wgra-I-Homeomorphism in Ideal Topological Spaces

A. Jayalakshmi Research Scholar, L. R. G. Govt. Arts College for Women, Tirupur, TN, India *arumugajaya@gmail.com* C. Janaki L. R. G. Govt. Arts College for Women, Tirupur, TN, India *janakicsekar@yahoo.com*

Abstract: In this paper, the concepts of wgr α -I-closed maps, wgr α -I-homeomorphism, wgr α -I-connectedness and wgr α -I-compactness are introduced and some their properties in ideal topological spaces are investigated.

Keywords: wgra-I-homeomorphism, wgra*-I-homeomorphism, wgra-I-closed and wgra-I-open maps, wgra-I-connectedness and wgra-Icompactness.

Subject Classification: 54A05, 54C05.

I. Introduction

The concept of ideal in topological space was first introduced by Kuratowski[10] and Vaidyanathaswamy [13]. They also have defined local function in ideal topological space. Further Hamlett and Jankovic [8] studied the properties of ideal topological spaces. Using the local function, they defined a kuratowski closure operator in new topological space .Compactness [5, 11, 12], connectedness have been generalized via topological ideals in the recent years. In this paper we introduce and study some of the properties of wgra-I-closed and wgra-I-open maps. Further, we introduce two new homeomorphisms namely wgra-Ihomeomorphism, wgra*-I-homeomorphism. Also, the concept of wgra-I-connectedness and wgra-I-compactness are introduced in ideal topological spaces.

II. Preliminaries

Definition:2.1

A subset A of a space (X,τ) is called (i) wgr α -closed[9] if cl(int(A)) \subseteq U whenever A \subseteq U and U is regular α -open. (ii) α -open[4] if A \subseteq int(cl(int(A)).

Definition: 2.2

Definition: 2.3

A function $f:(X,\tau,I) \to (Y,\sigma,J)$ is said to be (i) wgra-I-continuous[7] if $f^{-1}(V)$ is wgra-I-closed in X for every closed set V of Y. (ii) wgr α -I-irresolute[7] if f¹(V) is wgr α -I-closed in X for every wgr α -I-closed set V of Y.

(iii) strongly wgra-I-continuous[7] if $f^{1}(V)$ is open in X for every wgra-I-open set V of Y.

Definition:2.4[7]

For a function f: $(X,\tau,I) \rightarrow (Y,\sigma)$ is called contra wgr α -Icontinuous if $f^{-1}(V)$ is wgr α -I-open in (X,τ,I) for every closed set V of (Y,σ) .

III. Wgrα-I-closed maps

Definition: 3.1

A map f: $(X,\tau) \rightarrow (Y,\sigma,J)$ is called wgr α -I-closed if f(V) is a wgr α -I-closed set of (Y,σ,J) for each closed set V of (X,τ) .

Definition :3.2

A map f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ is called prewgra-I-closed if f(V) is a wgra-I-closed set of (Y,σ,J) for every wgra-I-closed set V of (X,τ,I) .

Theorem :3.3

(i) Every closed map is wgrα-I-closed map.
(ii)Every α-I-closed map is wgrα-I-closed map.
(iii)Every wgrα-closed map is wgrα-I-closed map.
(iv)Every prewgrα-I-closed map is wgrα-I-closed map.

Proof Straightforward.

Remark :3.4

The converse of the above theorem need not be true as seen in the following examples.

Example :3.5

Let $X = Y = \{a,b,c,d\}, \tau = \{\phi,X, \{a\}, \{a,b\}, \{a,b,d\}\}, \sigma$ ={ ϕ ,Y,{a},{a,c,d}},I = { ϕ ,{a}} and f be an identity map. Thus, f is wgrα-I-closed map, but not closed map.

Example :3.6

 $I = \{\varphi, \{c\}\}$ and f be an identity map. Here f is wgra-I-closed map, but not α -I-closed map.

Example :3.7

Let $X=Y=\{a,b,c,d\}, \tau = \{\phi,X,\{a\}, \{c\}, \{a,c\}, \{a,c,d\}\},\$ $I = \{\phi, \{b\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and f be an identity map. Here f is wgra-I-closed map, but not wgra-I-closed map.

Example :3.8

Let X =Y= $\{a,b,c,d\}, \tau = \{\phi,X,\{a\}, \{c,d\}, \{a,c,d\}\},\$ $I=\{\phi,\{a\}\}, \sigma=\{\phi,Y,\{a\},\{a,c,d\}\}$ and f be a map defined by $f(a) = \{c\}, f(b) = \{d\}, f(c) = \{a\} and f(d) = \{b\}.$ Here f is wgra-I-closed map, but not prewgra-I-closed map.

Theorem :3.9

If f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ is wgra-I-closed and A is wgra-Iclosed set of X. then $f|A : (A,\tau|A,I) \rightarrow (Y,\sigma,J)$ is wgra-Iclosed.

Proof

Let F be a closed set of A. Since F is closed in X. (f|A)(F)=f(F) is wgra-I-closed in Y. Hence f|A is a wgra-Iclosed map.

Theorem :3.10

A map f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ is wgra-I-closed if and only if for each subset S of Y and for each open set U containing f ¹(S), there exists an wgr α -I-open set V of Y containing S and $f^{1}(V) \subset U$.

Proof

Let S be a subset of Y and U be open set of X such that $f^{1}(s)$ \subset U, then V= Y-f(X-U) is a wgr α -I-open set containing S such that $f^{1}(V) \subset U$.

Conversely, suppose that F is a closed set of X. Then $f^{-1}(Y$ $f(F)) \subset X-F$ and X-F is open. By hypothesis, there is a wgra-I-open set V of Y such that $Y-f(F) \subset V$ and $f^{-1}(V) \subset V$ X–F. Therefore, $F \subset X - f^{-1}(V)$. Hence $Y - V \subset f(F) \subset f(X - f^{-1})$ $^{1}(V)) \subset Y-V$, which implies that f(F)=Y-V. Since Y-V is wgra-I-closed, f(F) is wgra-I-closed and thus f is wgra-Iclosed map.

Theorem :3.11

If $f : X \rightarrow Y$ is a bijection mapping , then the following statements are equivalent.

(i) f is a wgrα-I-open. (ii) f is a wgrα-I-closed.

(iii) $f^1: Y \rightarrow X$ is wgra-I-continuous.

Proof

(i) \Rightarrow (ii) Let U be closed in X and f be a wgra-I-open map. Then X–U is open in X. By hypothesis, we get f(X-U) is a wgra-I-open in Y. Hence f(U) is wgra-I-closed in Y. $(ii) \Rightarrow (iii)$

Let U be closed in X. By (ii), f(U) is wgra-I-closed in Y. Hence f^{-1} is wgra-I-continuous.

 $(iii) \Longrightarrow (i)$

Let U be open in X. As $(f^{1})^{-1}(U)=f(U)$, f is wgra-I-open map.

Theorem :3.12

For any bijection f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ the following statements are equivalent.

(i) Its inverse map $f^1:(Y,\sigma,J)\to(X,\tau,I)$ is prewgra-I-open map.

(ii) f is a prewgrα-I-open map.

(iii) f is a prewgrα-I-closed map.

Proof

(i) \Rightarrow (ii)Let V be wgra-I-open in (X, τ , I).By hypothesis, $(f^{-1})^{-1}(V) = f(V)$ is wgra-I-open in (Y, σ, J) . Hence (ii) holds. (ii) \Rightarrow (iii)Let V be wgra-I-closed in (X, τ , I),then X-V is wgra-I-open . f(X-V)=Y-f(V) is wgra-I-open in (Y, σ, J) , since f is a prewgra-I-open map. That is f(V) is wgra-Iclosed in Y and so f is prewgrα-I-closed map.

(iii) \Rightarrow (i)Let V be wgra-I-closed in (X, τ , I). By (iii), f(V) is wgra-I-closed in (Y, σ , J). But f(V)= (f⁻¹)⁻¹(V). Thus (i) holds.

Theorem :3.13

If a map f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ is closed and a map g: $(Y,\sigma,J) \rightarrow (Z,\eta,K)$ wgra-I-closed, is then $g \circ f$: $(X,\tau,I) \rightarrow (Z,\eta,K)$ is a wgr α -I-closed map.

Proof

Let V be a closed set in X, then f(V) is open and $(g \circ f)(V) = g(f(V))$ is wgra-I-closed. Hence $g \circ f$ is wgra-I-closed.

Theorem :3.14

Let f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$, g: $(Y,\sigma,J) \rightarrow (Z,\eta,K)$ be two mappings and let $g \circ f: (X,\tau,I) \rightarrow (Z,\eta,K)$ be wgra-I-closed map. Then (i)If f is continuous and surjective, then g is wgra-I-closed (ii) If g is wgra-I-irresolute and injective, then f is wgra-Iclosed.

(iii) If g is strongly wgra-I-continuous and injective, then f is closed.

Proof

(i)If f is continuous, then for any closed set A of Y, $f^{-1}(A)$ is closed in X. As, $g \circ f$ is wgra-I-closed, g(A) is wgra-I-closed in Z and g is wgra-I-closed map.

(ii)Let A be closed in (X,τ,J) . Then $(g \circ f)(A)$ is wgra-Iclosed in Z and $g^{-1}(g \circ f)(A)=f(A)$ is wgra-I-closed in Y. Hence f is wgra-I-closed.

(iii)Let A be closed in X, then $(g \circ f)(A)$ is wgra-I-closed in Z. g is strongly wgra-I-continuous implies $g^{-1}(g \circ f)(A) = f(A)$ is closed in Y and f is a closed map.

IV. wgrα-I-homeomorphism Definition :4.1

A bijection function f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ is called

(i) wgra-I-homeomorphism if both f and f^{-1} are wgra-I-continuous.

(ii) wgra*-I-homeomorphism if both f and $f^{\text{-}1}$ are wgra-I-irresolute.

The family of all wgra-I-homeomorphism (resp wgra*-I-homeomorphism) from (X,τ,I) onto itself is denoted by wgra-I-h (X,τ,I) (resp.wgra*-I-h (X,τ,I)).

Theorem :4.2

Every homeomorphism is a wgra-I-homeomorphism.

Proof

Let f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ be a homeomorphism. Then f and f¹ are continuous and f is bijection. As every I-continuous function is wgra-I-continuous, we have f and f¹ are wgra-I-continuous. Therefore, f is wgra-I-homeomorphism.

Remark :4.3

The converse of the above theorem need not be true as seen from the following example.

Example :4.4

Let X={a, b, c} =Y, τ ={ ϕ ,X,{a},{c}, {a,c,d}}, I={ ϕ ,{a}}, σ ={ ϕ ,Y, {a}, {b}, {a,b}, {b,c}, {a,b,c}}. The mapping f: (X, τ ,I) \rightarrow (Y, σ ,J) defined as f(a)= c, f(b)=a, f(c)=d and f(d)=b. Therefore f is wgr α -I -homeomorphism, but it is not homeomorphism.

Theorem :4.5

Let $f : (X,\tau,I) \rightarrow (Y,\sigma,J)$ be a bijective and wgr α -Icontinuous. Then the following statements are equivalent.

(i) f is wgrα-I-open map.

(ii) f is wgra-I-homeomorphism.

(iii) f is an wgrα-I-closed map.

Proof

(i)⇒(ii)

Suppose f is bijective, wgra-I-continuous and wgra-I-open. Then f is wgra-I-homeomorphism.

(ii)⇒(iii)

Let F be a closed set of (X,τ,I) . Then $(f^{-1})^{-1}(F)=f(F)$ is wgra-I-closed set in Y, since f and f^{-1} are wgra-I-continuous. So f is wgra-I-closed map.

 $(iii) \Rightarrow (i)$

Proof obvious.

Theorem :4.6

For any space wgr α *-I-h(X, τ ,I)wgr α -I-h(X, τ ,I).

Proof

The proof follows from the fact that every $wgr\alpha$ -I-irresolute function is $wgr\alpha$ -I-continuous and every $prewgr\alpha$ -I-open map is $wgr\alpha$ -I-open.

Remark :4.7

The composition of two wgra-I-homeomorphism need not be a wgra-I-homeomorphism as seen from the following example.

Example :4.8

Let $X=\{a,b,c\} =Y,\tau=\{\phi,X,\{a\}, \{b\},\{a,b\}\},$ $I=\{\phi,\{a\}\},\sigma=\{\phi,Y,\{a\},\{a,c\}\}$ and $J=\{\phi,\{a\}\}$. Let f be the map defined by f(a)=b, f(b)=a and f(c)=c and g be the identity map. Therefore f and g are wgra-I-homeomorphism, but g $^{\circ}$ f is not wgra-I-homeomorphism.

Theorem:4.9

Let $f: (X,\tau,I) \rightarrow (Y,\sigma,J)$ and $g: (Y,\sigma,J) \rightarrow (Z,\eta,K)$ are wgra*-I-homeomorphism, then their composition $g \circ f$: $(X,\tau,I) \rightarrow (Z,\eta,K)$ is also wgra*-I-homeomorphism.

Proof

Let U be a wgra-I-open set in (Z,η,K) .Since g is wgra-Iirresolute,g⁻¹(U) is wgra-I-open in (Y,σ,J) .Since f is wgra-Iirresolute, $f^{-1}(g^{-1}(U))=(g \circ f)^{-1}(U)$ is wgra-I-open set in (X,τ,I) .Therefore $g \circ f$ is wgra-I-irresolute. Also, for a wgra-I-open set G in (X,τ,I) , we have $(g \circ f)(G)=g(f(G))=g(W)$, where W=f(G). By hypothesis f(G) is wgra-I-open in (Y,σ,J) and so again by hypothesis g(f(G)) is wgra-I-open in (Z,η,K) . That is, $(g \circ f)(G)$ is a wgra-I-open set in (Z,η,K) and therefore, $g \circ f$ is wgra-I-irresolute. Also, $g \circ f$ is a bijection. Hence $g \circ f$ is wgra*-I-homeomorphism.

Theorem :4.10

Let f: $(X,\tau,I) \rightarrow (Y,\sigma,J)$ is a wgra*-I-homeomorphism, then it induces an isomorphism from the group wgra*-I-h (X,τ,I) onto the group wgra*-I-h (Y,σ,J) .

Proof

Using the map f, we define a map Ψ_f : wgra*-Ih(X,\tau,I) \rightarrow (Y, σ ,J) by Ψ_f (h)= f \circ h \circ f^1 for every h \in wgra*-

I-h(X, τ ,I). Then ψ_f is a bijection. Further, for all h₁, h₂ \in

wgra*-I-h(X,\tau,I),
$$\psi_f$$
 (h₁ \circ h₂) = f \circ (h₁ \circ h₂) \circ f¹
= (f \circ h₁ \circ f¹)(f \circ h₂ \circ f¹)
= ψ_f (h₁) \circ ψ_f (h₂).

Therefore, ψ_f is a homeomorphism and so it is an isomorphism induced by f.

Theorem :4.11

The set wgra*-I-h(X, τ ,I) is group under the composition of maps.

Proof

Define a binary relation *: $wgr\alpha^*-I-h(X,\tau,I) \rightarrow wgr\alpha^*-I-h(X,\tau,I)$ f*g=g ° f for all f, g \in wgr\alpha^*-I-h(X,\tau,I) and ° is the usual operation of composition of maps Then by theorem, g ° f \in wgr\alpha^*-I-h(X,\tau,I). We know that the composition of maps is associative and the identity map I: $(X,\tau,I) \rightarrow (X,\tau,I)$ belonging to wgr\alpha^*-I-h(X,\tau,I) serves as the identity element. For any f \in wgr\alpha^*-I-h(X,\tau,I), f ° f ¹=f ¹ ° f=I. Hence inverse exists for each element of wgr\alpha^*-I-h(X,\tau,I). Then wgr\alpha^*-I-h(X,\tau,I), f ° maps.

Definition:5.1

V. Wgra-I-connectedness

An ideal topological space (X,τ,I) is said to be wgr α -Iconnected if X cannot be written as the disjoint union of two non-empty wgr α -I-open sets. If X is not wgr α -Iconnected it is said to be wgr α -I-disconnected.

Theorem:5.2

Let (X,τ,I) be an ideal topological space. If X is wgr α -Iconnected, then X cannot be written as the union of two disjoint non-empty wgr α -I-closed sets.

Proof

Suppose not,that is X=AUB, where A and B are wgr α -Iconnected sets, A $\neq \phi$, B $\neq \phi$, and A \cap B= ϕ . Then A=B^C and B=A^C. Since A and B are wgr α -I-closed sets, which implies that A and B are wgr α -I-open sets. Therefore X is not wgr α -I-connected, which is a contradiction. Hence the proof.

Theorem:5.3

For an ideal topological space (X,τ,I) , the following are equivalent.

(i)X is wgra-I-connected.

(ii) X and ϕ are the only subsets of X which are both wgra-I-open and wgra-I-closed.

Proof Obvious.

Theorem:5.4

Let f: $(X,\tau,I) \rightarrow (Y,\sigma)$ be a function. If X is wgra-I-connected and f is wgra-I-irresolute, surjective, then Y is wgra-Iconnected.

Proof

Suppose that Y is not wgra-I-connected. Let $Y=A\cup B$, where A and B are disjoint non-empty wgra-I-open sets in Y. Since f is wgra-I-irresolute and onto, $f^1(Y)=f^1(A\cup B)$ which implies $X = f^1(A) \cup f^1(B)$ and $f^1(A) \cap f^1(B) = f^1(A \cap B) = f^1(\phi) = \phi$, where $f^1(A)$ and $f^1(B)$ are disjoint non-empty wgra-I-open sets in X. This contradicts to the fact that X is wgra-I-connected. Hence Y is wgra-I-connected.

Theorem:5.5

Let f: $(X,\tau,I) \rightarrow (Y,\sigma)$ be a function. If X is wgra-I-connected and f is wgra-I-continuous, surjective, then Y is connected.

Proof

Suppose that Y is not connected. Let $Y=A\cup B$, where A and B are disjoint non-empty open sets in Y.Since f is wgra-I-continuous surjective, therefore $X=f^{-1}(A) \cup f^{-1}(B)$, where f $^{1}(A)$ and $f^{-1}(B)$ are disjoint non-empty wgra-I-open sets in X. This contradicts the fact that X is wgra-I-connected. Hence Y is connected.

Theorem:5.6

Every wgra-I-connected space is connected

Proof

Let X be wgra-I-connected. Suppose X is not connected, then there exists a proper non-empty subset B of X which is both open and closed in X. Since every closed set is wgra-I-closed, B is a proper non-empty subset of X which is both wgra-I-open and wgra-I-closed in X. Then by theorem , X is not wgra-I-connected. This proves the theorem.

Remark :5.7

The converse of the above theorem need not be true, which has seen from the following example.

Example:5.8

Let $X=\{a,b,c,d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$ and $I = \{\phi, \{a\}\}$. In this ideal space $\{c,d\}$ is connected, but not wgra-I-connected.

Theorem:5.9

If X is connected and f is continuous surjective, then Y is wgr α -I-connected.

Proof

Suppose that Y is not wgr α -I-connected. Let Y=AUB, where A and B are disjoint non-empty wgr α -I-open sets in Y, so they are open. Since f is continuous surjective, where f¹(A) and f¹(B) are disjoint open sets in X and X=f¹(A) U f¹(B). This contradicts the fact that X is connected, therefore Y is connected.

VI. Wgra-I-compactness

Definition:6.1

A collection $\{A_{\alpha} : \alpha \in \nabla\}$ of wgr α -I-open sets in a topological space X is called a wgr α -I-open cover of a subset B of X if $B \subseteq \bigcup \{A_{\alpha} : \alpha \in \nabla\}$ holds.

Definition:6.2

An ideal topological space (X,τ,I) is said to be wgr α -Icompact if every wgr α -I-open cover of X has a finite subcover.

Definition:6.3

A subset B of an ideal topological space (X,τ,I) is said to be wgr α -I- compact relative to X if for every collection $\{A_{\alpha} : \alpha \in \nabla\}$ of wgr α -I-open subsets of X such that $B \subseteq \bigcup \{A_{\alpha} : \alpha \in \nabla\}$ there exists a finite subset ∇_0 of ∇ such that $B \subseteq \{A_{\alpha} : \alpha \in \nabla\}$.

Theorem:6.4

(i)A wgr α -I-continuous image of a wgr α -I-compact space is compact.

(ii) If a map $f:(X,\tau,I) \rightarrow (Y,\sigma)$ is rps-I-irresolute and a sunset B of X, then f(B) is wgr α -I-compact relative to Y.

Proof

(i)Let f: $(X,\tau,I) \rightarrow (Y,\sigma)$ be a wgr α -I-continuous map from a wgr α -I-compact space X onto a topological space Y.Let { V_{α} : $\alpha \in \nabla$ } be an open cover of T. Then { $f^{1}(V_{\alpha})$: $\alpha \in \nabla$ } is wgr α -I-open cover of X. Since X is wgr α -I-compact, it has a finite subcover, say{ $f^{1}(V_{1})$, $f^{1}(V_{2})$,..., $f^{1}(V_{n})$ }. Since f is onto,{ $V_{1},V_{2},...,V_{n}$ } is a cover of Y and so Y is compact.

(ii) Let $\{V_{\alpha} : \alpha \in \nabla\}$ be any collection of wgra-I-open subsets of Y such that $f(B) \subseteq \cup \{V_{\alpha} : \alpha \in \nabla\}$, then $B \subseteq \cup \{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ holds. By hypothesis, there exists a finite subset ∇_0 of ∇ such that $B \subseteq \cup \{f^{-1}(V_{\alpha}) : \alpha \in \nabla_0\}$. Therefore, we have $f(B) \subseteq \cup \{V_{\alpha} : \alpha \in \nabla_0\}$, which shows that f(B) is wgra-Icompact relative to Y.

References

- [2] A.Acikgoz, T.Noiri, and S.Yuksel, "On α-I continuous Functions and α-I Open Functions", Acta Math. Hungar., 105 (1-2)(2004),pp. 27-37.
- [3] J. Dontchev, M.Ganster and D.Rose, Ideal resolvability, Topology Appl., 1999, 93(1):1-16.
- [4] Erdal Ekici, On α-open sets, A*-sets and decomposition of continuity and super continuity, Annales Univ.Sci.. Budapest 51 (2008),39-51.
- [5] M.K.Gupta and T.Noiri. C-compactness modulo an ideal, Internat. J.Math.Math. Sci.,vol. 2006,Article ID 78135, pages 1-12.DOI 10.1155/IJMMS/2006/78135.
- [6] C.Janaki ,A.Jayalakshmi, On wgrα-I- Closed Sets in Ideal Topological Spaces, Indian Journal of Applied Research, Volume : 4 (7) July 2014,pp 58-62.
- [7] C.Janaki ,A.Jayalakshmi, wgrα-I- continuous Functions in Ideal Topological Spaces,Proceedings of International Conference on Mathematical Science And Its Computational Applications, aug 2014, ISBN 978-1-941505-19-9, pp 211-215.
- [8] D.Jankovic and T.R.Hamlett, new topologies from old via ideals, Amer. Math. Monthly,97(4)(1990),295-310.
- [9] A.Jayalakshmi,C.Janaki ,On wgrα- Closed Sets in Topological Spaces, Int. J. Math.Archieve 3(6), 2012, 2386-
- [10] Kuratowski, Topology, Vol.I, Academic Press,Newyork(1996).
- [11] R.L.Newcomb .Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ.of Cal. at Santa Barbara, 1967.
- [12] D.V.Rancin. Compactness modulo an ideal, Sov. Math., 1965, 15: 193-197
- [13] R.Vaidynathaswamy, Set topology, Chelsea, Publishing company, Newyork(1960).