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Abstract 

The advent of smart mobile devices has ushered in a new era of computing, but their performance is inherently constrained 

by factors like processing power and battery capacity. To optimize task execution, it is critical to strike a balance between 

tasks executed on the devices and those offloaded for remote processing, as proper offloading greatly enhances the quality 

of service. Prevailing techniques often emphasize on single objectives and make computationally complex, lacking a 

universal approach that balances targets and complexity effectively. To tackle these issues, this research proposes an 

Adaptive Offloading Cat Hunt Optimization (AOCHO) algorithm, which is designed to optimize computation offloading 

in mobile edge computing, with a primary focus on minimizing time, energy consumption and resource utilization. 

Primarily, this research starts by formulating the problem using Directed Acyclic Graphs (DAGs) in heterogeneous 

environments, aiming to reduce energy consumption for mobile users. Subsequently, the AOCHO-based offloading 

algorithm tackles multi-objective problems. The experiments conducted in the MATLAB environment, yield superior 

results. The simulation demonstrates a substantial reduction in delay by 0.0172 sec, a decrease in energy consumption by 

0.251 (10-3 J), and a cost reduction of 0.387. These results clearly reveal that the proposed algorithm surpasses other 

benchmark algorithms in various situations. This underscores the algorithm's effectiveness in enhancing offloading 

efficiency for mobile devices in the realm of mobile edge computing. 
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1.Introduction 

The expansion of wireless network and the Internet of 

Things (IoT) has piloted in a new era for smart Mobile 

Devices (MDs), making them a prominent platform for 

various purposes, such as face recognition, video 

surveillance and natural linguistic processing [1]. These 

applications demand significant computational power, 

creating a dilemma as MDs are often resource-

constrained. This incongruity between the capabilities of 

MDs and the demands of computation-intensive 

applications poses a significant hurdle in ensuring a 

satisfactory Quality of Experience (QoE) [2][3]. 

Computation offloading plays a pivotal role in 

addressing this challenge, initially gaining traction in 

cloud computing and subsequently finding applications 

in edge computing [4]. It enables MDs to offload 

computational tasks to remote servers for execution. 

However, due to network limitations, not all tasks need 

to be offloaded [5]. This necessitates rapid decisions 

regarding which tasks are executed on servers and which 

ones are handled locally. Only when this decision is 

made wisely on the Quality of Service (QoS) is 

maintained or improved, ultimately enhancing the 

overall QoE [6][7]. While Mobile Edge Computing 

(MEC) has the probable to enhance MD application 

performance, the concurrent transmissions of multiple 

MDs are to compromise channel quality, leading to 

degraded transmission performance and increased 

response latency [8]. Employing multi-channel 

communication may mitigate this issue by allocating 
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different channels to MDs, yet it is important to note that 

band resources still proves insufficient to adapt all MDs 

effectively [9].  

Cloud computing systems often transfer computation 

tasks, either partially or entirely, to cloud servers to 

improve the computational load on MDs. However, a 

significant challenge with this cloud-based offloading 

method is the often-unacceptable transmission delay, 

mainly due to the substantial detachment between clients 

and cloud servers [10][11]. In contrast, the concept of 

MEC resolves this concern by deploying servers or 

micro-servers in the immediate vicinity of the MDs [12]. 

This setup dramatically reduces transmission delays, 

making MEC an attractive computing model for several 

mobile applications. The challenges associated with 

mobile computing have accelerated the expansion of 

MEC, particularly within the framework of 5G 

architecture. Unlike traditional cloud computing, MEC 

covers cloud services from central cloud data centers to 

the networks. It permits User Equipment (UEs) to 

directly offload tasks to adjacent MEC servers, utilizing 

Base Stations (BS) for this purpose [13][14]. This 

approach not only accommodates the increasing demand 

for computational skills but also enhances the QoS of 

mobile applications by significantly reducing Energy 

Consumption (EC) and latency conditions [15]. 

The proposed AOCHO algorithm is to optimize the task 

execution in a heterogeneous environment by jointly 

considering task latency and EC. The algorithm aims to 

achieve this objective by effectively scheduling the 

execution of subtasks, taking into account their 

dependencies and execution constraints. By optimizing 

the scheduling sequence and decision of subtasks, the 

algorithm improves the parallelism of task execution and 

reduces the overall delay and EC and resource 

utilization. The ultimate goal is to enhance the 

effectiveness and competence of computation offloading 

in a heterogeneous environment, leading to improved 

user experience and resource utilization. The key 

contributions of this research are described as follows, 

✓ The proposed AOCHO algorithm provides an 

advanced framework for optimizing mobile 

computation offloading. By combining the strengths 

of the Cat Hunting Optimization (CHO) with 

adaptive optimization techniques, this research 

offers a robust and efficient solution for addressing 

key objectives such as EC, delay reduction and cost 

optimization simultaneously.  

✓ This research explores the difficulty of task 

offloading involving subtask dependencies and 

formalizes task dependency as DAGs in 

heterogenous environment. This take into account 

the diverse characteristics of MEC and the limited 

resources of UE and MEC servers.  

✓ The AOCHO algorithm is designed to support real-

time decision-making, a crucial capability for 

applications that demand low latency and immediate 

responses. This holistic approach ensures a balanced 

and well-rounded offloading strategy that aligns with 

the diverse requirements of mobile applications. It 

contributes to the overall efficiency, cost-

effectiveness and sustainability of mobile 

computation offloading systems. 

The research work is organized as follows; Section 2 

explains some recent literatures based on computation 

offloading. Section 3 explains the system model and 

proposed algorithm. Section 4 covers the outcomes and 

discussions of the proposed algorithm. Finally, Section 

5 ended up with conclusion and future scope. 

 

 

2.Related works 

In recent years, there are numerous researches undergoes 

to efficiently optimize the task offloading challenges in 

MEC. Among those few of them is listed as follows, 

Linbo Liao et al. [16] presented a Double 

Reinforcement Learning Computation Offloading 

(DRLCO) model that aimed to diminish EC in the MEC 

platform. The scheduling-based algorithm 

was performed to resolve the issue of delay. 

Additionally, an adaptive prioritized experience replay 

algorithm was employed to enhance the performance of 

the system. The experimental results showed a reduction 

in both delay and EC when related to previous methods. 

Huan Zhou et al. [17] developed a technique 

constructed on Double Deep Q Networks (DDQN) to 

define the dual policy for resource allocation and 

offloading mechanism. This approach effectively 

approximated the Q-learning value function. Simulation 

results indicated that DDQN method significantly 

improved the performance in various scenarios while 

compared with other baseline methods. MOHAMMED 

S. ZALAT et al. [18] suggested an approach constructed 

on Niching Genetic Algorithm with a Markov Decision 

Process (NGA-MDP) to enhance the multisite 

offloading system. MDP was employed to ascertain the 

most ideal location for executing individual elements.  

NGA was utilized to control the optimum shift 

probabilities for mechanisms functioning across 

multiple sites. The experimental consequences indicated 
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that the NGA-MDP method consumed minimal energy, 

executes quickly compared with other methods. Si-feng 

Zhu et al. [19] presented a Multi-Objective Immune 

cloning Algorithm (MOIA) that efficiently addressed 

three optimization objectives. These objectives 

encompassed computing tasks, EC and server load 

balance. Furthermore, this approach conducted an 

extensive set of virtual experiments to validate the 

efficiency of the MOIA system. Xiangjun Zhang et al. 

[20] suggested a Deep Deterministic Policy Gradient 

(DDPG) method to deals with crucial unloading 

problems. This process aimed to enhance the point 

modification and amplitude by utilizing Reconfigurable 

Intelligent Surface (RIS. In the end, DDPG algorithm 

exhibited substantial performance improvements than 

non-RIS learning algorithms and other traditional 

algorithms. Mengxing Huang et al. [21] developed a 

Multi-Objective Whale Optimization Algorithm 

(MOWOA) to address the ideal computation offloading 

mechanism in MEC. The algorithm aimed to 

simultaneously reduce time and EC while enhancing 

QoS. Furthermore, an enhanced version, MOWOA2, 

utilizing the gravity reference point technique to attain a 

more diverse solution set. Experimental results 

demonstrated notable improvements in the quality of the 

final solutions. Sadoon Azizi et al. [22] presented a 

Deadline-aware and Energy-efficient Computation 

Offloading (DECO) method for arranging and handling 

of tasks created by IoT systems. This method took into 

interpretation task priorities and the edge servers during 

the task-node plotting progression. The outcomes 

validated the effectiveness of the suggested algorithm, 

which outperformed than other methods. Zheng-yi Chai 

et al. [23] recommended an efficient multi-objective 

evolutionary algorithm that concentrated on jointly 

optimizing delay, EC and cost objectives. It utilizing the 

NSGAIII-TOMEC algorithm in various situations 

relating numerous MEC servers, MDs and tasks. 

Simulation results demonstrated a substantial 

optimization in the offloading revenue of MDs when 

compared to other techniques. Xiao Chu et al. [24] 

developed a dynamic fine-tuning model using a Deep Q 

Network (DQN) to adjust the offloading proportions for 

each user, aiming to achieve a cost-effective MEC 

system. The task offloading model was represented as an 

MDP and computation offloading was implemented 

accordingly. Simulation results indicated a reduction in 

typical delay and average EC compared to alternative 

techniques. Si feng Zhu et al. [25] developed a Multi-

Objective Immune Algorithm (NMIA) by building upon 

an enhanced evolutionary algorithm based on the 

principles of immune algorithms. NMIA was designed 

to efficiently generate a set of solutions that strike a 

balance among response time and EC. Experimental 

results demonstrated the capability of the NMIA 

approach to meet response time necessities and attain a 

more energy-efficient strategy in comparison to existing 

offloading schemes. The limitations of prevailing 

methods are presented in Table 1. 

 

Table 1 Summary of prevailing methods limitations 

Authors Methods Limitations 

Linbo Liao et al. [16] DRLCO ✓ high task generation rates 

✓ Increased execution delay 

Huan Zhou et al. [17] DDQN ✓ limited resources of the MEC server 

✓ Limited scalability 

MOHAMMED S. ZALAT 

et al. [18] 

NGA-MDP ✓ Lack of differentiation in network structure 

handling 

✓ Lack of robustness and versatility 

Si-feng Zhu et al. [19] MOIA ✓ Lack of adaptability for real-time scenarios 

✓ The objectives of this approach were not fulfilling 

the relevant aspects of MEC 

Xiangjun Zhang et al. [20] DDPG ✓ Increased transmission delay due to reduced 

available bandwidth 

✓ Inadequate consideration of server computing 

resources. 

Mengxing Huang et al. [21] MOWOA ✓ Computation complexity was high 

✓ Lack of convergence and diversity 
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Sadoon Azizi et al. [22] DECO ✓ Lack of energy efficiency 

✓ Limited mobility support 

Zheng-yi Chai et al. [23] NSGAIII-

TOMEC 

✓ inherent latency in sending tasks to remote servers 

for processing. 

✓ This approach was not suitable for real time 

scenarios. 

Xiao Chu et al. [24] DQN ✓ overall offloading is not effective due to high time 

delay 

✓ Lack of fault tolerance 

Si feng Zhu et al. [25] NMIA ✓ Lack of security and privacy concern 

✓ High execution time 

 

3. System model 

In this research, the complexities of computation 

offloading within a confined edge network, such as those 

found in enterprise, campus, or home environments have 

been considered [26]. The designed Edge MEC system 

that centres around a single MEC server, offering 

computational support to MDs. As shown in Fig 1, The 

whole network involves of single cloud server with N  

edge servers, which is signified as  N....2,1  . All edge 

server covers  k  stations. Time is allocated with period 

  and the set of time slot index is defined by

},.....1,0{ DD = .   

BS

BS

BS

MEC Server

MEC Server

MEC Server

UEs

UEs

UEs

Channel 1

Channel 2

Channel..

Channel n

Cloud server

 
Fig 1 Overall System model 

 

There are three kinds of devices are presents in the 

heterogenous environment, which is described as 

follows, 

i. Cloud Server: Cloud servers possess significant 

computational power, making them well-suited for 

handling intricate computing tasks. This research 

primarily centres around task offloading within the 

context of end-edge association. Therefore, the 
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principal role of the cloud server is to leverage its 

loading and computational capabilities for 

aggregating and updating the decision model of the 

edge server. 

ii. MEC server: The MEC server takes on the 

responsibilities of making offloading decisions, 

executing tasks and optimizing the decision model. 

Both of these functions rely on the deployment of a 

task scheduling element on the edge server for their 

execution. 

iii. Terminal: The terminal has the role of 

communicating with the user, especially in specific 

scenarios. It generates tasks randomly and these 

tasks sometimes surpass the terminal's own 

computing capabilities. To minimize task latency 

and EC. 

 

3.1 Directed acyclic graph application model  

The application created by vH is combined of some 

tasks with dependence. The primary model utilizes a 

DAG for achieving fine-grained task offloading 

scheduling. This involves an analysis of the likelihood 

of parallel task processing, which enhances execution 

efficiency and aligns with a more practical approach. 

[27]. Fig 2 illustrates the application model formed by 

vH .There are ECuu 10 ,  and there is direct 

connection from 
0u to 

1u is established.  

   

   U0
U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

 
 

 

Fig 2 DAG model created by UE 

 

The application model is represented as a DAG graph, where 
gvH creates application 

gZ .so, similarly 
gvH  denoted as 

ggg HUZ ,= , where 
gU represents the generated tasks group and 

gH represents the dependence connection among tasks. 

The task created by VH as u , where gUu  .Assume, },,,{ rrrrr dwu = , where rw represents the total workload of 

ru , rd represents the executing task data size, r represents the relation of output to input data dimensions created by 

entity 
gvH . r represents the highest delay a task tolerates amount. The binary variable ]1,0[,, hgrQ  designates, 

when the task was offloaded to the MEC server. Where, hgrQ ,, indicates where the task is performed locally. Meanwhile 

assuming the single task is only be performed on individual place, consider 1

0

,, =
=

P

h

hgrQ  . The main key notations 

expanded in the system model is provided in Table 2. 
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Table 2 List of key notations 

Notation Description 

  Time is slotted with duration 

},.....1,0{ DD =  Time slot index set 

vH  User equipment 

gvH  
Generates application of 

gZ  

gU  
Generated tasks group 

gH  
Dependence relationship among tasks 

u  Task created by VH 

u  Set of generated tasks 

rw  Total workload of 
ru  

rd  Information amount of the task 

r  Proportion of output to input information sizes of tasks created by entity
gvH  

r  The determined acceptable task latency 

hgrQ ,,
 

Local executed task 

Bs  Base-station 

Zi  Mobile device user i  

Txi  i  user's transmission rate 

  Channel bandwidth 

iq  Transmission power  

il  Channel gain between BS and user 
2  Background noise 

N  Edge servers 

 N....2,1  Group of edge servers 

k  Each edge server contains  k  terminals. 

lZ  Decision vector 
g  Priority of the task 

su  Amount of the task data in bits 

d  The required Central processing unit (CPU) runs to execute one bit of a task. 

off
pD  

Offloading delay 

off
pEC  

Offloading EC 

dt  Distance among the MEC server and MD 

0t  Antenna far-field test distance 

g
dxT  

Transmission delay through offloading 

ds  cost of uplink transmission 

id
pS ,

 
computation delay per one task 

d
pEC  

EC of offloading computing system 

d
pM  

size of the u  executing task 

d
pR  

uplink transmission rate of UE 
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g
trsirT ,,  

required time transmitting from UE to the MEC server 

g
exeirT ,,  

required executing time   from UE to the MEC server 

iu  task delay of user i  

 

3.1.1 Communication Model 

Primarily, the MEC server incorporating wireless contact in the communication model, is introduced. The BS of wireless 

access Bs  survives the communications of MD users. The connection of wireless networks that Bs  are signified as 

}...3,2,1{ NN = .Furthermore, ).....2,1( znzzZ l = is a decision vector, where )....2,1( xiZi = signifies the MD user i

offloads %100Zi of its task to be accomplished on edge servers and the remaining of the task which executed locally, 

that is %100)1( −Zi .In the system, the transmission rate  Txi  of user i is defined by using Eqn (1). 





















+−

+=


=

m

n

nnii

ii

lqlq

lq
Txi

1

2

2 1log



                                                                                                 (1) 

where,   represents the channel frequency, iq  represents the transmission capacity  of user i, 
il  is the channel gain among 

base-station and user i , 2 signifies the background noise. 
=

+−

m

n

nnii lqlq

1

 signifies the outcomes from other MD users. 

The communication model described in Eqn (1) reveals that when a maximum quantity of MD users opts to offload their 

computations through the same channel simultaneously, it results in significant interference and subsequently lowers data 

rates, which has a detrimental impact on the performance of MEC. 

 

3.1.2 Computation Model 

The lacking loss of  the computation task is symbolized as a tuple ),,( dugh , where g  denotes the priority of the task, 

su signifies the task information size in bits, d represents the essential CPU series to process a task per one bit. The 

offloading rate of the task is represented by }1,0{ , where 0=  indicates the local execution approach and 1=  

indicates the offloading approach. 

3.1.3 Local Computing 

MDs dynamically regulate their CPU frequency according to the task requirements, impacting both task delay and EC. 

Where the mobile device CPU rate is represented by 
dg1 and the local computation latency of the task i is denoted as 

),,( iiii dugh , which is derived through Eqn(2), 

d

i
id

p
g

H
S

1

, =                                                                                                                                      (2) 

where, 
id

pS ,
signifies the computation delay per one task,  iH  represents the essential CPU cycles to execute in one  task 

and 
dg1 signified by max1 gg d  , Dd , the EC of task performing at the individual MD is represented by Eqn (3), 

id
p

did
p SgEC ,2

1
, )(=                                                                                                                      (3) 
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where, 
id

pEC ,
represents the EC calculation per one task,  represents the switched capacitance, which determine on the 

chip construction. 

3.1.4 Edge Computing 

The primary distinction between edge and local computing lies in the extra costs associated with offloading computations 

from a MD. These additional costs encompass the offloading delay and the EC required for transmitting information to 

the MEC server. The delay and EC for the offloading are determined as 
off
pD  and 

off
pEC .After MD p  completes the 

transmission, the MEC server accomplishes the computation task u  effectively. Accordingly, the delay for executing 

task u  is 
g
pD .Therefore, the entire  executing duration of the task u  particularly encompasses dual phases: the primary 

phase is the duration of  communicating the task nTxi from UE to the MEC server and the next phase is the computing 

performance duration on the MEC server. The delay for uploading data of the task  u  is accompanied with uplink 

transmission rate and input data size of UE i  straight achieved by Eqn(4). 

d
p

d
pg

p
R

M
D =                                                                                                                                                            (4) 

where, 
d
pM  represents the size of the u  executing task, 

d
pR  represents the uplink transmission rate of UE. Then, the 

equivalent EC for transmitting the task 
nTxi to the MEC server is measured. 

 

3.1.5 Server Computation Model 

Once, gvH  selects for offloading, the transmitting delay of task
i
pD from gvH  to gMEC  is achieved by Eqn(5), 

kgi

kg
trsir

R

t
T

,,
,, =                                                                                                                             (5) 

The computational duration of task 
gU performed at 

gMEC  is determined through Eqn (6). 

g

kg
exeir

E
T


=,,                                                                                                                               (6) 

where, 
g

trsirT ,,  represents the required time transmitting from UE to the MEC server, 
g

exeirT ,, represents the required 

executing time  from UE to the MEC server, kt  is the data size of gU , kgiR ,,  is the transmission rate from gvH  to 

gMEC  and gE  is the computing power of gMEC . 

 

3.1.6 Task offloading & execution model 

During transmission, it aims to strike a balance between offloading as many tasks as possible to edge servers and 

preserving local execution for tasks that require it. According to the Shannon formula, the transmission frequency at time 

duration d  is expressed through Eqn (7), 

)1(log2
n

dd
Txd

P

gA
BWTr +=                                                                                                          (7) 

where, BW represents the bandwidth, nP represents the noise at the receiver, 
d
TxA represents the transmitting capacity 

of the MD, which is inhibited by maxh , Subsequently the channel gain 
dg  among the MD and the MEC server at the 

duration d  is defined through Eqn(8). 
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









=

d

d

t

t
Gg 0

0                                                                                                                             (8) 

where, 
dt  is the space between the MD and the MEC server, 0t is the antenna distance test distance of the BS to which 

the MEC server is associated, 0G  represents the channel gain variable,   represents the path-loss variable. The 

transmission latency of the task u  is associated to the data dimension and uplink rate of respective time slot. Thus, the 

transmission delay is achieved by Eqn (9) 

d

i
g

dx
s

u
T =                                                                                                                                    (9) 

where, 
g

dxT  represents the transmission delay through offloading, 
iu represents the task delay of the user i  ,

ds

represents the cost of uplink transmission. The EC is achieved by Eqn (10). 

i
Tx

d
Tx

i
Tx THEC =                                                                                                                            (10) 

where, i
TxEC  represents the transmission EC of task i  , 

d
TxH represents the transmit power of MD, i

TxT represents the 

transmission delay of task i  . During the execution point, the task is carried out on the MEC server. Where the CPU rate 

of the MEC server Freq   remains constant. Hence the execution delay is achieved by Eqn (11). 

Freq

Z
T

i
i

r =                                                                                                                                (11) 

where, i
rT represents the delay of the task execution phase, iZ represents the execution delay of the transmission queue, 

Freq represents the CPU frequency of the MEC server. 

 

3.1.7 Energy Consumption Model 

 

For individual time slot d , UE is assumed to formulate any assessment to perform the task  i , so the EC of the task 

execution period is defined through Eqn (12). 

d
p

d
pid

p
R

Mq
EC =                                                                                                                                                       (12) 

where, iq represents the transmission power, 
d
pEC represents EC of offload computing system, When a larger amount of 

computation resources is assigned to a particular UE, the task performance time decreases, but this results in an increased 

EC. Accordingly, a total delay and EC for UE i to offload the task u  are simply expressed by Eqns (13) and (14). 

MEC

d

R

M
DDD

d
p

d
p

d
pd

exep
d

Txp
off
p


+=+= ,,                                                                                         (13) 

MEC

dh

R

Mq
MECECECECEC

d
p

u
i

d
p

d
pid

p
d

exep
d

Txp
off
p


+=++= ,,                                                               (14) 

 where, 
off
pD and 

off
pEC represents offloading delay and EC respectively, 

d
TxpD , and 

d
TxpEC , represents transmitting time 

and EC of uploading task respectively, 
d

exepD , and 
d

exepEC , represents execution time of delay and EC of the particular 

task, 
d
p represents the percentage of computation resources allocated to accomplish the task, 

u
ih represents the UE 
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standby power state.  Thus, the downlink transmission of an offloading task in the model size is typically much less than 

the input data.  

 

 

3.2 Problem formulation 

In this research, proposing AOAHE algorithm for 

computation offloading which aims to optimize mobile 

devices' resource utilization and energy efficiency. The 

challenge involves addressing the issue of offloading 

and resource utilization in the proposed MEC 

mechanism. The primary aim is to reduce the overall EC 

of the complete MEC system while adhering to definite 

task delay restraints. To achieve this, the relevant 

optimization problem is formulated by Eqns (15) and 

(16). 

d
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
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where,
d
p

off
p

d

d
p DEC 






++

−

=
→

1

0

1
lim  is the time average of the complete MEC model. i represents the decision variable, Q

represents the total task set, 1G  signifies the EC of the edge execution model, 2G  signifies the execution delay of the task, 

and 3G signifies the allocation of computation resources allocated to UE. To solve the problem stated in Eqn (16), it's 

essential to determine the finest solutions for the offloading decision vector }{)( Qiydy d
i = , computation resource 

allocation vector }{ Qig d
i

d
i =   and specified delay  }{ max, Qgh d

i
d
i =  in each time slot. These factors work together 

cohesively to reduce the overall computation, and EC within the system while adhering to the specified delay restrictions. 

Particularly, the offloading assessment variables 
d
iy  are binary variables, whereas the resource allocation variable 

d
i and 

d
ig max, are vigorously varying. Consequently, the scheme necessitates a significant quantity of network state report to 

construct the comprehensive decisions concerning offloading and resource allocation built on the current network position. 

Since some existing methods is not able to adjust to the dynamic properties and is not suitable for intelligent decisions, 

thus proposing AOAHE algorithm to address the considered problem in this research. 

 

3.3 Computation offloading and resource utilization 

optimization problem based on adaptive offloading 

cat hunt Optimization Algorithm  

This research proposes an AOCHO algorithm for 

heterogeneous environments to reduce time, EC, and 

resource utilization problems and make a reasonable 

offloading decision [28]. Each individual or problem 

solution goes through two primary phases: the search or 

attack phase, and the determination of their current state. 

During the rest and alert phase, these individuals explore 

their surroundings to decide on their next course of 

action. They contemplate various situations, attempting 

to move toward the most optimal location. In this 

behavioral model, the parameters define each 

individual's memory size, dimension range, and vector 

dimension during the search process. The flow of the 

AOCHO algorithm is given below, 

 

• Evaluating fitness function 

Using the fitness values of the copied vectors, calculate 
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the probability for each copy vector, as shown in Eqn 

(16). This calculation aims to reduce delay, EC, and 

resource utilization. Subsequently, select the best copy 

vector based on these probabilities and replace it with 

the candidate cat vector. 









−

−

=

=
otherwise

TPTP

TPTP

TPTPif
r

fitness
i

minmax

min

minmax
1

                                                                                                               (16) 

where, r  represents the delay, EC, and resource utilization function derived from Eqn(15),  iTP signifies the rate of 

each solution vector, 
maxTP and 

minTP  represents the maximum and minimum range of the copy vectors, correspondingly. 

When the minimum and maximum fitness values are identical, it implies that all the copy vectors have the same fitness 

values, resulting in equal probabilities for all copy vectors.  

 

• Tracking towards prey 

In this research, each problem solution updates its speed based on the state of the problem area, as described by Eqn (17), 

))(()()1( dzzPrdudu dbestjd −+=+                                                                (17) 

where, bestz  represents the ideal spot where the current solution in the problem range, )(dzd     represents the present 

location of the solution vector. )1( +dud  and )(dud represents the new and current velocity of a problem solution to 

reach the optimal solution respectively, r  and P represents the random and learning coefficients of the problem 

respectively. 

 

• Mutual learning  

   In the proposed AOCHO algorithm for each problem solution are expected to learn from each other. For example, if a 

solution dZ  happens to encounter a solution jZ , and jZ  is deemed to be more deserving than dZ , then dZ  adjusts its 

position in the direction of a solution jZ . This modeling is mathematically represented through Eqn (18). 

)(*)
1

2
sin(

max
djd

new
d ZZr

iteration
ZZ −+=


                                                                          (18) 

where, )
1

2
sin(

maxiteration



 is a component that amplifies the influence of the factor )( dj ZZ −  as the algorithm iterates 

more. As the algorithm progresses through its repetitions, there is a stronger inclination for a solution dZ to transition 

towards solution jZ , signifying a shift in the search behaviour from global to local. 

 

• Utilizing balance factor with adaptive values 

  Consuming adaptive values of adaptiver −1 and adaptiver −2  rather than fixed values to attain higher performance. 

The fixed values of 82.0,18.0 21 == rr ,while in the  AOCHO adjusting the values of both adaptiver −1  and 

adaptiver −2  by decreasing adaptiver −1  and increasing adaptiver −2  to easily achieves the optimal solution. 

Initially, with a high adaptiver −1  and low adaptiver −2 , the cats have the freedom to move around the search space 

without being attracted to the best solution found by the population. Equally, by consuming a smaller value of adaptiver −1  
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and a larger value of adaptiver −2  later on, the cats are directed to the global ideal solution. This move in the values of 

adaptiver −1  and adaptiver −2  helps to raid a balance between exploration and exploitation, leading to improved 

outcomes. This variation in the values of adaptiver −1 and adaptiver −2  is precisely signified by Eqn (18). 








=

+
−

−

18.0

18.0

1
2

1

pfrD

pifrD

iteration
p

adaptiveiteration

adaptiveiteration
                                                                              (18) 

 

where, p  represents the updated position of exploration 

and exploitation, iterationD  represents the distance 

between exploration to exploitation. The maximum 

iteration taken to minimize the problem is to 1000. These 

modifications significantly improved both the optimal 

value and the convergence speed. AOCHO is equipped 

to handle multiple objectives simultaneously. It 

addresses the interconnected challenges of delay, EC, 

and cost, ensuring a balanced approach that considers the 

interplay of these factors. This holistic optimization 

benefits the overall efficiency and performance of the 

offloading process. Also, it leverages adaptive values 

and balance factors to enhance its decision-making 

process. This adaptability is crucial in dynamic mobile 

environments to contribute to extending device battery 

life and reducing overall EC. The flowchart of AOCHO 

is presented in Fig 3.  
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Fig 3 Flowchart of AOCHO algorithm 

 

4. Results and discussions 

This section consists of experiment results constructed 

on the system model and the proposed AOCHO 

algorithm. An adaptive computation offloading system 

is simulated under a heterogenous environment and the 

experimental results are validated and compared by 

using some existing state-of-art techniques.  

4.1 Simulation setup 

To assess the proposed AOCHO model efficiency is 

performed by Matlab with Intel® core™ i5-9300H 

system. It consists of a 2.4 GHz CPU and 8GB RAM. 

Moreover, the parameter settings of this experiment are 

provided in Table 3. 

 

Table 3 Description of network parameters 

Simulation parameters Value 

Number of tasks 61,223 

Computation size of edge servers 10 GHz 

Channel bandwidth 180 KHz 

Computation size of local devices 0.5-1 GHz 

Data size  300~1000 kb 
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Computation size of MEC server 10 GHz 

UE’s transmission power 3 W 

Distance among MEC server and UE 80~100 m 

Density of computation tasks per UE 500~800 cycle/bit 

Number of MECs 3-7 

Number of MDs 6 

 

4.2 Comparison assessment 

To assess the efficiency of the proposed AOCHO 

method, additionally six baseline algorithms are 

introduced as follows, 

• Local Execution Task (LET): The MD perform their 

respective tasks locally whenever possible within the 

higher acceptable delay. 

• Server Execution Task (SET): The MD transmit all 

computation tasks to the MEC server using high 

transmission power. 

• Offloading Scheduling (OS): The offloading 

mechanisms are optimized to diminish the EC of the 

whole MEC system, without taking resource 

allocation optimization into account. The MEC 

server's resources are evenly allocated among each 

offloaded UE. 

• Random Task (RT): The MDs randomly distribute 

energy for transmitting information to the server, 

while the MEC server arbitrarily assigns computing 

resources to the offloaded tasks. 

• DECO [22]: This algorithm primarily focuses on 

computation offloading decisions in various 

scenarios. It takes into consideration task priorities 

and the heterogeneity of ECSs during the task-node 

mapping progression. 

• NSGAIII-TOMEC [23]: This algorithm is based on 

a multi-objective evolutionary approach and 

involves multiple MEC servers, MDs, and tasks. 

 

4.3 Performance analysis  

Figs 4(a-c) illustrate the performance of delay, EC and 

cost for each MD following task offloading. Lower 

index values signify superior performance. The 

comparison in Figs 4(a-c) reveals that, in contrast to 

NSGAIII-TOMEC, the AOCHO algorithm outperforms 

in delay, EC and cost for each device. 

 

Tasks 

LET 

[46]  
OS [46] 

DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOAHE 

(proposed) 

(s) (s) (s) (s) (s) (s) 

1 0.0325 0.032 0.005 0.012 0.023 0.007 0.004 

2 0.043 0.007 0.018 0.014 0.021 0.012 0.005 

3 0.06 0.016 0.014 0.015 0.012 0.013 0.006 

4 0.082 0.023 0.025 0.016 0.015 0.015 0.008 

5 0.112 0.027 0.015 0.017 0.016 0.014 0.007 

6 0.152 0.051 0.014 0.018 0.025 0.012 0.006 
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Fig. 4(a) 

 

Tasks 

LET 

[46]  
OS [46] 

DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) (s) (s) (s) (s) (s) 

1 1.77 0.13 0.05 1.23 0.05 0.08 0.05 

2 1.45 0.19 0.16 0.46 0.05 0.07 0.03 

3 0.9 0.38 0.15 0.69 0.08 0.11 0.09 

4 0.56 0.58 0.18 0.96 0.06 0.14 0.05 

5 0.32 0.74 0.32 1.32 0.09 0.14 0.09 

6 0.12 0.92 0.28 1.56 0.1 0.21 0.1 

 

 
Fig. 4(b) 

 

 

 

Devices LET [46]  OS [46] 
DECO 

[46] 

SET 

[46] 
RT [46] 
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(s) (s) (s) (s) (s) 

NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) 

1 0.98 0.48 0.31 0.35 0.37 0.26 0.22 

2 1.07 0.43 0.37 0.75 0.49 0.25 0.19 

3 0.92 0.58 0.33 0.48 0.45 0.19 0.14 

4 0.98 0.36 0.31 0.39 0.24 0.23 0.18 

5 0.96 0.83 0.35 0.59 0.47 0.3 0.22 

6 0.91 0.66 0.33 0.61 0.42 0.18 0.13 

 

 
Fig. 4(c) 

Fig 4 Effects on mobile devices in related to (a)Delay (b) Energy consumption (c) Cost 

 

Additionally, the delay and cost for each device show 

superiority over other methods. However, while DECO 

delivers commendable outcomes in EC and enhances the 

overall system benefits compared to various benchmark 

algorithms, but it lags significantly behind AOCHO 

concerning delay, cost and overall offloading benefits. 

The test validates the efficacy of the AOCHO algorithm 

and underscore that the offloading policy derived from 

the AOCHO algorithm demonstrates a more robust 

balance. 

Fig 5(a) demonstrates the influence of task generation 

rates for the MD, ranging from 5 to 10 per seconds. 

When the quantity of tasks multiplies, the execution cost 

of these tasks progressively rises. In comparison to SET, 

the proposed AOCHO cuts the execution cost in half. Fig 

5(b) illustrates the effect of the computation power of the 

MEC server on the execution cost. A higher CPU rate of 

the server results in a reduced execution cost for the 

tasks. Specifically, when the frequency is 10 GHz, the 

execution costs of the AOCHO system decrease by 18%, 

35%, 38%, 43%, 49% and 87% compared to the other 

six baseline models. 

 

Tasks 
LET [46]  OS [46] 

DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) (s) (s) (s) (s) (s) 

5 11.46 1.45 1.28 2 3.74 3.22 2.15 

6 12.41 2.2 1.73 3.01 3.57 2.62 1.95 
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7 13.11 2.54 1.96 3.35 2.71 2.16 1.55 

8 13.65 3.49 2.42 3.67 2.89 1.96 1.15 

9 13.99 3.81 3.05 3.95 2.2 1.33 0.86 

10 14.2 4 3.57 4.09 1.39 0.93 0.35 

 

 
Fig. 5(a) 

 

Tasks 
LET [46]  OS [46] 

DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOCHE 

(proposed) 

(s) (s) (s) (s) (s) (s) 

2 9.77 3.22 2.79 3.57 3.04 2.79 2.52 

4 9.73 3.62 3.33 4.03 3.43 2.95 2.64 

6 9.77 3.84 3.53 4.26 3.82 3.47 2.91 

8 9.83 4.13 3.57 4.77 4.05 3.47 3.16 

10 9.75 4.22 3.78 4.92 4.24 3.55 3.45 
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Fig. 5(b) 

Mobile 

Devices 

LET [46]  OS [46] 
 DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) (s) (s)  (s) (s) (s) 

20 11.5 3.66  1.05 4.6 2.97 2.78 0.53 

25 11.45 2.99  1.25 4.14 2.66 2.28 0.89 

30 11.52 2.66  1.51 3.66 2.2 1.92 0.96 

35 11.52 2.06  1.96 3.14 1.6 1.63 1.22 

40 11.57 1.8  2.01 2.8 1.41 1.25 1.44 

45 11.45 1.7  2.37 2.4 1.22 0.96 1.63 

50 11.43 1.22  2.68 1.92 1.92 0.84 1.92 

 

 

Fig. 5(c) 

Fig 5 Task execution performance with (a) Task generation rate (b)Computation capacity of server (c) Different 

quantity of MD 
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Fig 5(c) illustrates the effect of varying the quantity of 

MDs on the execution cost. An increased number of 

MDs leads to higher execution delays for the tasks due 

to the increased task load. With 20 MDs, the AOCHO 

algorithm reduces the execution cost by 20%, 28%, 

32%, 36%, 54%, and 92% compared to the other six 

baseline models. 

As depicted in Fig 6, the typical delay for all approaches 

increases with the rising demand for computational 

resources by tasks. Significantly, the OS method 

consistently shows higher average delays in comparison 

to the other six methods, primarily due to the restricted 

resources of the MEC server. In contrast, the AOCHO 

method excels, exhibiting the smallest average delay 

among the baseline algorithms. 

 

Computation 

Resources 

required by 

Tasks 

LET [46]  
OS 

[46] 

DECO 

[46] 

SET 

[46] 

RT 

[46] 
NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) (s) (s) (s) (s) (s) 

1500 1.3 1.64 2.36 3.06 2.26 2.53 2.19 

2000 1.69 1.96 2.24 2.85 2.13 2.38 2.08 

2500 1.99 2.32 2.04 2.57 1.96 2.18 1.9 

3000 2.34 2.68 1.79 2.22 1.74 1.9 1.69 

3500 2.56 3.04 1.55 1.77 1.5 1.59 1.45 

4000 2.76 3.35 1.23 1.33 1.17 1.27 1.11 

 

 
Fig 6 Performance of average delay with respect to computation resources 

 

In Fig 7(a), it is noticeable that an increase in the number 

of tasks on MDs leads to a rise in the average delay 

experienced by the AOCHO algorithm. This 

phenomenon primarily occurs due to the constant total 

computing resources available in the MEC system. In 

Fig. 7(b), while dealing with a low number of tasks, the 

AOCHO algorithm primarily offloads most tasks to the 

MEC server, reducing delay and keeping MDs energy 

consumption low. However, as the quantity of tasks 

multiplies, the obtainable resources on the MEC server 

become inadequate, certainly resulting in increased 

delay. To manage this situation, certain tasks are 

allocated for local execution. As illustrated in Fig. 7(c), 

the average cost progressively diminishes as the amount 

of tasks on MDs increases, leading to changes in cost 

efficiency. 
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Tasks 
LET [46]  OS [46] 

DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) (s) (s) (s) (s) (s) 

2 0.079 0.018 0.012 0.01 0.02 0.01 0.005 

3 0.08 0.019 0.013 0.01 0.024 0.012 0.007 

4 0.083 0.02 0.014 0.02 0.025 0.013 0.009 

5 0.085 0.034 0.018 0.02 0.03 0.016 0.01 

6 0.086 0.042 0.022 0.02 0.04 0.017 0.012 

7 0.088 0.058 0.026 0.03 0.05 0.018 0.014 

 

 
 

 

Tasks 
LET [46]  OS [46] 

DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) (s) (s) (s) (s) (s) 

2 0.9 0.48 0.15 1.25 0.1 0.875 0.07 

3 0.91 0.6 0.17 0.875 0.12 0.88 0.071 

4 0.92 0.7 0.19 0.75 0.14 0.89 0.072 

5 0.94 0.8 0.25 0.62 0.16 0.9 0.073 

6 0.94 1 0.27 0.5 0.18 0.92 0.073 

7 0.96 1.2 0.31 0.4 0.2 0.93 0.074 
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Tasks 
LET [46]  OS [46] 

DECO 

[46] 

SET 

[46] 
RT [46] 

NSGAIII-

TOMEC 

[47] (s) 

AOCHO 

(proposed) 

(s) (s) (s) (s) (s) (s) 

1 0.05 0.65 0.5 0.97 0.39 0.48 0.01 

2 0.054 0.625 0.45 0.96 0.4 0.39 0.02 

3 0.058 0.55 0.41 0.95 0.55 0.37 0.03 

4 0.062 0.62 0.4 0.98 0.57 0.36 0.03 

5 0.066 0.6 0.4 0.96 0.56 0.35 0.04 

6 0.07 0.58 0.39 0.95 0.53 0.34 0.05 

 

 
Fig.7(c) 

Fig 7 Performance of MEC in terms of (a)Time (b) Energy consumption (c) Cost 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023 

___________________________________________________________________________________________________________ 

 
    1768 
IJRITCC | November 2023, Available @ http://www.ijritcc.org 

Fig 8(a) represents the evolution of the average 

offloading ratio in the AOCHO algorithm. This curve 

indicates the offloading ratio within the model stabilizes 

over time, reflecting its rapid convergence. Fig 8(b) 

illustrates the loss curve of the AOCHO model. The 

outcomes illustrate a gradual reduction in the final loss 

value, which eventually reaches a stable state. 

 

  
(b) 

Fig 8 Performance of AOCHO in (a) offloading ratio (b) Loss ratio 

 

Figs 9(a-c) display the variations in delay, EC and 

computing frequency within the AOCHO algorithm, 

offering insights into its convergence under different 

exploration rates. The results indicate the exploration 

rate of the AOCHO algorithm is set to 0.05, it achieves 

the most favourable overall performance and the 

changes in computing frequency eventually stabilize. 

 

  

(a) (b) 

 
(c) 

Fig 9 Exploration rates for AOCHO algorithm in terms of (a)Time (b) Energy consumption (c) Frequency 
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Fig10(a) displays the average EC of two algorithms. The 

AOCHO algorithm demonstrates a significant reduction 

in EC with a minimal relative error compared to the 

conventional CHO algorithm. Its performance remains 

superior, especially in terms of EC during task 

offloading

. 

 

 
(a) 

 
(b) 

Fig 10 Performance of (a)energy consumption (b) resource utilization impact on CHO Vs proposed AOCHO 

 

Fig 10(b) illustrates the resource utilization of two 

algorithms. The AOCHO algorithm achieves the highest 

resource utilization performance with a minimal relative 

error compared to the CHO algorithm. 

The convergence level to local optima is a key metric for 

evaluating metaheuristic algorithms. In Fig 11, the 

average convergence amount, represented as a 

percentage, towards local optima is illustrated for the 

proposed AOCHO algorithm and various additional 

algorithms when applied to complex evaluation 

functions. The experiments reveal the AOCHO 

algorithm demonstrates a slower convergence rate 

towards local optima in comparison to the other 

algorithms. Specifically, AOCHO achieves a local 

optimal convergence rate of approximately 7.8%, 

whereas the other algorithms, such as CHO, Firefly 

Algorithm (FA), Crayfish Optimization Algorithm 

(COA), Grey Wolf Optimization (GWO), Grasshopper 

Optimization Algorithm (GOA), Differential Evolution 

(DE), Spotted Hyena Optimization (SHO) and Particle 

Swarm Optimization (PSO) have local optimal 

convergence rates of 8.3%,15%,   14.6%,13%,10.3%, 

14.3%, 12.6% and 15.6% respectively [28]. 
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Fig 11 Comparison of AOCHO algorithm convergence with other algorithms 

 

Among those, the PSO algorithm exhibits the highest 

convergence rate, while the proposed AOCHO 

algorithm shows the lowest convergence rate to local 

optima. Specifically, the AOCHO algorithm's 

convergence to local optima is approximately 1.5% 

lower than that of the CHO algorithm, making it one of 

the best-performing algorithms in this regard compared 

to existing algorithms. 

The overall comparison of delay, EC and cost are compared with the existing techniques is presented in Table 4. 

 

Table 4 Overall performance comparison of AOCHO method with existing techniques 

Methods Delay (Sec) EC (10-3J) Cost 

DRLCO [16] 1.002 0.467 1.469 

DDQN [17] 2.325 0.652 - 

MOIA [19] 1.897 0.982 - 

MOWOA [21] 2.271 0.295 - 

MOWOA2[21] 2.265 0.342 - 

DECO (Type 1) [22] 0.198 0.752 - 

DECO (Type 2) [22] 3.992 0.482 - 

NSGAIII-TOMEC [23] 0.0198 0.351 0.451 

AOCHO(Proposed) 0.0172 0.251 0.387 

 

From Table 4, the proposed AOCHO method attains 

the lowest delay of 0.0172 Sec when compared with 

other methods. Thus, minimizing delay is pivotal in 

enhancing mobile computation offloading, as it directly 

impacts user experience, QoS, resource utilization, 

energy efficiency, and the overall efficiency of mobile 

networks and applications. Mobile computing systems 

prioritize low-latency offloading strategies to meet the 

demands of real-time and resource-efficient mobile 

applications. When comes to the EC, the proposed 

AOCHO method consumes lowest energy of 0.251J, 

which shows the proposed model is very efficient for 

computation offloading mechanism. Optimizing EC 

performance in mobile computation offloading is crucial 

for improving device battery life, ensuring 

sustainability, accommodating resource-constrained 

devices, enabling real-time applications, and enhancing 

the efficiency of networks and remote resources. When 

comes to the cost performance, the proposed AOCHO 

method utilizes the lowest cost of 0.387, which shows 

that efficient offloading decisions allocate 

computational tasks to the most cost-effective resources. 

Thus, the proposed AOCHO method effectively reduces 

the EC and attains favorable average delay and resource 

utilization for all computation tasks under various 

scenarios. This demonstrates the considerable stability 

and superiority of the AOCHO method when compared 

with other existing approaches in the computation 
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offloading system. 

 

5. Conclusion 

In this research, the AOCHO algorithm has been 

proposed to address multi-objective optimization by 

simultaneously focusing on critical objectives such as 

EC, delay reduction and cost optimization. These factors 

are of utmost importance in assessing the QoE for 

mobile users. initially, this research formulates the 

offloading problem related to DAGs to describe the 

intricate connection among offloading and resource 

allocation strategies in heterogeneous environments, 

considering constraints on delay and the need for EC 

minimization. Then, the proposed AOCHO method 

leverages a balance factor with adaptive values to 

enhance the global search capabilities of partial 

populations, leading to improved results. In comparative 

analyses with other baseline schemes and the simulation 

outcomes demonstrate the effectiveness of the AOCHO 

algorithm in significantly reducing task delays, 

optimizing resource utilization and minimizing the EC 

of MDs. In future, this research will extend to explore 

more complex MEC systems, wherein offloaded tasks 

can be segmented into different partitions. Additionally, 

need to leverage this algorithm to enhance decision-

making processes, optimize offloading strategies and 

adapt to dynamic network conditions to further 

enhancing system performance. 
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