
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 223
IJRITCC | October 2022, Available @ http://www.ijritcc.org

Distributed Query Optimization for Petabyte-Scale

Databases
Milavkumar Shah1

1Independent Researcher, USA

milavkumar.shah@gmail.com1

Anila Gogineni2

2Independent Researcher, USA

anila.ssn@gmail.com2

Abstract

It is significant to minimize suboptimal query execution in petabyte scale distributed database systems. This research examines a

range of techniques for the improvement of query optimization, namely cost-based optimization, execution in partitioned

environment, predicate push-down optimization, dynamic resource management, utilization of data locality, and parallelism.

Practical examples in relation to each of the methodologies are discussed in addition to the results illustrating efficiency in terms of

time to execute, resources used and costs incurred. Some vital findings discussed include improved operations with queries where

partition pruning was effective for data scans by 90% and parallelism resulted in ten time faster execution. In turn, this study

demonstrates how, by following these techniques systematically, practitioners could achieve improvements in efficiency in the field

of distributed database environments. The findings highlight the need for agile and reactive optimizations in view of addressing

current concerns of large scale big data systems.

Keywords: Distributed Computing, Queries, Optimization and Petabyte-Scale Databases

1. INTRODUCTION

Due to the innovation and expansion of data across numerous

fields and especially in health care field, the development of

efficient, extendable and secured database management

system is required [1]. Systems such as distributed databases

have become crucial for processing Petabytes scale data and

has the capabilities to process query in high speed and in an

optimized cost. However, since distributed query processing

is more intricate than centralized query processing, it creates

a few concerns regarding the query’s performance, expense,

and scalability when applied to big data processing [2].

Among the approaches to database optimization, perhaps

none is as crucial as query optimization. It concerns with the

choice of the most effective approach to the database query,

bearing in mind such parameters as distribution of data,

amount and nature of work, and available means. Although

legacy query optimization approaches have been very useful

especially for centralized database, they must be modified

and adopted differently for big data systems like distributed

database due to; data locality, partitioning and parallelism.

These optimizations are significant for the applications in the

healthcare domain as the analysis has to occur quickly, and

the costs cannot be too high [3].

In the healthcare field [4] big data repositories are employed

in a various forms such as hazard factors, patient record big

data processing, unusual event detection, and data driven

decision making big data analytics. There is need for efficient

query optimization methods that will help in the queries when

the interconnectivity of such large points is under evaluation.

For instance, real-time anomaly detection on Salesforce data

in healthcare systems, requires efficient query processing for

timely decision making. This work explores query

optimization techniques suited for distributed databases of a

petabyte order [5]. Overall, the framework presented in the

study highlights the basic strategies that can be applied to

improve query performance and includes cost-based

optimization, partition-aware execution, predicate

pushdowns, dynamic resource allocation, data locality

exploitation and parallelism. While previous work has

explored relationships and interactions, practical applications

and outcomes show the feasibility of these approaches,

providing useful information for academics and practitioners

[6].

The rest of the paper comprises literature survey, framework

for deploying the optimization tools and strategies [7], and

representative outcomes and future conclusions. They also

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 224
IJRITCC | October 2022, Available @ http://www.ijritcc.org

help in bringing new ideas and solutions to the problems

associated with query optimization this study hopes to make

a huge contribution to the generally under researched field of

distributed DBMS and specifically in the field of health care.

2. LITERATURE REVIEW

The area of distributed query optimization [8] for petabyte-

scale system has seen improvements in the aspects of

performance, scalability and cost. One example that is

particularly worth mentioning is increasing use of distributed

data engines for processing large-scale data among nodes.

Such engines have the capability of handling the query

execution tasks that arises due to the increasing use of a large

and complex database. In 2021, TigerGraph partnered with

Xilinx to incorporate FPGA driven accelerators into their

graph database platforms [9]. This coupled-target was sought

to enable petabyte order of graph processing which tackles

the problem of scaling graph databases through improving

query processing and latency minimization.

Query optimization in distributed databases has also been an

area of research interest, although dealing with the

optimization of data traffic between sites [10]. To be able to

achieve good throughput in query processing across multiple

sites in the network, data transfer during query execution has

been minimized. There is a new concept called data

lakehouses that try to unite the best features of data lakes and

data warehouses [11]. Some work has been done regarding

how to perform row level operations at a petabyte level within

a data lakehouse as a data storage and query processing

framework.

Caching has been proposed as an important optimization for

enterprise level small to petabyte order Online Analytical

Processing (OLAP) [12] systems. Local (edge) [13] caches

including Alluxio have been successfully introduced to

enhance data transfer optimizing local SSD [14] resources

and thus mitigating I/O network burdens. Netflix for instance

has centered its efforts on faster query times and cost efficient

means of processing data stored within a data warehouse.

Such strategies as data compression and proper data storage

formats as those that have been used to improve performance

with regards to storage costs.

Some of the serverless optimizations used in distributd

databases include [15]: The built in storage optimizer that

evaluates and improves on data stored in Capacitor files.

These optimizations increases the overall performance of the

queries while using resources efficiently. It is apparent that

the reveals of the force of modern query optimizers including

the MemSQL Query Optimizer [16] bring first-rate

experience in the realms of real-time analytics and, in fact,

transacted workload at scale. It refers to such systems, as they

are designed to provide services for mixed workloads,

meeting the scale requirements for data processing.

Cache is one of query acceleration methods such as indexing,

partitioning and caching that has been widely used to enhance

the speed of the SQL queries on huge amount of data [17].

Said methods [18] assist in regulating compute expenditures

and address the requirements of data analysts using large data

lakes. The Open-source proliferate [19] of Distributed SQL

query engines has been transformative in processing Scale-

out data based on the number of nodes required for scalable

and eventually fault-tolerant computing. They largely support

the execution of queries, making a provision for the

increasing need for demanding big data applications. Such

evolution occurred between 2015 and 2020 to reflect the

ongoing work to advance distributed query processing in

petabyte-scale databases for performance, scalability, and

cost consideration [20].

3. METHODOLOGY

This sections explains the Cost-Based Query Optimization

(CBO) methodology to a distributed database:

Cost-Based Query Optimizer (CBO) which is implemented

in the database is a key factor in carrying out query

optimality. The CBO then analyses different execution plans

which have to be employed and he or she opts for the one that

is most economical in terms of the data size, the amount of

computation that is needed and the amount of overhead that

is incurred during the transmission of data. This approach is

very important in maximizing performance for the distributed

system inherent. The CBO takes advantage of this design by

producing execution plans that will require scanning and

transferring minimal data. Combining these optimizations

with the serverless model helps distributed database

guarantee users the best performance for data processing of

large sets without having to think about the underlying setup.

Fig. 1 shows the proposed model for distributed query

optimization for petabyte-scale databases.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 225
IJRITCC | October 2022, Available @ http://www.ijritcc.org

Fig. 1. Proposed model for distributed query

optimization for petabyte-scale databases

3.1. Cost Estimation

Distributed database supports cost estimation in that it

provides an ability to look at the query plans as well as a

capability to estimate how costly a given query plan is in

terms of computes resource consumption, data scanning, and

data transfer. This information is employed by the optimizer

to choose the optimal plan. For instance, in petabyte-scale

databases, the price model is based on the logical data

processing, and, in particular, minimizing scan costs is

crucial. The CBO analyzes such attributes as the size of the

tables, the number of join operations, the number of partitions

used by a query and others. It also takes into account

petabyte-scale databases specific attributes such as slot usage;

which identifies the amount of computation power used for a

certain query. By correctly estimating costs associated with

these operations, the optimizer insures that the recommended

query plan is reasonable in terms of utilized resources cost.

As noted earlier, distributed database been designed with cost

control as one of its key features and the way cost is charged

supports efficient query execution. For example, a query that

reads 10 GB of data costs more than 10 GB than a query that

reads 100 GB of data is costing even if the two deliver the

same result. The CBO does this, informing the users on how

to write optimized calls while at the same time optimizing the

query’s plan for utilization of minimal resources.

3.2. Partition-Aware Optimization

In one’s choice of partitioning schemes, petabyte-scale

databases supports partitioning based on timestamp columns,

integer ranges, or ingestion time. CBO is partitioned aware,

which makes it run queries on only the interested partition

and not the entire system. For instance, a query containing a

data selection criterion such as a date will reduce the cost of

scanning partitions that are irrelevant and the time taken to do

this. Whenever petabyte-scale databases is processing queries

on partioned tables it can use a feature known as partition

pruning whereby the optimizer investigates the

characteristics of the query and deduces the partitions that are

necessary. This excludes multiple scans through the data set,

which makes it possible to process only the required

subgroups of data only. For example, a table that is

partitioned by date would read only the first 365 partitions or

a query on one specific day.

Partition-aware optimization also extends to joins. Ref

converting two partitioned tables where partitioning is done

based on the same partitioning attribute, the petabyte-scale

databases optimizer guarantees local join across the

individual partitions. This does not layer data for partitioned

indexes, improving quick query and minimizing resource

usage.

3.3. Predicate Pushdowns and Early Filtering

The predicate pushdown is one of the checks we can

implement in petabyte-scale databases to reduce the cost of

processing your data. The CBO finds value predicates such

as the `WHERE’ conditions and applies them as soon as

possible most often at the storage tier. This helps in keeping

the amount of data to be transferred over to the compute layer

to the barest minimum, whichever data you need must be

fetched at this instance. For instance, to want to get the sales

data for a particular region and a time line from a huge table.

Ideally, since it would be expensive to scan the entire table,

the optimizer will push down these filters down to the storage

layer so that only the necessary rows are fetched. Petabyte-

scale databases increases predicate pushdowns for external

data and allows users query in Storage efficiently. Since

filters are applied on the input side, petabyte-scale databases

limits the amount of data that enter its processing facility and

hence saves a lot of expenses and speeds up its computations.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 226
IJRITCC | October 2022, Available @ http://www.ijritcc.org

3.4. Dynamic Resource Allocation

The service model of petabyte-scale databases is serverless,

and so it launched the compute resources that are necessary

for each query while implementing resources that allow for

finer-grained adjustments in response to processing demands.

To this capability, the CBO adjusts the execution plans in

order to exploit the slots that are assigned for the task. For

instance, a query such as a large join and an aggregate on the

project can need more slots in order to run. In the case of

execution, the optimizer tries to determine the complexity of

your query and assigns more resources. On the other hand,

when the query size is smaller, number of slots employed is

low to avoid consumption of available resources.

Workload prioritization is also supported by dynamic

resource allocation. The petabyte-scale databases has

purchase scheduling which enables users to get slots that

dedicate for given tasks. The optimizer remains consideration

of such reservations, and the execution plan that the optimizer

develops allows high-priority queries to be completed, but it

also prevents resources allocated to other workloads from

being overwhelmed.

3.5. Exploiting Data Locality

Thus, despite the fact the distributed database standard for

querying turns to be a little slower than that of other

platforms, it lowers the query cost and execution time through

leveraging of local data to minimize data transfer latency

costs. Because distributed database stores data in multiple

regions, the CBO makes sure computations are as near to

actual data as possible. It is especially the case when dealing

with geographical coordinate systems datasets or when

working with large amounts of data. For example, a query of

the data located in petabyte-scale databases multi-region

locations (such as US or EU) is designed to perform

computations in a particular region, which the US or EU

query sends data to. Decision-makers get to choose the

execution plans that process data within their physical

location hence faster and cheaper.

Another key feature of petabyte-scale databases is the

possibility to collocate datasets for inters dataset queries.

Users can fine-tune locality and unburden the query cost even

more by putting similar datasets in a specific region. These

configurations are then considered by the optimizer, in

formulating execution plans that can support the running of

queries on large scale distributed systems.

3.6. Parallelism and Execution Plans

The ability to distribute query execution is a fundamental

feature of petabyte-scale databases by virtue of parallelism.

The optimizer produces other execution plans, which

partition queries into simpler ones to be performed

concurrently on nodes. This approach also means that no

matter how complicated a query is, involving petabytes of

data, it will be able to be executed easily. For instance, the

work of query scanning a large table is divided into subtasks;

each task works with a part of the dataset. All these tasks are

performed concurrently in distributed environment. In

addition, the optimizer also schedules the dependencies

between tasks and aims at minimizing points of aggregation

when all the pipelines of an intermediate result have to be

combined.

The concept of parallelism carries forward up to complex

operations like join and aggregations. For example, petabyte-

scale database’s sharded joins let large tables to be joined

across numerous nodes simultaneously. The optimizer

produces execution plans that load work based on nodes, to

achieve high throughput rates while avoiding work stall time

during the query execution.

4. RESULTS

This section gives the impact of the Cost Based Query

Optimization (CBO) process on Transformations, and this

will demonstrate how CBO enhances performance in

correlation to data scanned, time taken, and costs incurred.

Table 1 shows the impact of optimization on data scanned.

Without optimization, queries on a large dataset (for instance

a sales table with 1PB of data) can read the whole table. This

leads to high execution time and cost. Once the CBO has been

implemented, only the required data are accessed by the

query which has a considerably small effect on resources.

This can achieve a Cost Reduction by 99% and execution

time reduction by 85%.

Table 1. Impact of Optimization on Data Scanned

Query Type Data

Scanned

Cost

($/query)

Execution Time

(Seconds)

Without

Optimization

1 PB $5,000 600

With

Optimization

100 GB $50 90

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 227
IJRITCC | October 2022, Available @ http://www.ijritcc.org

Fig. 2 shows how query optimization has led to the decrease

in the amount of data scanned. In case when there is no

optimization, the query scans 1 PB (1000 GB) whereas with

CBO optimization the scanned data amounts to only 100 GB.

These findings show the significant enhancements of CBO,

the Cost-Based Query Optimization in petabyte-scale

databases. As it stands, should no optimization be done and

with a certain query, the system would scan the whole dataset

a bit expensive and time-consuming. The CBO achieves a

reduction of these metrics because it compares many query

plans and chooses the one that scans the least data. This is

especially important for big data since time and cost saving

even with small optimization difference is exponential. In the

case discussed here, a simple scan of a 1 PB table without the

use of CBO was costly, as well as time-consuming. The same

query was, after optimization, scanning only 100 GB of

relevant data. This emphasizes the need for choosing the right

plan in distributed query systems, where performance equal,

proportional to the size and density of data.

Fig. 2. Plot of Data Scanning results with respect to

query optimization

Cost estimation directly affects query processing as it makes

estimations of resource consumption and chooses the best

plan among all possible. For example, a join query can have,

and the DBMS makes a decision on which of the several

possible plans it is to use. Among the plans, CBO identifies

the one that involves least shuffling of data and time taken to

execute the plan. This can achieve a data transfer reduction

by 85%. Table 2 shows the cost estimation impact with

respect to plan type.

Table 2. Cost Estimation Impact

Plan Type Data

Transferred

(GB)

Estimated

Cost ($)

Execution Time

(Seconds)

Initial Plan 500 $300 240

Optimized

Plan

75 $50 90

Fig. 3 shows the decrease of the estimated query cost to the

database after cost based optimization has been applied. The

pilot plan costs $300 while the adaptive plan cuts this by

reducing data transfers and processing load to $50. The

optimizer is capable of estimating the cost in order to better

understand resource consumption by different execution

plans. The findings depict that in the baseline plan more costs

and execution time were associated with the plan as data

transfers and joins were ineffective. The selected optimized

plan combined with accurate prediction of the costs saved the

amount of data that was being transferred to half, thus cutting

employment costs and ensuring faster cycle times.

In the systems where data processing and storage are diverse

as it is in distributed database, the understanding of the

expenses taken for executing some operations such as

shuffles and scans is critical. Due to the fact that the optimizer

uses the plans with the minimum value of estimated costs,

users are charged only the required amount of money for the

resources consumed, which is evidence of distributed

database’s affordability when compared with its counterparts

that are developed for big data processing.

Fig. 3. Plot of estimated cost with respect to type of plan

3.1. Partition-Aware Optimization

Partition based optimization brings a very big reduction in the

data scanned through the use of table partitions. For instance

when querying a sales table partitioned by date for a certain

month only the specific record-partitions related to that

month are hard skipped over. This can achieve an execution

time reduction by 80%. Table 3 shows the partition pruning

impact on data scanning.

Table 3. Partition Pruning Impact

Query

Type

Total Data

Scanned

(GB)

Partitions

Scanned

Execution

Time

(Seconds)

Without

Pruning

500 All (100) 200

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 228
IJRITCC | October 2022, Available @ http://www.ijritcc.org

With

Pruning

50 Relevant

(10)

40

Partition-pruning means that this is a way to make your query

scan only the correct partition of your dataset. If no pruning

is done then the entire table is searched which consumes time

and costs a lot of money. The results show that by choosing

only ten partitions out of hundred, the optimizer decreased a

data scanned by 9 times and increased the execution time by

8 times. Fig. 4 shows the plot of data scanning result with

respect to partition pruning. This optimization is especially

useful in the case of time-series data or other types of

partitioned data, upon whose partitions queries are likely to

be applied to a certain interval. In fact, partition pruning not

only improves the performance but also the right data

organization practices provides to the users, to take advantage

of structured and partitioned storage.

Fig. 4. Plot of data scanning result with respect to

partition pruning

2. Predicate Pushdowns and Early Filtering

Predicate pushdowns reduce the volume of data processed by

applying filters early at the storage layer. For example,

querying a large dataset with filters like WHERE region =

'North America' scans only the rows matching the predicate.

This can achieve an execution time reduction by 90%. Table

4 shows the impact of predicate pushdowns on data scanning.

Table 4. Impact of Predicate Pushdowns

Query Type Data

Scanned

(GB)

Rows

Processed

Execution

Time

(Seconds)

Without

Predicate

Pushdown

1,000 1 billion 600

With

Predicate

Pushdown

100 100 million 60

Predicate pushdowns decrease the amount of data which have

to be processed by filtering, at the storage layer level.

Parameters such as WHERE region = ‘North America’

searching a large dataset means that it scans only the rows

meeting the predicate.

Fig. 5 shows the data processed before and after predicate

pushdowns. Predicate pushdowns limit the data amount that

requires applying filters on the storage level and transferring

it to the compute level. The results of the experiment prove

that with scanning of such unnecessary data the analysis

resulted in spending 1 TB of storage with no predicate

pushdown while the optimization at best had the usage drop

to 100 GB. This led to a cutting of the time and efforts

required by ten folds thus bearing implications on costs.

Through predicate pushdowns, petabyte-scale databases

reduces the number of physical I/O operations that a query

would call forth. This is even more critical with the partly

selective queries where only a fraction of the record is

considered. The availability of lots of storage and compute

resources is a key reason why early filtering is effective.

Fig. 5. Data Processed Before and After Predicate

Pushdowns

3. Dynamic Resource Allocation

Possible resource distribution also improves the resource

usage through adaptation of slot assignment as per the query

difficulty level. This makes it easier to implement without

offering more than necessary or less than necessary. For

instance, but a basic or straightforward search can only

involve a few slots, a join search can employ more slots so as

to execute the procedure. This can achieve the resource

utilization efficiency by 4 times of improvement. Table 5

shows the dynamic resource allocation impact on execution

time and efficiency.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 229
IJRITCC | October 2022, Available @ http://www.ijritcc.org

Table 5. Dynamic Resource Allocation Impact

Query

Complexity

Slots

Allocated

Execution

Time

(Seconds)

Efficiency

Improvement

High 5 300 Baseline

High

(Optimized)

20 60 4x

The dynamic allocation of the queries help to minimize its

execution time for the large queries due to parallelism. Fig. 6

shows the dynamic resource allocation impact on execution

time. On the other hand simple queries do not require slot to

be allocated hence the costs are cut. Dynamic resource

allocation keeps computational resources related to the

requirements of queries in order to optimize execution. This

demonstrates that creating more slots for a high-complexity

query corresponded with an 80% improvement in the time it

took to execute the query pays out and improves throughput.

On the other hand, the simpler queries employed a lesser

number of slots as a way to save on potency. What we also

found is that petabyte-scale databases can easily scale up and

scale down in order to accommodate different workloads. The

more intricate queries can be parsed and executed in parallel

with extra slots, while simple ones prevent over-provisioning.

This flexibility is paramount given the shared hosting and

server-less environment of multi-tenancy business models.

Fig. 6. Dynamic resource allocation impact on execution

time.

4. Exploiting Data Locality

Data locality optimization thereby avoids full region transit

which is expensive in terms of computation time and cost. To

illustrate this, analysis of data, which is saved within the US

geo-zone, is designed to run within the same geo-zone. This

can achieve a latency reduction by 80%. Table 6 shows the

impact of data locality optimization on data transfer.

Table 6. Impact of Data Locality Optimization

Query Type Data

Transferred

(GB)

Cost

($)

Execution

Time

(Seconds)

Without

Optimization

10,000 $500 500

With

Optimization

500 $25 100

Fig. 7 shows the results of impact of data locality

optimization. Locality optimization minimizes

communication between regions hence minimizing

excecution costs and increasing query response rates. It helps

to avoid cross-region data transfers by making computations

to happen close to where the data is resident.

Fig. 7. Impact of Data Locality Optimization

Thus, the results show that query optimization to run queries

within the same region cut data transfer by 95% and costs and

latency therein. When data is stored across regions as is

customary in distributed systems such as petabyte-scale

databases, the concept of locality has a great impact on

performance. Not only does distributed database cut down on

the inter-region communication, which in turn enhances

query speed but it also provides solutions to organizations

when it comes to the matter of data locality; a compliance

issue in several sectors.

5. Parallelism and Execution Plans

Parallelism disables the requests into tasks that work

simultaneously on individual nodes of the computational

complex. For example, a query that performs scan operation

on terabyte of data can fragment into ten sub tasks, each

tackling one hundred gigabytes at a time. This can achieve a

performance improvement by 10x. Table 7 shows the impact

of parallelism on query execution.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 230
IJRITCC | October 2022, Available @ http://www.ijritcc.org

Table 7. Impact of Parallelism on Query Execution

Execution

Mode

Data

Scanned

(GB)

Execution

Time

(Seconds)

Tasks

Executed

Serial 1,000 600 1

Parallel 1,000 60 10

Fig. 8 shows the results of the impact of parallelism on query

execution. Parallelism allows for querying queries of large

data structures where an attempt is made to optimize the use

of computing resources for considerable improvements.

Parallelism divides queries into tasks that can be run in

parallel across the nodes of a cluster in a corporate network.

The outcomes reveal several magnitude improvements in

terms of execution time when a large query was handled

concurrently. This proves the capability of distributed

computation with large datasets of petabyte scale.

Maximizing hardware utilization and preventing large query

from becoming a bottleneck is made possible through

parallelism used by petabyte-scale databases. In this way, this

approach is most effective in relation to costly operations

such as joins and aggregations by enhancing the speed of data

processing.

Fig. 8. Impact of Parallelism on Query Execution

5. CONCLUSION

In this research, changes in query optimization

methodologies that improve the operation and effectiveness

of distributed systems such as petabyte-scale database

applications are described. Realization of an optimization of

the cost-based optimization approach, extensions to predicate

push down optimizations, and dynamic resource allocation

has shown significant decrease in CPU and I/O overheads.

For instance, dynamic resource allocation, increased query

speed recovery by 80%, and when exploiting data locality,

the data transfer cost was recovered to 95%. These results

support that on large-scale database systems more often than

not specific optimizations are indeed important.

Further studies could focus on relationships between machine

learning analytics and anomaly detection and the employment

of real time adaptive optimization algorithms. In the same

respect, it is quite clear that the approaches presented in this

thesis can be applied to other distributed database systems,

thereby enhancing the generalisability of the phenomena

studied. In conclusion, the work calls for the need to

constantly strive for improvement in the process of query

optimization in order to help take modern data-centred

application to the next level.

REFERENCES

[1]. Jiang, Shengdian, et al. "Petabyte-Scale Multi-

Morphometry of Single Neurons for Whole

Brains." Biorxiv (2021): 2021-01.

[2]. Shah, Samarth, and Milavkumar Shah. "Deep

Reinforcement Learning For Scalable Task

Scheduling In Serverless Computing." International

Research Journal of Modernization in Engineering

Technology and Science 3 (2021): 1845-1853.

[3]. Parchas, Panos, et al. "Fast and effective

distribution-key recommendation for amazon

redshift." Proceedings of the VLDB

Endowment 13.12 (2020): 2411-2423.

[4]. Aguilar-Saborit, Josep, et al. "POLARIS: the

distributed SQL engine in azure

synapse." Proceedings of the VLDB

Endowment 13.12 (2020): 3204-3216.

[5]. Zeitouni, Karine, et al. "Query processing and access

methods for big astro and geo

databases." Knowledge Discovery in Big Data from

Astronomy and Earth Observation. Elsevier, 2020.

159-171.

[6]. Tang, Houjun, et al. "Parallel query service for

object-centric data management systems." 2020

IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW).

IEEE, 2020.

[7]. Margoor, Amogh, and Mayur Bhosale. "Improving

join reordering for large scale distributed

computing." 2020 IEEE International Conference on

Big Data (Big Data). IEEE, 2020.

[8]. Modi, Abhishek, et al. "New query optimization

techniques in the spark engine of azure

synapse." Proceedings of the VLDB

Endowment 15.4 (2021): 936-948.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 10

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022

 231
IJRITCC | October 2022, Available @ http://www.ijritcc.org

[9]. Popescu, Catalin, et al. "WarpFlow: exploring

petabytes of space-time data." arXiv preprint

arXiv:1902.03338 (2019).

[10]. Gao, Jintao, et al. "A general fragments allocation

method for join query in distributed

database." Information Sciences 512 (2020): 1249-

1263.

[11]. Pang, Zhifei, et al. "AQUA+: Query Optimization

for Hybrid Database-MapReduce

System." Knowledge and Information Systems 63.4

(2021): 905-938.

[12]. Qiao, Shi, et al. "Hyper dimension shuffle: Efficient

data repartition at petabyte scale in

scope." Proceedings of the VLDB Endowment 12.10

(2019): 1113-1125.

[13]. Kassela, Evdokia, Ioannis Konstantinou, and

Nectarios Koziris. "Towards a Multi-engine Query

Optimizer for Complex SQL Queries on Big

Data." 2019 IEEE International Conference on Big

Data (Big Data). IEEE, 2019.

[14]. Patgiri, Ripon, and Sabuzima Nayak. "A Survey on

Large Scale Metadata Server for Big Data

Storage." arXiv preprint arXiv:2005.06963 (2020).

[15]. Tang, Houjun, et al. "Tuning object-centric data

management systems for large scale scientific

applications." 2019 IEEE 26th International

Conference on High Performance Computing, Data,

and Analytics (HiPC). IEEE, 2019.

[16]. Savva, Fotis. Query-driven learning for automating

exploratory analytics in large-scale data

management systems. Diss. University of Glasgow,

2021.

[17]. Pandis, Ippokratis. "The evolution of Amazon

redshift." Proceedings of the VLDB

Endowment 14.12 (2021): 3162-3174.

[18]. Sarthi, Partho, et al. "Generalized {Sub-Query}

Fusion for Eliminating Redundant {I/O} from {Big-

Data} Queries." 14th USENIX Symposium on

Operating Systems Design and Implementation

(OSDI 20). 2020.

[19]. Chen, Jianjun, et al. "Data management at huawei:

Recent accomplishments and future

challenges." 2019 IEEE 35th International

Conference on Data Engineering (ICDE). IEEE,

2019.

[20]. Edara, Pavan, and Mosha Pasumansky. "Big

metadata: when metadata is big data." Proceedings

of the VLDB Endowment 14.12 (2021): 3083-3095.

http://www.ijritcc.org/

