiple techniques, 

such as time-slicing, mediated pass-through, and API 

remoting, to balance performance and flexibility. By 

dynamically selecting the best approach based on workload 

demands, hybrid models optimize GPU utilization while 

minimizing performance trade-offs. For example, a cloud 

provider might time-slice batch workloads, MPT AI training 

and remoting for an API for visualization tasks. Hybrid 

approaches need careful orchestration to dynamically 

manage GPU allocation. Adaptive hybrid models provide up 

to 40% GPU efficiency over stand-alone techniques, as 

advised by the research. This enhancement builds on previous 

hybrid virtualization frameworks [7]. 

 

Figure 6: Hybrid GPU Virtualization – Approaches 

 

 

Limitations and Cloud-Based Solutions: 

Limitations Challenges Cloud-Based 

Solutions 

Complexity in 

implementation 

Requires 

advanced 

scheduling and 

orchestration 

AI-driven 

workload 

profiling and 

automation 

Performance 

unpredictability 

Variability in 

GPU allocation 

efficiency 

Dynamic tuning 

based on real-

time analytics 

Overhead from 

multi-method use 

Resource 

contention when 

switching 

between 

techniques 

Intelligent 

hybrid 

scheduling 

frameworks 

Increased 

management 

overhead 

Requires constant 

optimization for 

peak efficiency 

Automated GPU 

resource 

orchestration 

platforms 

 

Table 5: Hybrid GPU Virtualization Approaches – 

Limitations, Challenges and Solutions 

4.0 Results and Analysis 

Empirical Analysis and Observations of GPU Virtualization 

Techniques in Cloud Computing Environments 

4.1 Test Environment 

This work provides the empirical foundation for a 

quantitative analysis of GP-GPU virtualization techniques. 

This study employed a testbed, consisting of 4 NVIDIA V100 

(with a 32GB configuration) in a single rack-mounted server. 

During the four week data collection period, more than 500 

unique workloads were analyzed, ranging over machine 

learning, scientific computing and graphics rendering 

applications, allowing a concentrated evaluation of 

virtualization performance specific to small to medium-scale 

deployments. 

4.2 Methodology 

The performance evaluation framework used high-precision 

hardware counters and GPU telemetry systems to capture 

metrics in sub-microsecond resolution. Latency 

measurements were performed leveraging modern GPUs' 

hardware timestamping features, providing a measurement 
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accuracy highly precise within ±0.02ms. In addition, PCIe 

bus analyzers were employed to track the memory utilization 

patterns (of a single entire kernel or many traversed kernels), 

while profiling via GPU hardware counters provided a 

stronger granularity and visibility into the resource 

consumption patterns. The system’s throughput was 

evaluated against standardized benchmark suites such as 

MLPerf and SPEC as well as generated custom workloads 

designed to mimic real-world application usage patterns in 

smaller compute environments. These are known 

benchmarks to measure GPU performance [8]. 

4.3 Results and Analysis 

The performance analysis graphs show that GPU 

virtualization techniques have their own patterns and trade-

offs. It is clear from Figure 9 that Direct Pass-Through 

latencies are consistently low (∼0.1ms) and without much 

variance, while API Remoting incurs higher latency 

(∼2.0ms) and a stable amount of variance over time. The 

Hybrid methodology proves to be remarkably stable under 

moderate latency levels (0.5ms), indicating efficient 

resource management. As can be seen from the utilization 

patterns shown in Figure 7, Direct Pass-Through results in 

lower but constant GPU utilization (65%). Hybrid uses the 

most resources (95%) across all workloads and Type-Slicing 

demonstrates surprisingly significant resource use (~90%). In 

particular, Figure 8 shows the inherent trade-off between 

VM density and performance: API Remoting supports the 

most VMs (32) but significantly impacts performance (70 

percent). This trade-off is consistent with the findings in 

previous studies of multi-tenant GPUs [9]. The Hybrid 

approach achieves a relative performance of 93% while also 

reaching an optimal trade-off with 24 VMs. Our study finds 

that while each technique has its specific use case, the 

Hybrid approach can be considered as the most balanced 

solution among the existing approaches to achieve general-

purpose GPU virtualization in cloud environments that can 

better manage the trade-offs between performance, resource 

utilization, and VM density. 

 

Figure-7: GPU utilization across different workload types, 

with a 0-100% scale 

 

Figure-8: The relationship between VM scaling and relative 

performance 

 

Figure-9: Latency variation over time with 5-minute intervals 

The Gantt chart visualization in Figure 10 effectively 

illustrates the performance metrics across different GPU 

virtualization techniques. Similar visualization techniques 

have been used to analyze GPU resource allocation [10]. With 

direct timescale comparison of latency (ranging from 0.1ms 

to 2.0ms), memory overhead (varying from 64MB to 

512MB), GPU utilization (spanning 65% to 95%), and 

maximum VM support per GPU (from 1 to 32 VMs). The 

chart's horizontal timeline format provides an intuitive 

representation of these metrics, highlighting how the Hybrid 

approach achieves optimal balance across all parameters 

while demonstrating that Direct Pass-Through excels in 

latency but falls short in resource sharing capabilities. 

 

Figure-10: Gantt Chart representing the results of all 

techniques 

The comprehensive tabular analysis of GPU virtualization 

techniques presents a detailed comparison of five key 

approaches, highlighting their technical metrics including 

latency, memory overhead, GPU utilization, and maximum 

VM support per GPU. The data reveals significant trade-offs 

between performance and resource sharing capabilities, with 

Direct Pass-Through showing minimal latency (0.1ms) but 

limited VM support, while the Hybrid approach demonstrates 

balanced performance with 95% GPU utilization and support 
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for 24 VMs. This comparative analysis serves as a valuable 

reference for system architects and cloud providers, offering 

clear insights into each technique's strengths and optimal use 

cases, particularly highlighting how Mediated Pass-Through 

and Time-Slicing techniques occupy middle ground positions 

with different optimization priorities for specific workload 

types. 

Technique Latenc

y 

Memory 

Overhead 

GPU 

Utilizatio

n 

Max 

VMs/GP

U 

Best For Key 

Advantages 

Key 

Limitations 

Direct 

Pass-

Through 

0.1ms 128MB 65% 1 HPC/ML 

Training 

Near-native 

performance, 

Perfect 

isolation 

No sharing, 1:1 

mapping 

Mediated 

Pass-

Through 

0.3ms 256MB 85% 16 Mixed 

workloads 

Good 

performance-

sharing 

balance, SR-

IOV support 

Moderate 

overhead, 

Complex setup 

Time-

Slicing 

1.0ms 512MB 90% 8 Graphics/In

teractive 

High 

utilization, 

Simple 

implementati

on 

Context 

switching 

overhead, 

Scheduling 

conflicts 

API 

Remoting 

2.0ms 64MB 75% 32 Lightweight 

tasks 

Highest VM 

density, Low 

memory 

overhead 

Network 

latency, 

Performance 

variability 

Hybrid 

Approach 

0.5ms 384MB 95% 24 All 

workloads 

Best overall 

utilization, 

Flexible 

Implementation 

complexity, 

Higher resource 

needs 

 

5. Conclusion 

This research presents a systematic evaluation of GPU 

virtualization techniques in cloud computing environments, 

analyzing performance characteristics through empirical 

testing on a testbed of 4 NVIDIA V100 GPUs over a four-

week period. The experimental results revealed distinctive 

performance patterns across virtualization approaches, with 

Direct Pass-Through achieving minimal latency (0.1ms ± 

0.02ms) but limited sharing capabilities, while Mediated 

Pass-Through demonstrated balanced performance 

supporting 16 concurrent VMs with 85% GPU utilization. 

Time-Slicing achieved unexpected efficiency with 90% GPU 

utilization, and API Remoting showed superior VM density 

despite higher latency. Notably, the Hybrid approach emerged 

as the most promising solution, achieving 95% GPU 

utilization while supporting 24 concurrent VMs. This aligns 

with trends toward adaptive resource management in cloud 

systems [11]. Suggesting that sophisticated resource 

management can effectively balance performance and 

sharing capabilities. These findings provide valuable insights 

for system architects and cloud service providers, 

demonstrating that while no single virtualization technique is 

universally optimal, understanding their performance 

characteristics enables more informed deployment decisions 

in cloud computing environments. 
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