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Abstract 

It is significant to minimize suboptimal query execution in petabyte scale distributed database systems. This research examines a 

range of techniques for the improvement of query optimization, namely cost-based optimization, execution in partitioned 

environment, predicate push-down optimization, dynamic resource management, utilization of data locality, and parallelism. 

Practical examples in relation to each of the methodologies are discussed in addition to the results illustrating efficiency in terms of 

time to execute, resources used and costs incurred.  Some vital findings discussed include improved operations with queries where 

partition pruning was effective for data scans by 90% and parallelism resulted in ten time faster execution. In turn, this study 

demonstrates how, by following these techniques systematically, practitioners could achieve improvements in efficiency in the field 

of distributed database environments. The findings highlight the need for agile and reactive optimizations in view of addressing 

current concerns of large scale big data systems.   
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1. INTRODUCTION 

Due to the innovation and expansion of data across numerous 

fields and especially in health care field, the development of 

efficient, extendable and secured database management 

system is required [1]. Systems such as distributed databases 

have become crucial for processing Petabytes scale data and 

has the capabilities to process query in high speed and in an 

optimized cost. However, since distributed query processing 

is more intricate than centralized query processing, it creates 

a few concerns regarding the query’s performance, expense, 

and scalability when applied to big data processing [2]. 

Among the approaches to database optimization, perhaps 

none is as crucial as query optimization. It concerns with the 

choice of the most effective approach to the database query, 

bearing in mind such parameters as distribution of data, 

amount and nature of work, and available means. Although 

legacy query optimization approaches have been very useful 

especially for centralized database, they must be modified 

and adopted differently for big data systems like distributed 

database due to; data locality, partitioning and parallelism. 

These optimizations are significant for the applications in the 

healthcare domain as the analysis has to occur quickly, and 

the costs cannot be too high [3]. 

In the healthcare field [4] big data repositories are employed 

in a various forms such as hazard factors, patient record big 

data processing, unusual event detection, and data driven 

decision making big data analytics. There is need for efficient 

query optimization methods that will help in the queries when 

the interconnectivity of such large points is under evaluation. 

For instance, real-time anomaly detection on Salesforce data 

in healthcare systems, requires efficient query processing for 

timely decision making. This work explores query 

optimization techniques suited for distributed databases of a 

petabyte order [5]. Overall, the framework presented in the 

study highlights the basic strategies that can be applied to 

improve query performance and includes cost-based 

optimization, partition-aware execution, predicate 

pushdowns, dynamic resource allocation, data locality 

exploitation and parallelism. While previous work has 

explored relationships and interactions, practical applications 

and outcomes show the feasibility of these approaches, 

providing useful information for academics and practitioners 

[6]. 

The rest of the paper comprises literature survey, framework 

for deploying the optimization tools and strategies [7], and 

representative outcomes and future conclusions. They also 
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help in bringing new ideas and solutions to the problems 

associated with query optimization this study hopes to make 

a huge contribution to the generally under researched field of 

distributed DBMS and specifically in the field of health care. 

2. LITERATURE REVIEW 

The area of distributed query optimization [8] for petabyte-

scale system has seen improvements in the aspects of 

performance, scalability and cost. One example that is 

particularly worth mentioning is increasing use of distributed 

data engines for processing large-scale data among nodes. 

Such engines have the capability of handling the query 

execution tasks that arises due to the increasing use of a large 

and complex database. In 2021, TigerGraph partnered with 

Xilinx to incorporate FPGA driven accelerators into their 

graph database platforms [9]. This coupled-target was sought 

to enable petabyte order of graph processing which tackles 

the problem of scaling graph databases through improving 

query processing and latency minimization.  

Query optimization in distributed databases has also been an 

area of research interest, although dealing with the 

optimization of data traffic between sites [10]. To be able to 

achieve good throughput in query processing across multiple 

sites in the network, data transfer during query execution has 

been minimized. There is a new concept called data 

lakehouses that try to unite the best features of data lakes and 

data warehouses [11]. Some work has been done regarding 

how to perform row level operations at a petabyte level within 

a data lakehouse as a data storage and query processing 

framework.  

Caching has been proposed as an important optimization for 

enterprise level small to petabyte order Online Analytical 

Processing (OLAP) [12] systems. Local (edge) [13] caches 

including Alluxio have been successfully introduced to 

enhance data transfer optimizing local SSD [14] resources 

and thus mitigating I/O network burdens. Netflix for instance 

has centered its efforts on faster query times and cost efficient 

means of processing data stored within a data warehouse. 

Such strategies as data compression and proper data storage 

formats as those that have been used to improve performance 

with regards to storage costs.  

Some of the serverless optimizations used in distributd 

databases include [15]: The built in storage optimizer that 

evaluates and improves on data stored in Capacitor files. 

These optimizations increases the overall performance of the 

queries while using resources efficiently. It is apparent that 

the reveals of the force of modern query optimizers including 

the MemSQL Query Optimizer [16] bring first-rate 

experience in the realms of real-time analytics and, in fact, 

transacted workload at scale. It refers to such systems, as they 

are designed to provide services for mixed workloads, 

meeting the scale requirements for data processing. 

Cache is one of query acceleration methods such as indexing, 

partitioning and caching that has been widely used to enhance 

the speed of the SQL queries on huge amount of data [17]. 

Said methods [18] assist in regulating compute expenditures 

and address the requirements of data analysts using large data 

lakes. The Open-source proliferate [19] of Distributed SQL 

query engines has been transformative in processing Scale-

out data based on the number of nodes required for scalable 

and eventually fault-tolerant computing. They largely support 

the execution of queries, making a provision for the 

increasing need for demanding big data applications. Such 

evolution occurred between 2015 and 2020 to reflect the 

ongoing work to advance distributed query processing in 

petabyte-scale databases for performance, scalability, and 

cost consideration [20]. 

3. METHODOLOGY  

This sections explains the Cost-Based Query Optimization 

(CBO) methodology to a distributed database: 

Cost-Based Query Optimizer (CBO) which is implemented 

in the database is a key factor in carrying out query 

optimality. The CBO then analyses different execution plans 

which have to be employed and he or she opts for the one that 

is most economical in terms of the data size, the amount of 

computation that is needed and the amount of overhead that 

is incurred during the transmission of data. This approach is 

very important in maximizing performance for the distributed 

system inherent. The CBO takes advantage of this design by 

producing execution plans that will require scanning and 

transferring minimal data. Combining these optimizations 

with the serverless model helps distributed database 

guarantee users the best performance for data processing of 

large sets without having to think about the underlying setup. 

Fig. 1 shows the proposed model for distributed query 

optimization for petabyte-scale databases. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 10 Issue: 10 

Article Received: 25 July 2022 Revised: 12 September 2022 Accepted: 30 September 2022 

___________________________________________________________________________________________________________________ 

 
    225 
IJRITCC | October 2022, Available @ http://www.ijritcc.org 

 

Fig. 1. Proposed model for distributed query 

optimization for petabyte-scale databases 

3.1. Cost Estimation  

Distributed database supports cost estimation in that it 

provides an ability to look at the query plans as well as a 

capability to estimate how costly a given query plan is in 

terms of computes resource consumption, data scanning, and 

data transfer. This information is employed by the optimizer 

to choose the optimal plan. For instance, in petabyte-scale 

databases, the price model is based on the logical data 

processing, and, in particular, minimizing scan costs is 

crucial. The CBO analyzes such attributes as the size of the 

tables, the number of join operations, the number of partitions 

used by a query and others. It also takes into account 

petabyte-scale databases specific attributes such as slot usage; 

which identifies the amount of computation power used for a 

certain query. By correctly estimating costs associated with 

these operations, the optimizer insures that the recommended 

query plan is reasonable in terms of utilized resources cost. 

As noted earlier, distributed database been designed with cost 

control as one of its key features and the way cost is charged 

supports efficient query execution. For example, a query that 

reads 10 GB of data costs more than 10 GB than a query that 

reads 100 GB of data is costing even if the two deliver the 

same result. The CBO does this, informing the users on how 

to write optimized calls while at the same time optimizing the 

query’s plan for utilization of minimal resources. 

 

3.2. Partition-Aware Optimization  

In one’s choice of partitioning schemes, petabyte-scale 

databases supports partitioning based on timestamp columns, 

integer ranges, or ingestion time. CBO is partitioned aware, 

which makes it run queries on only the interested partition 

and not the entire system. For instance, a query containing a 

data selection criterion such as a date will reduce the cost of 

scanning partitions that are irrelevant and the time taken to do 

this. Whenever petabyte-scale databases is processing queries 

on partioned tables it can use a feature known as partition 

pruning whereby the optimizer investigates the 

characteristics of the query and deduces the partitions that are 

necessary. This excludes multiple scans through the data set, 

which makes it possible to process only the required 

subgroups of data only. For example, a table that is 

partitioned by date would read only the first 365 partitions or 

a query on one specific day. 

Partition-aware optimization also extends to joins. Ref 

converting two partitioned tables where partitioning is done 

based on the same partitioning attribute, the petabyte-scale 

databases optimizer guarantees local join across the 

individual partitions. This does not layer data for partitioned 

indexes, improving quick query and minimizing resource 

usage. 

3.3. Predicate Pushdowns and Early Filtering  

The predicate pushdown is one of the checks we can 

implement in petabyte-scale databases to reduce the cost of 

processing your data. The CBO finds value predicates such 

as the `WHERE’ conditions and applies them as soon as 

possible most often at the storage tier. This helps in keeping 

the amount of data to be transferred over to the compute layer 

to the barest minimum, whichever data you need must be 

fetched at this instance. For instance, to want to get the sales 

data for a particular region and a time line from a huge table. 

Ideally, since it would be expensive to scan the entire table, 

the optimizer will push down these filters down to the storage 

layer so that only the necessary rows are fetched.  Petabyte-

scale databases increases predicate pushdowns for external 

data and allows users query in Storage efficiently. Since 

filters are applied on the input side, petabyte-scale databases 

limits the amount of data that enter its processing facility and 

hence saves a lot of expenses and speeds up its computations. 
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3.4. Dynamic Resource Allocation 

The service model of petabyte-scale databases is serverless, 

and so it launched the compute resources that are necessary 

for each query while implementing resources that allow for 

finer-grained adjustments in response to processing demands. 

To this capability, the CBO adjusts the execution plans in 

order to exploit the slots that are assigned for the task. For 

instance, a query such as a large join and an aggregate on the 

project can need more slots in order to run. In the case of 

execution, the optimizer tries to determine the complexity of 

your query and assigns more resources. On the other hand, 

when the query size is smaller, number of slots employed is 

low to avoid consumption of available resources. 

Workload prioritization is also supported by dynamic 

resource allocation. The petabyte-scale databases has 

purchase scheduling which enables users to get slots that 

dedicate for given tasks. The optimizer remains consideration 

of such reservations, and the execution plan that the optimizer 

develops allows high-priority queries to be completed, but it 

also prevents resources allocated to other workloads from 

being overwhelmed. 

3.5. Exploiting Data Locality  

Thus, despite the fact the distributed database standard for 

querying turns to be a little slower than that of other 

platforms, it lowers the query cost and execution time through 

leveraging of local data to minimize data transfer latency 

costs. Because distributed database stores data in multiple 

regions, the CBO makes sure computations are as near to 

actual data as possible. It is especially the case when dealing 

with geographical coordinate systems datasets or when 

working with large amounts of data. For example, a query of 

the data located in petabyte-scale databases multi-region 

locations (such as US or EU) is designed to perform 

computations in a particular region, which the US or EU 

query sends data to. Decision-makers get to choose the 

execution plans that process data within their physical 

location hence faster and cheaper. 

Another key feature of petabyte-scale databases is the 

possibility to collocate datasets for inters dataset queries. 

Users can fine-tune locality and unburden the query cost even 

more by putting similar datasets in a specific region. These 

configurations are then considered by the optimizer, in 

formulating execution plans that can support the running of 

queries on large scale distributed systems. 

3.6. Parallelism and Execution Plans  

The ability to distribute query execution is a fundamental 

feature of petabyte-scale databases by virtue of parallelism. 

The optimizer produces other execution plans, which 

partition queries into simpler ones to be performed 

concurrently on nodes. This approach also means that no 

matter how complicated a query is, involving petabytes of 

data, it will be able to be executed easily. For instance, the 

work of query scanning a large table is divided into subtasks; 

each task works with a part of the dataset. All these tasks are 

performed concurrently in distributed environment. In 

addition, the optimizer also schedules the dependencies 

between tasks and aims at minimizing points of aggregation 

when all the pipelines of an intermediate result have to be 

combined. 

The concept of parallelism carries forward up to complex 

operations like join and aggregations. For example, petabyte-

scale database’s sharded joins let large tables to be joined 

across numerous nodes simultaneously. The optimizer 

produces execution plans that load work based on nodes, to 

achieve high throughput rates while avoiding work stall time 

during the query execution. 

4. RESULTS 

This section gives the impact of the Cost Based Query 

Optimization (CBO) process on Transformations, and this 

will demonstrate how CBO enhances performance in 

correlation to data scanned, time taken, and costs incurred.  

Table 1 shows the impact of optimization on data scanned. 

Without optimization, queries on a large dataset (for instance 

a sales table with 1PB of data) can read the whole table. This 

leads to high execution time and cost. Once the CBO has been 

implemented, only the required data are accessed by the 

query which has a considerably small effect on resources. 

This can achieve a Cost Reduction by 99% and execution 

time reduction by 85%.  

Table 1. Impact of Optimization on Data Scanned 

Query Type Data 

Scanned 

Cost 

($/query) 

Execution Time 

(Seconds) 

Without 

Optimization 

1 PB $5,000 600 

With 

Optimization 

100 GB $50 90 
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Fig. 2 shows how query optimization has led to the decrease 

in the amount of data scanned. In case when there is no 

optimization, the query scans 1 PB (1000 GB) whereas with 

CBO optimization the scanned data amounts to only 100 GB. 

These findings show the significant enhancements of CBO, 

the Cost-Based Query Optimization in petabyte-scale 

databases. As it stands, should no optimization be done and 

with a certain query, the system would scan the whole dataset 

a bit expensive and time-consuming. The CBO achieves a 

reduction of these metrics because it compares many query 

plans and chooses the one that scans the least data. This is 

especially important for big data since time and cost saving 

even with small optimization difference is exponential. In the 

case discussed here, a simple scan of a 1 PB table without the 

use of CBO was costly, as well as time-consuming. The same 

query was, after optimization, scanning only 100 GB of 

relevant data. This emphasizes the need for choosing the right 

plan in distributed query systems, where performance equal, 

proportional to the size and density of data. 

 
Fig. 2. Plot of Data Scanning results with respect to 

query optimization  

Cost estimation directly affects query processing as it makes 

estimations of resource consumption and chooses the best 

plan among all possible. For example, a join query can have, 

and the DBMS makes a decision on which of the several 

possible plans it is to use. Among the plans, CBO identifies 

the one that involves least shuffling of data and time taken to 

execute the plan. This can achieve a data transfer reduction 

by 85%. Table 2 shows the cost estimation impact with 

respect to plan type. 

Table 2. Cost Estimation Impact 

Plan Type Data 

Transferred 

(GB) 

Estimated 

Cost ($) 

Execution Time 

(Seconds) 

Initial Plan 500 $300 240 

Optimized 

Plan 

75 $50 90 

Fig. 3 shows the decrease of the estimated query cost to the 

database after cost based optimization has been applied. The 

pilot plan costs $300 while the adaptive plan cuts this by 

reducing data transfers and processing load to $50. The 

optimizer is capable of estimating the cost in order to better 

understand resource consumption by different execution 

plans. The findings depict that in the baseline plan more costs 

and execution time were associated with the plan as data 

transfers and joins were ineffective. The selected optimized 

plan combined with accurate prediction of the costs saved the 

amount of data that was being transferred to half, thus cutting 

employment costs and ensuring faster cycle times. 

In the systems where data processing and storage are diverse 

as it is in distributed database, the understanding of the 

expenses taken for executing some operations such as 

shuffles and scans is critical. Due to the fact that the optimizer 

uses the plans with the minimum value of estimated costs, 

users are charged only the required amount of money for the 

resources consumed, which is evidence of distributed 

database’s affordability when compared with its counterparts 

that are developed for big data processing. 

 

Fig. 3. Plot of estimated cost with respect to type of plan 

3.1. Partition-Aware Optimization  

Partition based optimization brings a very big reduction in the 

data scanned through the use of table partitions. For instance 

when querying a sales table partitioned by date for a certain 

month only the specific record-partitions related to that 

month are hard skipped over. This can achieve an execution 

time reduction by 80%. Table 3 shows the partition pruning 

impact on data scanning. 

Table 3. Partition Pruning Impact 

Query 

Type 

Total Data 

Scanned 

(GB) 

Partitions 

Scanned 

Execution 

Time 

(Seconds) 

Without 

Pruning 

500 All (100) 200 
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With 

Pruning 

50 Relevant 

(10) 

40 

Partition-pruning means that this is a way to make your query 

scan only the correct partition of your dataset. If no pruning 

is done then the entire table is searched which consumes time 

and costs a lot of money. The results show that by choosing 

only ten partitions out of hundred, the optimizer decreased a 

data scanned by 9 times and increased the execution time by 

8 times. Fig. 4 shows the plot of data scanning result with 

respect to partition pruning. This optimization is especially 

useful in the case of time-series data or other types of 

partitioned data, upon whose partitions queries are likely to 

be applied to a certain interval. In fact, partition pruning not 

only improves the performance but also the right data 

organization practices provides to the users, to take advantage 

of structured and partitioned storage. 

 

Fig. 4. Plot of data scanning result with respect to 

partition pruning    

2. Predicate Pushdowns and Early Filtering  

Predicate pushdowns reduce the volume of data processed by 

applying filters early at the storage layer. For example, 

querying a large dataset with filters like WHERE region = 

'North America' scans only the rows matching the predicate. 

This can achieve an execution time reduction by 90%. Table 

4 shows the impact of predicate pushdowns on data scanning. 

Table 4. Impact of Predicate Pushdowns 

Query Type Data 

Scanned 

(GB) 

Rows 

Processed 

Execution 

Time 

(Seconds) 

Without 

Predicate 

Pushdown 

1,000 1 billion 600 

With 

Predicate 

Pushdown 

100 100 million 60 

Predicate pushdowns decrease the amount of data which have 

to be processed by filtering, at the storage layer level. 

Parameters such as WHERE region = ‘North America’ 

searching a large dataset means that it scans only the rows 

meeting the predicate. 

Fig. 5 shows the data processed before and after predicate 

pushdowns. Predicate pushdowns limit the data amount that 

requires applying filters on the storage level and transferring 

it to the compute level. The results of the experiment prove 

that with scanning of such unnecessary data the analysis 

resulted in spending 1 TB of storage with no predicate 

pushdown while the optimization at best had the usage drop 

to 100 GB. This led to a cutting of the time and efforts 

required by ten folds thus bearing implications on costs. 

Through predicate pushdowns, petabyte-scale databases 

reduces the number of physical I/O operations that a query 

would call forth. This is even more critical with the partly 

selective queries where only a fraction of the record is 

considered. The availability of lots of storage and compute 

resources is a key reason why early filtering is effective. 

 

Fig. 5. Data Processed Before and After Predicate 

Pushdowns 

3. Dynamic Resource Allocation 

Possible resource distribution also improves the resource 

usage through adaptation of slot assignment as per the query 

difficulty level. This makes it easier to implement without 

offering more than necessary or less than necessary. For 

instance, but a basic or straightforward search can only 

involve a few slots, a join search can employ more slots so as 

to execute the procedure. This can achieve the resource 

utilization efficiency by 4 times of improvement. Table 5 

shows the dynamic resource allocation impact on execution 

time and efficiency. 
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Table 5. Dynamic Resource Allocation Impact 

Query 

Complexity 

Slots 

Allocated 

Execution 

Time 

(Seconds) 

Efficiency 

Improvement 

High 5 300 Baseline 

High 

(Optimized) 

20 60 4x 

The dynamic allocation of the queries help to minimize its 

execution time for the large queries due to parallelism. Fig. 6 

shows the dynamic resource allocation impact on execution 

time. On the other hand simple queries do not require slot to 

be allocated hence the costs are cut. Dynamic resource 

allocation keeps computational resources related to the 

requirements of queries in order to optimize execution. This 

demonstrates that creating more slots for a high-complexity 

query corresponded with an 80% improvement in the time it 

took to execute the query pays out and improves throughput. 

On the other hand, the simpler queries employed a lesser 

number of slots as a way to save on potency. What we also 

found is that petabyte-scale databases can easily scale up and 

scale down in order to accommodate different workloads. The 

more intricate queries can be parsed and executed in parallel 

with extra slots, while simple ones prevent over-provisioning. 

This flexibility is paramount given the shared hosting and 

server-less environment of multi-tenancy business models. 

 

Fig. 6. Dynamic resource allocation impact on execution 

time. 

4. Exploiting Data Locality 

Data locality optimization thereby avoids full region transit 

which is expensive in terms of computation time and cost. To 

illustrate this, analysis of data, which is saved within the US 

geo-zone, is designed to run within the same geo-zone. This 

can achieve a latency reduction by 80%. Table 6 shows the 

impact of data locality optimization on data transfer. 

Table 6. Impact of Data Locality Optimization 

Query Type Data 

Transferred 

(GB) 

Cost 

($) 

Execution 

Time 

(Seconds) 

Without 

Optimization 

10,000 $500 500 

With 

Optimization 

500 $25 100 

Fig. 7 shows the results of impact of data locality 

optimization. Locality optimization minimizes 

communication between regions hence minimizing 

excecution costs and increasing query response rates. It helps 

to avoid cross-region data transfers by making computations 

to happen close to where the data is resident.  

 

Fig. 7. Impact of Data Locality Optimization 

Thus, the results show that query optimization to run queries 

within the same region cut data transfer by 95% and costs and 

latency therein. When data is stored across regions as is 

customary in distributed systems such as petabyte-scale 

databases, the concept of locality has a great impact on 

performance. Not only does distributed database cut down on 

the inter-region communication, which in turn enhances 

query speed but it also provides solutions to organizations 

when it comes to the matter of data locality; a compliance 

issue in several sectors. 

5. Parallelism and Execution Plans  

Parallelism disables the requests into tasks that work 

simultaneously on individual nodes of the computational 

complex. For example, a query that performs scan operation 

on terabyte of data can fragment into ten sub tasks, each 

tackling one hundred gigabytes at a time. This can achieve a 

performance improvement by 10x. Table 7 shows the impact 

of parallelism on query execution. 
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Table 7. Impact of Parallelism on Query Execution 

Execution 

Mode 

Data 

Scanned 

(GB) 

Execution 

Time 

(Seconds) 

Tasks 

Executed 

Serial 1,000 600 1 

Parallel 1,000 60 10 

Fig. 8 shows the results of the impact of parallelism on query 

execution. Parallelism allows for querying queries of large 

data structures where an attempt is made to optimize the use 

of computing resources for considerable improvements. 

Parallelism divides queries into tasks that can be run in 

parallel across the nodes of a cluster in a corporate network. 

The outcomes reveal several magnitude improvements in 

terms of execution time when a large query was handled 

concurrently. This proves the capability of distributed 

computation with large datasets of petabyte scale. 

Maximizing hardware utilization and preventing large query 

from becoming a bottleneck is made possible through 

parallelism used by petabyte-scale databases. In this way, this 

approach is most effective in relation to costly operations 

such as joins and aggregations by enhancing the speed of data 

processing. 

 

Fig. 8. Impact of Parallelism on Query Execution 

5. CONCLUSION 

In this research, changes in query optimization 

methodologies that improve the operation and effectiveness 

of distributed systems such as petabyte-scale database 

applications are described. Realization of an optimization of 

the cost-based optimization approach, extensions to predicate 

push down optimizations, and dynamic resource allocation 

has shown significant decrease in CPU and I/O overheads. 

For instance, dynamic resource allocation, increased query 

speed recovery by 80%, and when exploiting data locality, 

the data transfer cost was recovered to 95%. These results 

support that on large-scale database systems more often than 

not specific optimizations are indeed important.   

Further studies could focus on relationships between machine 

learning analytics and anomaly detection and the employment 

of real time adaptive optimization algorithms. In the same 

respect, it is quite clear that the approaches presented in this 

thesis can be applied to other distributed database systems, 

thereby enhancing the generalisability of the phenomena 

studied. In conclusion, the work calls for the need to 

constantly strive for improvement in the process of query 

optimization in order to help take modern data-centred 

application to the next level.   
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