
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 2 

Article Received: 25 December 2022 Revised: 12 January 2023 Accepted: 20 February 2023 

___________________________________________________________________________________________________________________ 

 
    338 
IJRITCC | February 2023, Available @ http://www.ijritcc.org 

Optimization Algorithms for Combinatorial 

Problems: A Comparative Study of Quantum 

Annealing and Classical Methods 

Suresh A J 

Assistant Professor of Mathematics 

Government Polytechnic College, Purapuzha, Thodupuzha, Idukki, Kerala 

Email ID: suresh@gpcpurapuzha.ac.in 

ORCID: 0009-0002-0841-2117 

Abstract: Recently, a pair of quantum-annealing-inspired techniques (QAIA) have been presented for effectively resolving 

multimodal optimization challenges. These methods involve simulated splitting and several variations of the modelled coherently 

Ising device. Quantum annealing, a quantum computing paradigm, leverages quantum mechanics to explore solution spaces and 

promises advantages in solving certain classes of optimization problems more efficiently.  Regulated evaluations between these 

techniques, along with other physics-based methods, are required to verify their supremacy. In this study, we compare QAIA to 

quantum cooling and other physics-based methods for Max-Cut issues with up to 20,000 nodes. In comparison to classical 

heating, we discovered that rapid modelled splitting performed exceptionally well for hybrid and tiny business graphs, delivering 

a time-to-solution decrease of around 50 times. If you want to find the highest cut value in Pegasus graphs, discrete simulated 

bifurcation works better than the D-Wave Advantage method and takes the least amount of time to reach your goal for large 

graphs. According to our findings, QAIA is a viable approach to practical combinatorial optimization issues and can serve as a 

suitable starting point for rival quantum algorithms. Finding the ideal object among a group of possibilities is known as 

algorithmic optimization, and it is a common problem in many fields of study, including computer science, mathematical 

applications, and probabilistic physics.  
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1.Introduction: 

Combinatorial optimization problems are pervasive in 

various domains, including operations research, artificial 

intelligence[1], logistics[2], and network design[3]. These 

problems involve finding the best solution from a finite set 

of possibilities, often constrained by multiple factors. 

Determining the best solution using traditional techniques or 

brute-force analysis is made extremely difficult by the 

"combinatorial a blast," which occurs when an issue's size 

increases exponentially[4]. Several heuristic methods have 

been developed to approximate (or discover sub-optimal) 

results to get around this[5-8]. However, developing an 

extremely precise and efficient method for solving 

stochastic problems remains a challenging task. The Ising 

issue, or determining the fundamental state of the Ising 

approach, can be translated to the vast bulk of optimization 

methods in computational physics[9-10]. A collection of N 

Ising rotates with an arrangement σi = ± 1, a connection Jij 

between two games, and any outside forces hi make up an 

Ising model. An Ising model's Hamiltonian is described as 

I = - 
1

2
∑ 𝑗𝑖𝑗𝜎𝑖𝜎 −  ∑ ℎ𝑖𝜎𝑖 .𝑁

𝑖   𝑁
𝑖𝑗            (1) 

A collection of tiny bits, or qubits, can be used simply to 

convey this paradigm. It is generally accepted that there is 

no effective, accurate classical technique to address the Ising 

equation since it is regarded as nondeterministic polynomial 

time (NP) hard. To address the Ising issue, quantum 

machines like the D-Wave quantum annealer (QA) that uses 

supercharged qubits have been developed. However, 

experiments have shown that QA isn't good enough for 

processing complex graphs yet because of physical 

interference and limited qubit connectivity[11-14].In 

response to the QA, different types of machines have been 

made, such as the electrically powered structure, the 

coherent Ising machine (CIM) with pulsed lights and 

worsening visual linear oscillations[15–17], the memristor 
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Hopfield neural systems20, the MRAM-based unpredictable 

computing equipment (called P-bits)and others[21-22]. 

Several quantum annealing-inspired algorithms (QAIA) 

have been created to mimic the physical workings of 

classical annealing-inspired gadgets to solve computational 

optimization challenges. Various iterations of Simulation 

CIM and Simulated Bifurcation (SB) are presented in these 

methods. These methods employ an aging approach to 

enhance performance and transform individual variables into 

permanent ones. A system of optically adjustable oscillators 

is used to carry out CIM from an atomic mechanical 

standpoint. These oscillators display two steady states over 

the barrier. signifying a spin[23]. SimCIM has been used to 

numerically replicate CIM on conventional computers. 

Different iterations of CIM with adjustments for error were 

developed to lessen the negative consequences of reducing 

rotation factors. suggested, such as CIM with separated 

feedback control (SFC), chaotic feedback control (CFC), 

and chaotic volume control (CAC)[24-25]. Interestingly, all 

these methods simulate different versions of CIM; 

nonetheless, the term SimCIM refers to the specific version 

that was introduced in[ 26]. In the same way, Kerr-nonlinear 

dynamic oscillators used to manage classical isotherms in 

the quantum bifurcation machine (QbM)[27]. Conventional 

asymmetric Hamiltonian structures, often known as SB[28-

29], simulate splitting phenomena. Adiabatic SB (aSB) is a 

frequent notation for the initial SB method. Errors that arise 

from the continuous reduction of individual variables may 

also impact the system. The rigid walls are then introduced 

by ballistic SB (bSB) to reduce analogy inaccuracies. 

Dynamical SB (dSB) further improves error reduction by 

dividing the rotation parameters within average area 

terms[30]. As a result, these variations produce more precise 

answers in addition to accelerating agreement. These 

methods, which were motivated by classical heating, have 

shown great effectiveness and precision as a viable method 

for resolving Ising issues. Their achievement has been 

documented in recent comparison studies. However, studies 

like only compare industrial algorithms built on systems[31-

34], whereas study only looks at how various nonlinear 

factors affect the efficiency of digital Ising devices[35]. It is 

necessary to assess these quantum-inspired systems' 

efficiency on common hardware, such as CPUs and GPUs, 

to encourage and expand their use. In this study, we offer 

the measuring tests of QAIA and contrast them with D-

Wave and a few other physics-inspired systems. Assessing 

their effectiveness in resolving problem areas is our aim. On 

the other hand, we find that QAIAs outperform the D-Wave 

benefit algorithm (henceforth referred to as "Benefit") in 

achieving the highest cut appreciation on Pegasus charts 

with varying issue sizes. They also achieve a shorter time-

to-solution compared to heuristic computations, traditional 

methods, and period solutions in replica charts. In contrast, 

the dSB performs better overall than other QAIA standards. 

Especially on hybrid charts and tiny cases, the bSB 

demonstrates the shortest time-to-solution (TTS) and the 

maximum completion likelihood. For large charts, dSB 

demonstrates the smallest time-to-solution (TTS). On the 

skewed charts, however, CAC and SFC are more likely than 

dSB to look for the best or nearly best remedies, 

respectively. The inaccuracy from continual concessions 

without rigid walls makes the aSB vulnerable to becoming 

caught in regional minima. Because there are so many 

extreme parameters to consider, SimCIM has trouble 

obtaining the best results. 

These methods, which were motivated by classical heating, 

have shown great effectiveness and precision as a viable 

method for resolving Ising issues. Their achievement has 

been documented through recent comparative research. 

However, studies only compare industrial solvers built on 

platforms, whereas study only looks at how various 

quadratic factors affect the accuracy of digital Ising devices. 

It is necessary to assess these quantum-inspired programs' 

efficiency on common hardware, such as CPUs and GPUs, 

to encourage and expand their use. In this study, we present 

the testing results of QAIA and compare them with D-Wave 

and several other physics-inspired systems. Assessing their 

effectiveness in resolving optimization issues is our aim. On 

the one hand, we discover that QAIAs surpass the benefit 

structure of D-Wave (henceforth referred to as "Benefit") 

when looking for the highest cut appreciation on Pegasus 

visualizations with distinct issue sizes. They additionally 

attain a shorter time-to-solution compared to heuristic 

techniques, classical, and quantity solutions in chimera 

visualizations. In contrast, the dSB performs better overall 

than other QAIA standards. Especially on chimera 

visualizations and small cases, the bSB demonstrates the 

fastest time-to-solution (TTS) and the highest success 

chance. For large images, dSB demonstrates the smallest 

time-to-solution (TTS). However, in the skewed 

visualizations, CAC and SFC are more likely than dSB to 

search for the best or nearly best remedies. The inaccuracy 

from repeated concessions without rigid walls makes the 

aSB vulnerable to becoming caught in regional minima. 

SimCIM struggles to achieve optimal results due to the 

numerous extreme parameters that need to be considered. 
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2. Literature Review  

Combinatorial optimization deals with problems where the 

objective is to find the best solution from a finite but 

exponentially large set of possibilities. Typical problems 

include the traveling salesman problem (TSP), graph 

coloring, knapsack problem, and job scheduling. Due to 

their NP-hard nature, finding exact solutions for large 

instances is computationally infeasible, necessitating the use 

of heuristic or approximate optimization techniques. 

Leleu, T et al.(2017)[1]: Driven-dissipative systems present 

a novel and exciting approach to combinatorial optimization, 

offering unique advantages such as efficient exploration of 

complex solution landscapes and parallel processing 

capabilities. While challenges remain, ongoing research and 

technological advancements hold significant promise for 

their future role in solving large-scale combinatorial 

problems. 

Rosenberg, G. et at(2016)[2]: The optimal trading trajectory 

problem is a cornerstone of modern financial engineering. It 

seeks to determine an execution strategy that minimizes 

trading costs, including market impact and opportunity 

costs, while adhering to risk constraints. Traditional 

approaches, rooted in classical optimization techniques, face 

computational challenges as the problem's dimensionality 

grows. Recent advancements in quantum computing, 

particularly quantum annealing, offer promising avenues for 

solving these complex optimization problems efficiently. 

Crawford, D et al(2018)[3]: Reinforcement Learning (RL) is 

a powerful paradigm in machine learning where agents learn 

optimal policies through interactions with an environment. 

Traditional RL approaches, while effective, encounter 

scalability and efficiency challenges in high-dimensional 

state-action spaces. Quantum computing, with its ability to 

process and represent large, complex data structures, offers a 

compelling avenue for enhancing RL. Among quantum 

computing frameworks, Quantum Boltzmann Machines 

(QBMs) have emerged as a promising tool for leveraging 

quantum resources in RL tasks. 

Böhm, F et al.(2021)[35]: Analog Ising machines have 

emerged as promising candidates for solving combinatorial 

optimization problems, leveraging physical systems to 

emulate the behavior of spins in an Ising model. These 

machines, which include quantum annealers, optical 

systems, and electronic circuits, map optimization problems 

onto spin systems and seek their ground states. A critical 

factor influencing their performance is the choice of 

nonlinearity in their underlying physical implementation. 

Nonlinearity governs the energy landscape and transition 

dynamics of the system, directly affecting solution quality, 

convergence speed, and computational efficiency. This 

review explores the impact of nonlinearity on the 

computational performance of analog Ising machines, 

summarizing key findings from recent studies and 

identifying challenges and future directions. 

Inc., D. et al.(2023)[48]: D-Wave's Ocean software suite is a 

comprehensive toolkit designed to interface with D-Wave 

quantum annealers and classical hybrid solvers. It provides 

users with tools for formulating and solving optimization 

problems using quantum resources, alongside integration 

with classical methods. The documentation accompanying 

the Ocean toolkit serves as a critical resource for researchers 

and developers, offering insights into problem formulation, 

solver configuration, and workflow optimization. This 

review examines the structure, usability, and effectiveness 

of the D-Wave Ocean documentation in enabling effective 

utilization of quantum computing resources. 

Compared to other quantum computing platforms, such as 

IBM’s Qiskit or Rigetti’s Forest, D-Wave’s Ocean 

documentation stands out for its application-focused 

approach. While Qiskit emphasizes quantum circuit 

programming and Rigetti provides tools for gate-based 

quantum computing, Ocean’s strength lies in its specialized 

focus on optimization problems and quantum annealing. 

However, Qiskit’s documentation offers more extensive 

community resources, such as forums and user-contributed 

tutorials, which Ocean lacks. Rigetti’s emphasis on 

hardware-specific details also contrasts with Ocean’s 

abstraction layers that simplify problem-solving. 

3.Methods 

We test two types of annealing-inspired techniques—

simulating CIM and SB—along with some extra physics-

based calculations, like NMFA and TTN, on spin-glass and 

Max-Cut problems in this work. 

3.1 The algorithms are influenced by quantum cooling 

Coherent Ising Machine Simulation. Each cycle of SimCIM 

replicates one optical pulse roundtrip across the fiber 

network. Every pulse's real intensity can be used to describe 

the CIM's functioning as c-number randomized differential 

calculations[36-45]. Random simultaneous equations can be 
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used to describe the optical heartbeat, optical pressing, 

nonlinear and linear loss, and cacophony of CIM. To 

simplify calculation, SimCIM removes the fictitious 

component of the waveform and the chaotic part. SimCIM 

then continuously updates the spin parameters, A= {Ai}, as 

shown below. 

𝑃𝑥𝑖

𝑑𝑡
=  (𝑣𝐴𝑖 +  𝜁 ∑ 𝑗𝑖𝑗 𝐴𝑗𝑗 ) + 𝜎𝑓𝑖 ,               (2) 

where fi is a Gaussian noise, v stands for the variable 

increase and the linear loss parameters, and ζ is the pairing 

intensity. To guarantee that the final goal function is equal 

to the Hamiltonian of the Ising issue, v progressively rises to 

zero through optimization. Slope descent with velocity is the 

method used to solve this issue of optimization[45-56]. 

Frequency variability in the typical CIM results in an 

incorrect connection to the power value.  An auxiliary 

constant eI, often known as the error factor, is added for 

mistake discovery and repair to get around this. The spin 

parameter and mistake parameter's time evolution can be 

explained as below. 

𝑃𝐴𝑖

𝑃𝑡
=  −𝐴𝑖

3 +  (𝑠 − 1)𝐴𝑖 +  𝑒𝑖  ∑ 𝜁𝑗𝑖𝑗𝐴𝑗,𝑗               (3) 

𝑃𝑒𝑖

𝑃𝑡
 = - 𝛽𝑒𝑖(𝐴𝑖

2 −  𝜎),               (4) 

where s, α, and β stand for the goal amplitude, the increase 

dimension, and the pace at which the mistake parameters 

shift, respectively. Fault factors expedite the resolution of 

the Ising issue by inducing erratic behaviours in the 

structure, leading to the investigation of successive setups 

near its original state. CAC is the name given to this 

technology. The main difference between CAC and CFC, 

another variation of Virtual CIM, is that the time 

development of the error parameter is controlled by the 

output signal xi, not the amplitude Ai. 

𝑥𝑖 =  −𝑒𝑖 ∑ 𝜁𝑗𝑖𝑗𝐴𝑗,𝑗              (5) 

𝑃𝐴𝑖

𝑃𝑡
=  −𝐴𝑖

3 +  (𝑠 − 1)𝐴𝑖 +  𝑥𝑖    (6) 

𝑃𝑒𝑖

𝑃𝑡
 = - 𝛽𝑒𝑖(𝑥𝑖

2 −  𝛼),          (7) 

SFC separates the error factor and the dependent variable 

into two linear concepts as opposed to the nonlinear 

variables associated with these two components, like CAC 

and CFC do. 

𝑥𝑖 =  − ∑ 𝜁𝑗𝑖𝑗𝐴𝑗,𝑗         (8) 

𝑃𝐴𝑖

𝑃𝑡
=  −𝐴𝑖

3 +  (𝑠 − 1)𝐴𝑖   𝑡𝑎𝑛ℎ (𝑐𝑥𝑖) − 𝑘(𝑥𝑖 − 𝑒𝑖)       (9) 

𝑃𝑒𝑖

𝑃𝑡
 = - 𝛽𝑒𝑖(𝑒𝑖 −  𝑥𝑖),                         (10) 

The system variables in this case are p, k, c, and by 

adjusting the parameters, the tanh equation solves the 

amplitude diversity issue. The local minimum traps are 

destabilized due to the discrepancy between the error 

parameter and the feedback message. Every CIM may 

encounter an environment that requires error repair. It bears 

a striking resemblance to the aSB, as illustrated in 

Supplementary Fig. 1. Nevertheless, these variations 

converge more quickly than the initial SB and SimCIM with 

the aid of corrections for mistakes ( Fig. 2). 

Simulated Bifurcation (SB). QbM tries to solve the Ising 

problem by simulating the Kerr asymmetric oscillators, 

which create a quantum mix of two oscillation contents [50–

54]. The traditional mechanical Hamiltonian formulates aSB 

this way to effectively replicate huge-scale QbM in modern 

digital machines: 

𝑃𝐴𝑖

𝑃𝑡
  =  𝑎0𝑦𝑖 ,       (11) 

𝑃𝑦𝑖

𝑃𝑡
 = - (𝑥𝑖

2 + 𝑎0 − 𝑎(𝑡))𝑥𝑖 + 𝑐0 ∑ 𝑗𝑖𝑗
𝑀
𝑗=1 𝑥𝑗,       (12) 

where c0 indicates the binding power, Jij is the linking 

parameter of the Ising issue without an outside magnetic 

field in (1), a0 is the positive detuning rate, and a(t) is the 

time-varying transporting amplitude boosting from zero. Xi 

and Yi represent the acceleration and position of the ith Kerr-

nonlinear adaptive oscillator, respectively. We add the 

completely inelastic barriers at (xi) = ± 1 in the bSB. Xi is 

changed to for every iteration, and yi is set to 0 if ∣xi ∣ > 1. 

Such barriers force locations to be precisely equivalent to 1 

or -1 when a(t) grows to a large enough value. Additionally, 

VaSB eliminates the fourth-order part, as rigid walls may 

function similarly to curvilinear potential barriers. The 

formulae of motion are provided accordingly. 

𝑃𝐴𝑖

𝑃𝑡
  =  𝑎0𝑦𝑖 ,         (13) 

𝑃𝑦𝑖

𝑃𝑡
 = - (𝑥𝑖

2 + 𝑎0 − 𝑎(𝑡))𝑥𝑖 + 𝑐0 ∑ 𝑗𝑖𝑗
𝑀
𝑗=1 𝑥𝑗,         (14) 

When t is sufficiently small, the start point in the aSB of the 

two spin instances becomes the single minimal point. After 

the initial division, two saddles emerge close to the base, 

and that point becomes a saddle as a(t) increases. The saddle 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 2 

Article Received: 25 December 2022 Revised: 12 January 2023 Accepted: 20 February 2023 

___________________________________________________________________________________________________________________ 

 
    342 
IJRITCC | February 2023, Available @ http://www.ijritcc.org 

where the two regional minima occur is revealed to be the 

source of the bSB.[1, 1] and [−1, −1]. Consequently, there is 

an acceleration of closure ( Fig. 2). To further reduce the 

constant repose mistake, the bSB can be further developed 

by dSB, whose movement formulas are provided by 

𝑃𝐴𝑖

𝑃𝑡
  =  𝑎0𝑦𝑖 ,                                                                                                                                                                      

(15) 

𝑃𝑦𝑖

𝑃𝑡
 = - ( 𝑥𝑖

2 + 𝑎0 − 𝑎(𝑡))𝑥𝑖 + 𝑐0 ∑ 𝑗𝑖𝑗
𝑀
𝑗=1 𝑠𝑔𝑛(𝑥𝑗),                                                                                             

(16)       

Specifically, in Eq. (15), it is separated by 

assigning∑ 𝑗𝑖𝐴𝐴𝑖𝐴𝑗,𝑀
𝑗=1 ∑ 𝑗𝑖𝑗𝐴𝑖(𝐴𝑖)

𝑀
𝑗=1 . Unlike aSB and bSB, 

dSB examines a large range of answers at the start of the 

repetition, allowing it to bounce out of regional limits to 

accomplish more rapid convergence.  

3.2 The algorithms based on physics 

Because of its exceptional scalability, NMFA is utilized for 

evaluation in every trial, whereas TTN only offers the best 

trim result in the final test. 

3.2.1 Noisy Mean Field Annealing (NMFA). The core step 

of CIM is the integration of mean-field calculation55 and 

spin gauges, which is carried out by the traditional FPGA 

coprocessor. A traditional computer is used in NMFA to 

carry out the remaining optical component of CIM. So, 

mean-field heating lowers the Hamiltonian. A Gaussian 

signal is added to avoid regional minimums, and the 

individual spin numbers are changed to smooth integers in 

the range [-1, 1]. The spin number can then be updated in 

the manner described below. 

𝐴𝑖
^ = tanh [(∑ 𝑗𝑖𝑗𝐴𝑗√∑ 𝑗𝑖𝑗

2 + 𝑀 (0, 𝜎𝑗𝑗 ) /𝐷𝑡]           (17) 

𝐴𝑖 = 𝛼𝐴𝑖
^ + (1 − 𝛼)𝐴𝑖           (18) 

The variable α functions as the slope technique's velocity to 

speed up convergence, Tt represents the temperature level 

that steadily drops during cooling, and σ represents the noise 

amplitude. 

3.2.2 Tropical Tensor Network (TTN). The tensor network 

shrinkage may give the exact base state power and entropy 

of the simulation at zero humidity when combined with the 

tropical alphabet formed on the semiring of (R ∪ {- 

∝},∫, ⨀) operations represent[56]. 

A ∫ 𝐵 = max(𝐴, 𝐵),        A ∫ 𝐵 = 𝐴 + 𝐵.         (19) 

The ideal spin arrangement is chosen by ⊕ during the 

expansion, and the power from the tensor network's 

subsections is added by ⊙. To sample the base state 

configuration [57], the TNN compression is carried out 

differentially at the exact time. Without listing the 

responses, the basic state defects can be obtained by 

combining the typical algebra with the tropical algebra[ 58]. 

4. Experimental setup 

Every algorithm has a variety of variable types. Each 

method has a variable that governs the method of annealing, 

like the pump-loss factor v in SimCIM, the circulating 

amplitude a(t) in SB, and the temp. T in NMFA. This value 

increases exponentially in SB and NMFA. Just two of the 

four regional minima in the SimCIM environment match the 

minimizer of the Ising issue, as can be shown from the 

prospective power environment ( Fig. 1). To prevent the 

value from becoming stuck in a regional minimum at the 

start of the iterations, we raise the flow loss factor using a 

hyperbolic tangent value instead of a linear value. The 

acceleration in SimCIM is set to β = 0.9 for the same 

purpose. The rate of positive adjusting in SB is set at a0 = 1. 

Reaching an approximate answer can be accelerated by 

setting 𝑎0 = 1. 𝑐0 =  
𝑎0

𝜆𝑚𝑎𝑥
 (𝜆𝑚𝑎𝑥)is the greatest eigenvalue 

of the linking matrix J = (𝑗𝑖𝑗)
𝑚×𝑚

). According to Wigner's 

semicircle law[59-62], the calculation of λmax for weighted 

Max-Cut and spin-glass issues is 2√𝑁√
∑ 𝑗2𝑖𝑗

𝑀(𝑀−1)
. 

The value for unweighted Max-Cut situations with Jij ∈ {0, 

1} is λmax ¼ maxi P j Jij . The paper specifies how the 

settings of the CIMs with fixing mistakes are established. 

Grid search is used to determine the remaining variables for 

each technique, and Supplementary Tables 1–2 display the 

parameters for the various methods. 

5. Results and discussion 

We conduct numerical tests on three distinct databases and 

assess the algorithm's efficiency using failure likelihood and 

time-to-target (TTT). Before presenting the findings of the 

quantitative tests, we provide a brief explanation of the spin-

glass, Max-Cut, and TTS/TTT challenges. Issues with Spin-

Glass and Max-Cut the Ising structures with Gaussian-

distributed fittings between nearby spins are described by 

the spin-glass theory. The spin-glass issue involves 

determining the base state of the Ising move glass using the 

http://www.ijritcc.org/
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power value Equation (1). The Max-Cut issue bears 

resemblance to the task of reducing the Hamiltonian of a 

turn glass model in mathematical physics and in disturbed 

structures. One of the significant multimodal optimization 

issues is the Max-Cut problem. Let T = (V, E) be an 

undirected graph with edge weights wij = wji > 0 for all (i, j) 

∈ E and ∣V∣ = M. To increase the total of the weighted 

borders linking the locations in these two distinct parts, we 

divide the vertices V into two supplementary groups. The 

scaled Max-Cut can have any infinite or negative weight 

numbers, whereas the Max-Cut only has +1 weights. To 

illustrate the two categories, we first give each network node 

an Ising spin σi ∈ {−1, 1}, which can be described as the 

Ising issue. Thus, it may be expressed as follows:  

Arg max ∑ 𝑤𝑖𝑗(1 − 𝜎1𝜎𝑗)(𝑖,𝑗)𝜖𝐸    

= 
1

2
 ∑ 𝑗𝑖𝑗𝜎𝑖𝜎 +   𝑀

𝑖𝑗 ∑ 𝑤𝑖𝑗(𝑖,𝑗)𝜖𝐸         (20) 

The expression can be expressed as follows: Keep in mind 

that the next term, ∑ijwij, is an integer, and the Hamiltonian 

H in Eq. (1) with the zero outside force is equal to 

increasing the initial part in (2).  We select the Max-Cut 

issue (2) for evaluating since it easily transfers onto the Ising 

issue (1). 

5.1 The metrics used for evaluation  

The QAIA methods are all heuristic. To thoroughly evaluate 

various approaches, we calculate the achievement chance 

P—the ratio of reaching the ideal solution—by sampling 

every visualization 100 times. In the meantime, the method's 

computing speed is evaluated using TTS and TTT. TTT 

calculates how long it takes the method to ensure that the 

original result can happen more than once with a likelihood 

Q that is typically set at 0.99. The likelihood of obtaining 

the needed solution when executing a stochastic solver for a 

duration Ts is P(Ts). Think about the scenario of k trials; the 

likelihood of getting at least one right outcome is provided 

by 

 Q = 1 - (1 - P(Ts))
k;              (22)  

then the number of operations required to accomplish the 

just result with a chance of Q (= 0.99) is given by k = 
𝑙𝑜𝑔(1 − 0.99)  

 (1 − P(Ts))
    TTT 

={
𝐷𝑠log (1 −  0.99) / log(1 −  P(𝐷𝑠)); 𝐷𝑠 <  0: 99;

 𝐷𝑠;  P(𝐷𝑠)  ≥  0.99;   
       

(23)  

where Ts is the time to run the algorithm once. P (𝐷𝑠) is set 

to the success chance P for TTS. Additionally, in TTT, the 

baseline goal is typically defined as 99% of the most well-

known or accurate figure. Furthermore, we calculate the 

RMedian and Rmax, or mean and highest, of the proportion 

between the test's cut result and the ideal one. 

5.2 First Experiment 

We evaluate QAIA on tiny normal visualizations in the 

initial test, with problem sizes N varying from 10 to 500. 

We chose the scale to {−1, 1} because we need to see a 

pattern of QAIA efficiency on normal visualizations with a 

bigger issue size. Based on the edge mass and volume, the 

issues can be categorized into four groups, such as weak and 

deep spin-glass examples and weak and deep Max-Cut 

cases[36]. For every challenge, we generate 10 instances of 

each size to determine the median efficiency. These 

examples are produced using the Python module Network, 

and the Biq Max solver, an exact technique that uses 

semidefinite coding based on the Fork & Limit method, has 

already determined the cut number of the visualizations[37-

38]. In each case, the parameters are assessed on QAIAs for 

10,000 repetitions to improve the test findings' 

dependability. Various methods exhibit notable differences 

in performance under thin situations. Compared to previous 

methods, the bSB significantly improves both the success 

chance and TTS. It also exhibits greater durability as the 

issue size increases, irrespective of whether it is applied to 

Max-Cut examples (Fig. 1) or spin-glass examples (Fig. 2). 

The performance of SimCIM, aSB, and dSB is comparable. 

Additionally, the SimCIM yields a lower TTS, while the 

dSB achieves a slightly higher resilience and outcome 

chance. In this trial, they outperform the NMFA. However, 

QAIA's efficiency often equals that of large visualizations. 

The article is: https://doi.org/10.1038/s42005-0. 
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Figure 1 illustrates the QAIA comparison results for 3-regular Max-Cut problems on GPUs with high weights. Victory Chance, 

Time-to-Solution (TTS), and the average and highest of the ratios between the specimen's cut number and the ideal cut number, 

Rmedian and Rmax, respectively, are presented in (a) Victory Chance and (b) Time-to-Solution (TTS).  Every use of the methods 

undergoes 1,000 rounds over 10,000 trials. The solid arcs in (a) and (b), which illustrate the trend of the parameters as the issue 

size grows, are obtained by matching the matching information points for each technique. 

 

 

Figure 2: Quantum cooling influences the evaluation of techniques for three typical spin glass issues on a GPU. The first three 

variables are Achievement Chance, Time-to-solution (TTS), and the average and highest ratios between the test's cut level and the 
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ideal cut level (Rmedian and Rmax, respectively). Every use of the methods involves 1,000 rounds over 10,000 sessions. The 

solid arcs in (a) and (b) illustrate the trend of the measures and the growth in issue size, respectively, when the matching 

information points for each method are matched. 

5.3 Second Experiment  

The final one compares QAIA to QA with the most 

powerful processing power using the chimera and pegasus 

charts of the real D-Wave gadget11,43. The Tropical Tensor 

Network (TTN)44 offers the base state efficiency of the 

spin-glass example, enabling chimera visualizations. We 

contrast QAIA with a few exact solutions from the 

published works of QA and other physics-based algorithms 

[13, 45].  Figure 3 illustrates how bSB achieves this. 

 

Figure 3: Ising energy development. G22 is a sparse chart; K2000 is a dense graph. One CPU core is used for both simulated 

annealing (SA) and methods influenced by quantum melting. The max and min instances among the 100 trials are represented by 

dashed lines, while the solid lines show the mean power. 

Table 1 We are comparing the spin-glass power values with the chimera visualizations. 

Time(s) Algorithm Hardware Graph size 

<0.64 dsb GPU tesla v100  

17.63 dsb CPU 1 crore  

~2886 Extract belief propagation13 CPU 1 crore  

>10108 Brute force search48 G titan V 8× 8 × 8 

83 TTN44 GPU tesla v100  

32600 TTN CPU 1 crore  
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<0.007 Bsb GPU tesla v100  

0.14 Bsb CPU 1 crore  

~0.07 QA13 D wave  

~0.97 Extract belief propagation13 CPU 1 crore 4 × 4 × 8 

>1047 Brute force search48 G titan V  

5.63 TTN CPU 1 crore  

in this document. Consequently, QAIA provides a useful starting point for developing rival quantum methods. 

Table 2 The performance evaluation of methods is influenced by quantum heating. 

SFC aSB bSB NMFA SiMCiM dSB CAC CFC Metric Class of 

graph 

5.8 5 3.6 5.83 3.85 4 4.98 6  Average 

ranking 

5 7 1 4 3 4 8 6 TTT  

4 7 1 3 3 4 2 6 98% of 

best 

 

5 7 2 4 2 3 2 5 P Large dense 

(N>2000) 

3 7 3 4 1 1 6 5 TTT  

6 4 3 4 4 3 5 4 98% of 

best 

 

4 5 3 6 4 2 6 4 P Large/skew 

(N = 2000) 

http://www.ijritcc.org/
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8 4 5 6 4 3 6 3 TTT  

8 3 5 7 2 4 8 3 98% of 

best 

 

8 3 4 5 2 5 - - P Large/random 

(N ≥ 2000) 

6 3 4 5 2 5 - - TTS  

4 3 4 5 4 3 - - P Small/dense 

3 8 4 1 4 4 - - TTS  

5 8 1 2 1 3 7 4 P Small/sparse 

6 8 1 2 1 3 8 3 TTS  

5 7 1 2 5 3 8 3 P Pegasus 

5 7 5 2 5 3 8 6 98% of 

best 

 

8 7 5 5 4 4 9 5 P Chimera 

6. Conclusions 

In this study, we evaluated quantum-inspired methods that 

addressed the factorial issue on a variety of network types. 

We also compared these methods with the D-Wave quantum 

annealer and a few physics-based techniques. In the 

summary of the testing findings. Not only does bSB perform 

exceptionally well in chimera charts when compared to 

other QAIAs, but it also offers a remarkable TTS decrease 

of around 50 times when compared to D-Wave. Overall, 

CAC performs better than other options for Pegasus graphs. 

Furthermore, unlike the benefit structure of D-Wave 

crashes, CFC and dSB can search for optimal solutions 

across a wide range of issue sizes’ continuously exhibits 

greater accuracy on tiny visualizations. The problem's 

solution likelihood and TTT remain unchanged as its scope 

increases. Large, random, skewed, and thick graphs are best 

suited for CAC, CFC, and dSB, which have the greatest 

success chances and the shortest TTT, respectively. The 

properties of the charts involved determine which solver is 

best for addressing optimization issues. For chimera and tiny 

graphs, bSB is the optimal choice. Nevertheless, dSB turns 

out to be the best solution for bigger graphs. However, for 

big stochastic and skewed visualizations, CAC and SFC 

could work better than dSB given enough time and 

computer resources since they have a larger chance of 

producing ideal or nearly perfect solutions. SimCIM and 

aSB are included in the initial version of QAIA, which is 

prone to becoming trapped in local minima . However, 

QAIA shows a notable boost in efficiency when outfitted 

with separation, error mitigation, or rigid walls. 

Interestingly, QAIA outperforms the D-wave annealer and 

other traditional algorithms in discovering the best options 

quickly. 
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