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Abstract 

Within the realm of elliptic curve theory, the count of rational points residing on these curves and the intricate nature of 

their torsion subgroups hold paramount significance. A comprehensive exploration into the diverse torsion subgroups of 
elliptic curves across varying number fields not only enriches our comprehension of their inherent properties but also 

bestows us with tools applicable to intricate mathematical conundrums. This paper embarks on this journey by laying 

the foundation with Mazur's seminal theorem, which serves as a pivotal classification of these torsion subgroups within 

the rational number field. Subsequently, our investigation broadens to encompass a discussion of these subgroups across 

general number fields, including the complex number field. Finally, our exploration culminates with a meticulous 

examination of the distinct properties characterizing torsion points within quadratic number fields. 
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Introduction 

An elliptic curve is a unique type of smooth curve 

characterized by a genus of one and featuring a 

distinctive point known as the point at infinity. Now 
any cubic curve with a known rational point on the 

curve can be converted into a special form called 

Weirstrass Normal Form. 

𝐸: 𝑦2  = 𝑓(𝑥) = 𝑥3 + 𝐴𝑥 +  𝐵 

 

Here, the discriminant of this curve takes the form: 

 

𝐷 = 4𝐴3  + 27𝐵2  ≠  0 

 

Understanding that having knowledge of two rational 

points on an elliptic curve allows us to connect these 
points through a straight line, resulting in their 

intersection at a third point on the curve. Subsequently, 

drawing a line through this third point and the point at 

infinity leads to yet another intersection with the curve, 

giving rise to a new point, inherently rational in nature. 

This resultant point denotes the addition of the initial 

two points in algebraic number theory. Furthermore, 

the third point serves as a mirror image in relation to 

the X-axis. By iterating these steps, an intriguing 

phenomenon emerges: the ability to discover an 

infinite set of rational points for any specified elliptic 

curve. 
Now these group of rational points on an elliptic curve 

forms a finitely general abelian group having the point 

of infinity as the identity element and follows all the 

properties of group theory. 

Mathematically we can state this as 

 

𝐸(ℚ) ≅ ℤ𝑟  ⊕ 𝐸(ℚ)𝑡𝑜𝑟𝑠 

 

Where 𝐸(ℚ) is the abelian group of rational points of 

the elliptic curve, ℤ is some cyclic subgroup, r is the 
number of copies of the cyclic subgroup ℤ and 

𝐸(ℚ)𝑡𝑜𝑟𝑠 is the torsion subgroup of the elliptic curves 

over the field of rational numbers. Now this 𝐸(ℚ)𝑡𝑜𝑟𝑠 
is bounded above and doesn’t determine the size of the 

abelian group. However the r is alsoknown as the rank 

of the elliptic curve, it can be infinite though till now 
only elliptic curves of rank is known to us. 

 

Torsion Subgroups and Computation of 𝑬(ℚ)𝒕𝒐𝒓𝒔 

When delving into the realm of elliptic curves and their 

associated abelian groups, two fundamental inquiries 

immediately surface. Firstly, the quest to determine the 

potential ranks achievable by elliptic curves presents a 

formidable challenge. While empirical observations 

reveal that 99% of these curves possess ranks of 0 or 1, 

the existence of an infinite collection within the 

remaining 1% opens the door to the possibility of 

elliptic curves with ranks stretching to infinity. The 

Birch and Swinnerton-Dyer conjecture, although yet 

unproven, offers a tantalizing link between the 
algebraic rank of an elliptic curve and its analytical 

counterpart through a specific L-function. This 

conjecture holds the promise of providing a calculable 

algorithm to ascertain the rank of these curves. 

The second query pertains to the finite torsion 

subgroup 𝐸(ℚ)𝑡𝑜𝑟𝑠. Mazur's celebrated theorem 

provides clarity by confining these torsion subgroups 

for elliptic curves over the field ℚ to a maximum of 
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16. This theorem serves as a pivotal boundary, 

shedding light on the potential sizes of these finite 

torsion subgroups inherent to such curves. 

Theorem (Mazur,1977): Let E be an elliptic curve over 

the field ℚ. Then 

ℤ⁄𝑚ℤ 

𝐸(ℚ)𝑡𝑜𝑟𝑠   ≅ { 

𝑓𝑜𝑟 1 ≤ 𝑚 ≤ 10 𝑎𝑛𝑑 𝑚 =  12 

ℤ⁄2ℤ  𝑓𝑜𝑟  1 ≤ 𝑚 ≤ 4 

However these possible subgroups can appear 

infinitely many times for a given curve. 

Now the nature of these torsion subgroups vary 

significantly once we change the field associated with 

the curve. For an elliptic curves defined over a 

quadratic field k are as follows 

ℤ⁄𝑚ℤ  𝑓𝑜𝑟  1 ≤ 𝑚 ≤ 18, 𝑚 ≠  17 

ℤ⁄2ℤ  ⊕  ℤ⁄2𝑚ℤ  𝑓𝑜𝑟 𝑚 = 1,2,3,4,5,6 

𝐸(ℚ)𝑡𝑜𝑟𝑠  = 

ℤ⁄3ℤ  ⊕ ℤ⁄3𝑚ℤ 

𝑓𝑜𝑟 𝑚 = 1,2 

{ℤ⁄4ℤ ⊕ ℤ⁄4ℤ 

 

Here if we define the quadratic field K and fixed it to 

some particular field then only a few of these 

subgroups from the above list can appear. (Kamienny, 

Kenku and Momose, ) 
These results can further be analyzed if we restrict the 

quadratic fields to some complex quadratic field. Such 

as for the quadratic cyclotomic field ℚ(𝑖), 𝐸(ℚ(𝑖))𝑡𝑜𝑟𝑠 
is either one of the subgroups listed in Mazur’s 

theorem or ℤ⁄4ℤ ⊕ ℤ⁄4ℤ. Similarly if we take the field 

ℚ(3𝑖),  𝐸(ℚ(3𝑖))𝑡𝑜𝑟𝑠  is again either one of the 

subgroups listed in Mazur’s theorem  or 

ℤ⁄3ℤ  ⊕  ℤ⁄3𝑚ℤ   𝑓𝑜𝑟 𝑚 = 1,2. (Filip Nazman,) 

 

Torsion Point 

Theorem 1: Let an elliptic curve E is defined over a 

quadratic cyclotomic field ℚ(𝑖) or 

 

ℚ(3𝑖). Then E(K) has can not have a point of order 21. 

 

Proof: Let us assume that, if possible E(K) has point of 

order 21. 

 

Case 1- If the quadratic cyclotomic field is ℚ(𝑖) and let 

us assume that W be an quadratic extension of K. 

So here 𝐸(𝑑)(𝐾)2/ = {𝑃 ∈ 𝐸
(𝑑)(𝐾): [7]𝑃 = 0} for 

some d in ℴ𝑘. Hence there will be a point of order 7 in 

𝐸(𝑑)(𝐾). 

Again as the field is quadratic cyclotomic field ℚ(𝑖) 
 

𝐸(𝐾)2/  = {𝑃 ∈ 𝐸(𝐾): [7]𝑃 =  0} 

Now taking E as the quadratic twist of 𝐸𝑡 ∶ 𝑦
2 + (1 − 

𝑚)𝑥𝑦 − 𝑛𝑦 = 𝑥3 − 𝑏𝑥2 we can easily show that there 

will be a point P of order 3 also in E in a quadratic 

extension of K and the point will generate a K-rational 

subgroup. So the curve given by the equation 

𝐶 ∶  𝜙(𝑥, 𝑡) = 0 

 

will get satisfied by the point (E,P). Here it will be 

sufficient to show that K-points on C will be equal to 

rational points on C. Now using MAGMA 

computation Ozlem Ejder have shown that 𝐶∗(𝐾) = 

𝐶∗(ℚ) where 𝐶∗ is a hyperelliptic curve birational to C 

and they both isomorphic over K except the singularity 

points set {(0,0),(0,1)}. Therefore (E,P) on C(K) will 

have a corresponding point on the hyperelliptic curve 

𝐶∗ over rational field and as a result it will have a 

corresponding point in 𝐶(ℚ) itself. Now we know that 

no subgroup of order 21 can be found for E over a 

quadratic extension of ℚ. Now P will belong to E 

defined over some quadratic extension of ℚ if 𝑥(𝑃) ∈ 

ℚ. So as a result ℤ/21ℤ ⊄ 𝐸(𝑊). So E (W) doesnot 

have a torsion subgroup of order 21. Hence 𝐸(ℚ(𝑖)) 
doesn’t have a point of order 21. 

Case 2- If the quadratic cyclotomic field is ℚ(3𝑖), then 

again let us assume that W be an quadratic extension 

of K. 

Now here E(K) will have a point of order 3 as 𝐸(𝐾)2/   

= {𝑃 ∈ 𝐸(𝐾): [3]𝑃 = 0} 

And also 𝐸(𝑑)(𝐾)2/  = {𝑃 ∈ 𝐸(𝐾): [7]𝑃 = 0} for some 

d in  ℴ𝑘. 

Hence 𝐸(𝑑)(𝐾) will have a point of order 7. So from 

these two results we can easily assume that E will have 

a subgroup of order 21 over W.  It is a K-rational 

subgroup as image of each 

summand of 𝐸(𝑑)(𝐾)2/ is a K-rational subgroup of 

E(W). Now by the theorem of B. Newmann if we fixed 

the field of the elliptic curve as 𝐾 = ℚ(3𝑖), then the 
modular curve 

𝑋0(20)(𝐾) doesn’t have any non cuspidol points. So it 

is not possible to have a 21-order K- rational subgroup 

over the field ℚ(3𝑖). Hence it contradicts our initial 
assumption. So it is suffice to say E(K) has no point of 

order 21. 

Now we will use the result of this theorem to deduce 

some results about the torsion subgroup of 𝐸(𝐹)2/  

where F is an abelian extension of a quadratic 

cyclotomic field K. 

 

Theorem 2: Let E be an elliptic curve defined over a 

quadratic cyclotomic field K. Then 

𝐸(𝐹)2/ can only be isomorphic to ℤ/𝑚ℤ ⊕ ℤ/𝑚ℤ for 

m=3 but cannot be isomorphic to the same torsion 

group for m=5,7 and 9. 

Proof: Let E be an elliptic curve over the quadratic 

cyclotomic field K and F be an abelian quadratic 
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extension of K. 

Now there will be some point P in E(K) for some odd 

n such that if 

 

𝐸(𝐾)2/   ≅ {[𝑛]𝑃 = 0} 

 

Then 𝐸(𝐹)2/  ≃  𝐸𝑑1 (𝐹)2/   ⨁ 𝐸𝑑2 (𝐹)2/ ⨁  … 

…….𝐸𝑑𝑚(𝐹)2/  for some 𝑑1,𝑑2, … … . 𝑑𝑚  in ℴ𝑘. 

 

These odd numbers can only be either multiples of 

3,5,7,9 or their products among each other and they are 

the only numbers dividing the order of 𝐸(𝐹)𝑡𝑜𝑟𝑠. Now 

the field F doesn’t contain any primitive 𝑛𝑡ℎ  root of 

unity for n=5,7 and 9. So ℤ/𝑚ℤ  ⊕  ℤ/𝑚ℤ cannot be 

isomorphic to some subgroup of E(F) for n={5,7,9}. 

That means the only possible option here is ℤ/3ℤ  ⊕  

ℤ/3ℤ. 

Again as 𝐸(ℚ(𝑖)) and 𝐸(ℚ(3𝑖)) cannot have a point of 

order 21 according to our previous 

 

theorem. Thus 𝐸(𝐹)2/ cannot be isomorphic to ℤ/3ℤ ⊕ 

ℤ/7ℤ as order of the point must divide order of this 

group. Similarly for ℤ/9ℤ ⊕ ℤ/7ℤ, if it needs to be 

isomorphic it must contain a point of order 63. 

However that is not possible as it will imply that it will 

also contain a point of order 21 which again violates 

our previous theorem. 
Also E(F) cannot have any K rational subgroups of 

order 35 and 45 which means E(F) doesn’t contain any 

point of order 35 or 45. So E(F) doesn’t contain a 

subgroup isomorphic to ℤ/5ℤ  ⊕  ℤ/7ℤ and ℤ/5ℤ  ⊕  

ℤ/9ℤ. 

Again if E(F) contains a subgroup isomorphic to ℤ/3ℤ  

⊕  ℤ/9ℤ then 

 

𝐸(𝐾) = {𝑃 ∈ 𝐸(𝐾): [9]𝑃 =  0} 

 

And it also have an K-rational subgroup of order 3. 

Now E(K) should have a K-rational subgroup of order 

27. But we already know that E(K) doesn’t have a K-

rational subgroup of order 27 for any quadratic 

cyclotomic field K. Hence ℤ/3ℤ ⊕ ℤ/9ℤ is also not a 

viable isomorphic group here. 

Therefore, combining all these results it is safe to 

assume that 𝐸(𝐹)2/ can be isomorphic to only ℤ/ℤ, 

ℤ/3ℤ, ℤ/5ℤ, ℤ/7ℤ, ℤ/9ℤ and ℤ/3ℤ  ⊕ ℤ/3ℤ. 

 

Result and Conclusions 

In conclusion, the exploration of torsion points on 

elliptic curves over complex quadratic fields unveils a 

rich interplay between these algebraic structures and 

complex . The intricate nature of these fields offers a 
unique lens through which the behavior and 

distribution of torsion points can be comprehensively 

understood. Through meticulous analysis and 

application of mathematical frameworks, this research 

has shed light on the properties and limitations of 

torsion subgroups within these specific domains. 

Here in this paper, we have shown that elliptic curve 

over specific quadratic cyclotomic field like ℚ(𝑖) and 

ℚ(3𝑖) cannot have torsion point of order 21. This result 

will give us that certain combination of torsion 

subgroup will not be possible for those quadratic 

cyclotomic field. 
However there are still many other combinations of 

torsion subgroups for different torsion point that are 

yet to be checked for. Also in the second theorem we 

have shown isomorphism 

of 𝐸(𝐹)2/ with certain types of torsion subgroups upto 

m=9. In our further results we will try to extend our 

research to higher values of m, thereby contributing 

more in the study of elliptic curve theory. 
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