
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1747
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Optimizing Multi-Objective Computation

Offloading In Heterogenous Environments Using

Adaptive Offloading Cat Hunt Optimization

Algorithm

M.Jyothirmai1*, Dr. Kesavan Gopal2, Dr.M.Sailaja3

1*Research Scholar, JNTUK Kakinada

2Professor LPU Punjab
3Professor JNTUK Kakinada

Abstract

The advent of smart mobile devices has ushered in a new era of computing, but their performance is inherently constrained

by factors like processing power and battery capacity. To optimize task execution, it is critical to strike a balance between

tasks executed on the devices and those offloaded for remote processing, as proper offloading greatly enhances the quality

of service. Prevailing techniques often emphasize on single objectives and make computationally complex, lacking a

universal approach that balances targets and complexity effectively. To tackle these issues, this research proposes an

Adaptive Offloading Cat Hunt Optimization (AOCHO) algorithm, which is designed to optimize computation offloading

in mobile edge computing, with a primary focus on minimizing time, energy consumption and resource utilization.

Primarily, this research starts by formulating the problem using Directed Acyclic Graphs (DAGs) in heterogeneous

environments, aiming to reduce energy consumption for mobile users. Subsequently, the AOCHO-based offloading

algorithm tackles multi-objective problems. The experiments conducted in the MATLAB environment, yield superior

results. The simulation demonstrates a substantial reduction in delay by 0.0172 sec, a decrease in energy consumption by

0.251 (10-3 J), and a cost reduction of 0.387. These results clearly reveal that the proposed algorithm surpasses other

benchmark algorithms in various situations. This underscores the algorithm's effectiveness in enhancing offloading

efficiency for mobile devices in the realm of mobile edge computing.

Keywords: Offloading mechanism, Multi-objective, Edge computing, Direct acrylic graph, Heterogenous environment

1.Introduction

The expansion of wireless network and the Internet of

Things (IoT) has piloted in a new era for smart Mobile

Devices (MDs), making them a prominent platform for

various purposes, such as face recognition, video

surveillance and natural linguistic processing [1]. These

applications demand significant computational power,

creating a dilemma as MDs are often resource-

constrained. This incongruity between the capabilities of

MDs and the demands of computation-intensive

applications poses a significant hurdle in ensuring a

satisfactory Quality of Experience (QoE) [2][3].

Computation offloading plays a pivotal role in

addressing this challenge, initially gaining traction in

cloud computing and subsequently finding applications

in edge computing [4]. It enables MDs to offload

computational tasks to remote servers for execution.

However, due to network limitations, not all tasks need

to be offloaded [5]. This necessitates rapid decisions

regarding which tasks are executed on servers and which

ones are handled locally. Only when this decision is

made wisely on the Quality of Service (QoS) is

maintained or improved, ultimately enhancing the

overall QoE [6][7]. While Mobile Edge Computing

(MEC) has the probable to enhance MD application

performance, the concurrent transmissions of multiple

MDs are to compromise channel quality, leading to

degraded transmission performance and increased

response latency [8]. Employing multi-channel

communication may mitigate this issue by allocating

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1748
IJRITCC | November 2023, Available @ http://www.ijritcc.org

different channels to MDs, yet it is important to note that

band resources still proves insufficient to adapt all MDs

effectively [9].

Cloud computing systems often transfer computation

tasks, either partially or entirely, to cloud servers to

improve the computational load on MDs. However, a

significant challenge with this cloud-based offloading

method is the often-unacceptable transmission delay,

mainly due to the substantial detachment between clients

and cloud servers [10][11]. In contrast, the concept of

MEC resolves this concern by deploying servers or

micro-servers in the immediate vicinity of the MDs [12].

This setup dramatically reduces transmission delays,

making MEC an attractive computing model for several

mobile applications. The challenges associated with

mobile computing have accelerated the expansion of

MEC, particularly within the framework of 5G

architecture. Unlike traditional cloud computing, MEC

covers cloud services from central cloud data centers to

the networks. It permits User Equipment (UEs) to

directly offload tasks to adjacent MEC servers, utilizing

Base Stations (BS) for this purpose [13][14]. This

approach not only accommodates the increasing demand

for computational skills but also enhances the QoS of

mobile applications by significantly reducing Energy

Consumption (EC) and latency conditions [15].

The proposed AOCHO algorithm is to optimize the task

execution in a heterogeneous environment by jointly

considering task latency and EC. The algorithm aims to

achieve this objective by effectively scheduling the

execution of subtasks, taking into account their

dependencies and execution constraints. By optimizing

the scheduling sequence and decision of subtasks, the

algorithm improves the parallelism of task execution and

reduces the overall delay and EC and resource

utilization. The ultimate goal is to enhance the

effectiveness and competence of computation offloading

in a heterogeneous environment, leading to improved

user experience and resource utilization. The key

contributions of this research are described as follows,

✓ The proposed AOCHO algorithm provides an

advanced framework for optimizing mobile

computation offloading. By combining the strengths

of the Cat Hunting Optimization (CHO) with

adaptive optimization techniques, this research

offers a robust and efficient solution for addressing

key objectives such as EC, delay reduction and cost

optimization simultaneously.

✓ This research explores the difficulty of task

offloading involving subtask dependencies and

formalizes task dependency as DAGs in

heterogenous environment. This take into account

the diverse characteristics of MEC and the limited

resources of UE and MEC servers.

✓ The AOCHO algorithm is designed to support real-

time decision-making, a crucial capability for

applications that demand low latency and immediate

responses. This holistic approach ensures a balanced

and well-rounded offloading strategy that aligns with

the diverse requirements of mobile applications. It

contributes to the overall efficiency, cost-

effectiveness and sustainability of mobile

computation offloading systems.

The research work is organized as follows; Section 2

explains some recent literatures based on computation

offloading. Section 3 explains the system model and

proposed algorithm. Section 4 covers the outcomes and

discussions of the proposed algorithm. Finally, Section

5 ended up with conclusion and future scope.

2.Related works

In recent years, there are numerous researches undergoes

to efficiently optimize the task offloading challenges in

MEC. Among those few of them is listed as follows,

Linbo Liao et al. [16] presented a Double

Reinforcement Learning Computation Offloading

(DRLCO) model that aimed to diminish EC in the MEC

platform. The scheduling-based algorithm

was performed to resolve the issue of delay.

Additionally, an adaptive prioritized experience replay

algorithm was employed to enhance the performance of

the system. The experimental results showed a reduction

in both delay and EC when related to previous methods.

Huan Zhou et al. [17] developed a technique

constructed on Double Deep Q Networks (DDQN) to

define the dual policy for resource allocation and

offloading mechanism. This approach effectively

approximated the Q-learning value function. Simulation

results indicated that DDQN method significantly

improved the performance in various scenarios while

compared with other baseline methods. MOHAMMED

S. ZALAT et al. [18] suggested an approach constructed

on Niching Genetic Algorithm with a Markov Decision

Process (NGA-MDP) to enhance the multisite

offloading system. MDP was employed to ascertain the

most ideal location for executing individual elements.

NGA was utilized to control the optimum shift

probabilities for mechanisms functioning across

multiple sites. The experimental consequences indicated

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1749
IJRITCC | November 2023, Available @ http://www.ijritcc.org

that the NGA-MDP method consumed minimal energy,

executes quickly compared with other methods. Si-feng

Zhu et al. [19] presented a Multi-Objective Immune

cloning Algorithm (MOIA) that efficiently addressed

three optimization objectives. These objectives

encompassed computing tasks, EC and server load

balance. Furthermore, this approach conducted an

extensive set of virtual experiments to validate the

efficiency of the MOIA system. Xiangjun Zhang et al.

[20] suggested a Deep Deterministic Policy Gradient

(DDPG) method to deals with crucial unloading

problems. This process aimed to enhance the point

modification and amplitude by utilizing Reconfigurable

Intelligent Surface (RIS. In the end, DDPG algorithm

exhibited substantial performance improvements than

non-RIS learning algorithms and other traditional

algorithms. Mengxing Huang et al. [21] developed a

Multi-Objective Whale Optimization Algorithm

(MOWOA) to address the ideal computation offloading

mechanism in MEC. The algorithm aimed to

simultaneously reduce time and EC while enhancing

QoS. Furthermore, an enhanced version, MOWOA2,

utilizing the gravity reference point technique to attain a

more diverse solution set. Experimental results

demonstrated notable improvements in the quality of the

final solutions. Sadoon Azizi et al. [22] presented a

Deadline-aware and Energy-efficient Computation

Offloading (DECO) method for arranging and handling

of tasks created by IoT systems. This method took into

interpretation task priorities and the edge servers during

the task-node plotting progression. The outcomes

validated the effectiveness of the suggested algorithm,

which outperformed than other methods. Zheng-yi Chai

et al. [23] recommended an efficient multi-objective

evolutionary algorithm that concentrated on jointly

optimizing delay, EC and cost objectives. It utilizing the

NSGAIII-TOMEC algorithm in various situations

relating numerous MEC servers, MDs and tasks.

Simulation results demonstrated a substantial

optimization in the offloading revenue of MDs when

compared to other techniques. Xiao Chu et al. [24]

developed a dynamic fine-tuning model using a Deep Q

Network (DQN) to adjust the offloading proportions for

each user, aiming to achieve a cost-effective MEC

system. The task offloading model was represented as an

MDP and computation offloading was implemented

accordingly. Simulation results indicated a reduction in

typical delay and average EC compared to alternative

techniques. Si feng Zhu et al. [25] developed a Multi-

Objective Immune Algorithm (NMIA) by building upon

an enhanced evolutionary algorithm based on the

principles of immune algorithms. NMIA was designed

to efficiently generate a set of solutions that strike a

balance among response time and EC. Experimental

results demonstrated the capability of the NMIA

approach to meet response time necessities and attain a

more energy-efficient strategy in comparison to existing

offloading schemes. The limitations of prevailing

methods are presented in Table 1.

Table 1 Summary of prevailing methods limitations

Authors Methods Limitations

Linbo Liao et al. [16] DRLCO ✓ high task generation rates

✓ Increased execution delay

Huan Zhou et al. [17] DDQN ✓ limited resources of the MEC server

✓ Limited scalability

MOHAMMED S. ZALAT

et al. [18]

NGA-MDP ✓ Lack of differentiation in network structure

handling

✓ Lack of robustness and versatility

Si-feng Zhu et al. [19] MOIA ✓ Lack of adaptability for real-time scenarios

✓ The objectives of this approach were not fulfilling

the relevant aspects of MEC

Xiangjun Zhang et al. [20] DDPG ✓ Increased transmission delay due to reduced

available bandwidth

✓ Inadequate consideration of server computing

resources.

Mengxing Huang et al. [21] MOWOA ✓ Computation complexity was high

✓ Lack of convergence and diversity

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1750
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Sadoon Azizi et al. [22] DECO ✓ Lack of energy efficiency

✓ Limited mobility support

Zheng-yi Chai et al. [23] NSGAIII-

TOMEC

✓ inherent latency in sending tasks to remote servers

for processing.

✓ This approach was not suitable for real time

scenarios.

Xiao Chu et al. [24] DQN ✓ overall offloading is not effective due to high time

delay

✓ Lack of fault tolerance

Si feng Zhu et al. [25] NMIA ✓ Lack of security and privacy concern

✓ High execution time

3. System model

In this research, the complexities of computation

offloading within a confined edge network, such as those

found in enterprise, campus, or home environments have

been considered [26]. The designed Edge MEC system

that centres around a single MEC server, offering

computational support to MDs. As shown in Fig 1, The

whole network involves of single cloud server with N

edge servers, which is signified as  N....2,1 . All edge

server covers k stations. Time is allocated with period

 and the set of time slot index is defined by

},.....1,0{ DD = .

BS

BS

BS

MEC Server

MEC Server

MEC Server

UEs

UEs

UEs

Channel 1

Channel 2

Channel..

Channel n

Cloud server

Fig 1 Overall System model

There are three kinds of devices are presents in the

heterogenous environment, which is described as

follows,

i. Cloud Server: Cloud servers possess significant

computational power, making them well-suited for

handling intricate computing tasks. This research

primarily centres around task offloading within the

context of end-edge association. Therefore, the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1751
IJRITCC | November 2023, Available @ http://www.ijritcc.org

principal role of the cloud server is to leverage its

loading and computational capabilities for

aggregating and updating the decision model of the

edge server.

ii. MEC server: The MEC server takes on the

responsibilities of making offloading decisions,

executing tasks and optimizing the decision model.

Both of these functions rely on the deployment of a

task scheduling element on the edge server for their

execution.

iii. Terminal: The terminal has the role of

communicating with the user, especially in specific

scenarios. It generates tasks randomly and these

tasks sometimes surpass the terminal's own

computing capabilities. To minimize task latency

and EC.

3.1 Directed acyclic graph application model

The application created by vH is combined of some

tasks with dependence. The primary model utilizes a

DAG for achieving fine-grained task offloading

scheduling. This involves an analysis of the likelihood

of parallel task processing, which enhances execution

efficiency and aligns with a more practical approach.

[27]. Fig 2 illustrates the application model formed by

vH .There are ECuu 10 , and there is direct

connection from
0u to

1u is established.

 U0
U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

Fig 2 DAG model created by UE

The application model is represented as a DAG graph, where
gvH creates application

gZ .so, similarly
gvH denoted as

ggg HUZ ,= , where
gU represents the generated tasks group and

gH represents the dependence connection among tasks.

The task created by VH as u , where gUu  .Assume, },,,{ rrrrr dwu = , where rw represents the total workload of

ru , rd represents the executing task data size, r represents the relation of output to input data dimensions created by

entity
gvH . r represents the highest delay a task tolerates amount. The binary variable]1,0[,, hgrQ designates,

when the task was offloaded to the MEC server. Where, hgrQ ,, indicates where the task is performed locally. Meanwhile

assuming the single task is only be performed on individual place, consider 1

0

,, =
=

P

h

hgrQ . The main key notations

expanded in the system model is provided in Table 2.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1752
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Table 2 List of key notations

Notation Description

 Time is slotted with duration

},.....1,0{ DD = Time slot index set

vH User equipment

gvH
Generates application of

gZ

gU
Generated tasks group

gH
Dependence relationship among tasks

u Task created by VH

u Set of generated tasks

rw Total workload of
ru

rd Information amount of the task

r Proportion of output to input information sizes of tasks created by entity
gvH

r The determined acceptable task latency

hgrQ ,,

Local executed task

Bs Base-station

Zi Mobile device user i

Txi i user's transmission rate

 Channel bandwidth

iq Transmission power

il Channel gain between BS and user
2 Background noise

N Edge servers

 N....2,1 Group of edge servers

k Each edge server contains k terminals.

lZ Decision vector
g Priority of the task

su Amount of the task data in bits

d The required Central processing unit (CPU) runs to execute one bit of a task.

off
pD

Offloading delay

off
pEC

Offloading EC

dt Distance among the MEC server and MD

0t Antenna far-field test distance

g
dxT

Transmission delay through offloading

ds cost of uplink transmission

id
pS ,

computation delay per one task

d
pEC

EC of offloading computing system

d
pM

size of the u executing task

d
pR

uplink transmission rate of UE

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1753
IJRITCC | November 2023, Available @ http://www.ijritcc.org

g
trsirT ,,

required time transmitting from UE to the MEC server

g
exeirT ,,

required executing time from UE to the MEC server

iu task delay of user i

3.1.1 Communication Model

Primarily, the MEC server incorporating wireless contact in the communication model, is introduced. The BS of wireless

access Bs survives the communications of MD users. The connection of wireless networks that Bs are signified as

}...3,2,1{ NN = .Furthermore,).....2,1(znzzZ l = is a decision vector, where)....2,1(xiZi = signifies the MD user i

offloads %100Zi of its task to be accomplished on edge servers and the remaining of the task which executed locally,

that is %100)1(−Zi .In the system, the transmission rate Txi of user i is defined by using Eqn (1).





















+−

+=


=

m

n

nnii

ii

lqlq

lq
Txi

1

2

2 1log



 (1)

where,  represents the channel frequency, iq represents the transmission capacity of user i,
il is the channel gain among

base-station and user i , 2 signifies the background noise. 
=

+−

m

n

nnii lqlq

1

 signifies the outcomes from other MD users.

The communication model described in Eqn (1) reveals that when a maximum quantity of MD users opts to offload their

computations through the same channel simultaneously, it results in significant interference and subsequently lowers data

rates, which has a detrimental impact on the performance of MEC.

3.1.2 Computation Model

The lacking loss of the computation task is symbolized as a tuple),,(dugh , where g denotes the priority of the task,

su signifies the task information size in bits, d represents the essential CPU series to process a task per one bit. The

offloading rate of the task is represented by }1,0{ , where 0= indicates the local execution approach and 1=

indicates the offloading approach.

3.1.3 Local Computing

MDs dynamically regulate their CPU frequency according to the task requirements, impacting both task delay and EC.

Where the mobile device CPU rate is represented by
dg1 and the local computation latency of the task i is denoted as

),,(iiii dugh , which is derived through Eqn(2),

d

i
id

p
g

H
S

1

, = (2)

where,
id

pS ,
signifies the computation delay per one task, iH represents the essential CPU cycles to execute in one task

and
dg1 signified by max1 gg d  , Dd , the EC of task performing at the individual MD is represented by Eqn (3),

id
p

did
p SgEC ,2

1
,)(= (3)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1754
IJRITCC | November 2023, Available @ http://www.ijritcc.org

where,
id

pEC ,
represents the EC calculation per one task,  represents the switched capacitance, which determine on the

chip construction.

3.1.4 Edge Computing

The primary distinction between edge and local computing lies in the extra costs associated with offloading computations

from a MD. These additional costs encompass the offloading delay and the EC required for transmitting information to

the MEC server. The delay and EC for the offloading are determined as
off
pD and

off
pEC .After MD p completes the

transmission, the MEC server accomplishes the computation task u effectively. Accordingly, the delay for executing

task u is
g
pD .Therefore, the entire executing duration of the task u particularly encompasses dual phases: the primary

phase is the duration of communicating the task nTxi from UE to the MEC server and the next phase is the computing

performance duration on the MEC server. The delay for uploading data of the task u is accompanied with uplink

transmission rate and input data size of UE i straight achieved by Eqn(4).

d
p

d
pg

p
R

M
D = (4)

where,
d
pM represents the size of the u executing task,

d
pR represents the uplink transmission rate of UE. Then, the

equivalent EC for transmitting the task
nTxi to the MEC server is measured.

3.1.5 Server Computation Model

Once, gvH selects for offloading, the transmitting delay of task
i
pD from gvH to gMEC is achieved by Eqn(5),

kgi

kg
trsir

R

t
T

,,
,, = (5)

The computational duration of task
gU performed at

gMEC is determined through Eqn (6).

g

kg
exeir

E
T


=,, (6)

where,
g

trsirT ,, represents the required time transmitting from UE to the MEC server,
g

exeirT ,, represents the required

executing time from UE to the MEC server, kt is the data size of gU , kgiR ,, is the transmission rate from gvH to

gMEC and gE is the computing power of gMEC .

3.1.6 Task offloading & execution model

During transmission, it aims to strike a balance between offloading as many tasks as possible to edge servers and

preserving local execution for tasks that require it. According to the Shannon formula, the transmission frequency at time

duration d is expressed through Eqn (7),

)1(log2
n

dd
Txd

P

gA
BWTr += (7)

where, BW represents the bandwidth, nP represents the noise at the receiver,
d
TxA represents the transmitting capacity

of the MD, which is inhibited by maxh , Subsequently the channel gain
dg among the MD and the MEC server at the

duration d is defined through Eqn(8).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1755
IJRITCC | November 2023, Available @ http://www.ijritcc.org











=

d

d

t

t
Gg 0

0 (8)

where,
dt is the space between the MD and the MEC server, 0t is the antenna distance test distance of the BS to which

the MEC server is associated, 0G represents the channel gain variable,  represents the path-loss variable. The

transmission latency of the task u is associated to the data dimension and uplink rate of respective time slot. Thus, the

transmission delay is achieved by Eqn (9)

d

i
g

dx
s

u
T = (9)

where,
g

dxT represents the transmission delay through offloading,
iu represents the task delay of the user i ,

ds

represents the cost of uplink transmission. The EC is achieved by Eqn (10).

i
Tx

d
Tx

i
Tx THEC = (10)

where, i
TxEC represents the transmission EC of task i ,

d
TxH represents the transmit power of MD, i

TxT represents the

transmission delay of task i . During the execution point, the task is carried out on the MEC server. Where the CPU rate

of the MEC server Freq remains constant. Hence the execution delay is achieved by Eqn (11).

Freq

Z
T

i
i

r = (11)

where, i
rT represents the delay of the task execution phase, iZ represents the execution delay of the transmission queue,

Freq represents the CPU frequency of the MEC server.

3.1.7 Energy Consumption Model

For individual time slot d , UE is assumed to formulate any assessment to perform the task i , so the EC of the task

execution period is defined through Eqn (12).

d
p

d
pid

p
R

Mq
EC = (12)

where, iq represents the transmission power,
d
pEC represents EC of offload computing system, When a larger amount of

computation resources is assigned to a particular UE, the task performance time decreases, but this results in an increased

EC. Accordingly, a total delay and EC for UE i to offload the task u are simply expressed by Eqns (13) and (14).

MEC

d

R

M
DDD

d
p

d
p

d
pd

exep
d

Txp
off
p


+=+= ,, (13)

MEC

dh

R

Mq
MECECECECEC

d
p

u
i

d
p

d
pid

p
d

exep
d

Txp
off
p


+=++= ,, (14)

 where,
off
pD and

off
pEC represents offloading delay and EC respectively,

d
TxpD , and

d
TxpEC , represents transmitting time

and EC of uploading task respectively,
d

exepD , and
d

exepEC , represents execution time of delay and EC of the particular

task,
d
p represents the percentage of computation resources allocated to accomplish the task,

u
ih represents the UE

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1756
IJRITCC | November 2023, Available @ http://www.ijritcc.org

standby power state. Thus, the downlink transmission of an offloading task in the model size is typically much less than

the input data.

3.2 Problem formulation

In this research, proposing AOAHE algorithm for

computation offloading which aims to optimize mobile

devices' resource utilization and energy efficiency. The

challenge involves addressing the issue of offloading

and resource utilization in the proposed MEC

mechanism. The primary aim is to reduce the overall EC

of the complete MEC system while adhering to definite

task delay restraints. To achieve this, the relevant

optimization problem is formulated by Eqns (15) and

(16).

d
p

off
p

d

d
p DECr 



++=
−

=

1

0

 (15)

d
p

off
p

d

d
p

dgdhdy
DEC 






++

−

=
→

1

0
)(),(),(

1
limmin .

]}1,0{[:1 QiyECG d
i

d
p 

][:2 max, QighDG d
i

d
i

off
p 

]10[:3 QigG d
i

d
i

d
p   (16)

where,
d
p

off
p

d

d
p DEC 






++

−

=
→

1

0

1
lim is the time average of the complete MEC model. i represents the decision variable, Q

represents the total task set, 1G signifies the EC of the edge execution model, 2G signifies the execution delay of the task,

and 3G signifies the allocation of computation resources allocated to UE. To solve the problem stated in Eqn (16), it's

essential to determine the finest solutions for the offloading decision vector }{)(Qiydy d
i = , computation resource

allocation vector }{ Qig d
i

d
i =  and specified delay }{ max, Qgh d

i
d
i = in each time slot. These factors work together

cohesively to reduce the overall computation, and EC within the system while adhering to the specified delay restrictions.

Particularly, the offloading assessment variables
d
iy are binary variables, whereas the resource allocation variable

d
i and

d
ig max, are vigorously varying. Consequently, the scheme necessitates a significant quantity of network state report to

construct the comprehensive decisions concerning offloading and resource allocation built on the current network position.

Since some existing methods is not able to adjust to the dynamic properties and is not suitable for intelligent decisions,

thus proposing AOAHE algorithm to address the considered problem in this research.

3.3 Computation offloading and resource utilization

optimization problem based on adaptive offloading

cat hunt Optimization Algorithm

This research proposes an AOCHO algorithm for

heterogeneous environments to reduce time, EC, and

resource utilization problems and make a reasonable

offloading decision [28]. Each individual or problem

solution goes through two primary phases: the search or

attack phase, and the determination of their current state.

During the rest and alert phase, these individuals explore

their surroundings to decide on their next course of

action. They contemplate various situations, attempting

to move toward the most optimal location. In this

behavioral model, the parameters define each

individual's memory size, dimension range, and vector

dimension during the search process. The flow of the

AOCHO algorithm is given below,

• Evaluating fitness function

Using the fitness values of the copied vectors, calculate

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1757
IJRITCC | November 2023, Available @ http://www.ijritcc.org

the probability for each copy vector, as shown in Eqn

(16). This calculation aims to reduce delay, EC, and

resource utilization. Subsequently, select the best copy

vector based on these probabilities and replace it with

the candidate cat vector.









−

−

=

=
otherwise

TPTP

TPTP

TPTPif
r

fitness
i

minmax

min

minmax
1

 (16)

where, r represents the delay, EC, and resource utilization function derived from Eqn(15), iTP signifies the rate of

each solution vector,
maxTP and

minTP represents the maximum and minimum range of the copy vectors, correspondingly.

When the minimum and maximum fitness values are identical, it implies that all the copy vectors have the same fitness

values, resulting in equal probabilities for all copy vectors.

• Tracking towards prey

In this research, each problem solution updates its speed based on the state of the problem area, as described by Eqn (17),

))(()()1(dzzPrdudu dbestjd −+=+ (17)

where, bestz represents the ideal spot where the current solution in the problem range,)(dzd represents the present

location of the solution vector.)1(+dud and)(dud represents the new and current velocity of a problem solution to

reach the optimal solution respectively, r and P represents the random and learning coefficients of the problem

respectively.

• Mutual learning

 In the proposed AOCHO algorithm for each problem solution are expected to learn from each other. For example, if a

solution dZ happens to encounter a solution jZ , and jZ is deemed to be more deserving than dZ , then dZ adjusts its

position in the direction of a solution jZ . This modeling is mathematically represented through Eqn (18).

)(*)
1

2
sin(

max
djd

new
d ZZr

iteration
ZZ −+=


 (18)

where,)
1

2
sin(

maxiteration



 is a component that amplifies the influence of the factor)(dj ZZ − as the algorithm iterates

more. As the algorithm progresses through its repetitions, there is a stronger inclination for a solution dZ to transition

towards solution jZ , signifying a shift in the search behaviour from global to local.

• Utilizing balance factor with adaptive values

 Consuming adaptive values of adaptiver −1 and adaptiver −2 rather than fixed values to attain higher performance.

The fixed values of 82.0,18.0 21 == rr ,while in the AOCHO adjusting the values of both adaptiver −1 and

adaptiver −2 by decreasing adaptiver −1 and increasing adaptiver −2 to easily achieves the optimal solution.

Initially, with a high adaptiver −1 and low adaptiver −2 , the cats have the freedom to move around the search space

without being attracted to the best solution found by the population. Equally, by consuming a smaller value of adaptiver −1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1758
IJRITCC | November 2023, Available @ http://www.ijritcc.org

and a larger value of adaptiver −2 later on, the cats are directed to the global ideal solution. This move in the values of

adaptiver −1 and adaptiver −2 helps to raid a balance between exploration and exploitation, leading to improved

outcomes. This variation in the values of adaptiver −1 and adaptiver −2 is precisely signified by Eqn (18).








=

+
−

−

18.0

18.0

1
2

1

pfrD

pifrD

iteration
p

adaptiveiteration

adaptiveiteration
 (18)

where, p represents the updated position of exploration

and exploitation, iterationD represents the distance

between exploration to exploitation. The maximum

iteration taken to minimize the problem is to 1000. These

modifications significantly improved both the optimal

value and the convergence speed. AOCHO is equipped

to handle multiple objectives simultaneously. It

addresses the interconnected challenges of delay, EC,

and cost, ensuring a balanced approach that considers the

interplay of these factors. This holistic optimization

benefits the overall efficiency and performance of the

offloading process. Also, it leverages adaptive values

and balance factors to enhance its decision-making

process. This adaptability is crucial in dynamic mobile

environments to contribute to extending device battery

life and reducing overall EC. The flowchart of AOCHO

is presented in Fig 3.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1759
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Start

Set initial parameters and evaluate fitness function

A number of random cat solutions have been

 generated in the problem area

Problem solutions are evaluated with the fitness function

and the most suitable and unsuitable solutions are

calculated

Calculate the total solutions and the perform tracking

Mode of each cat

Find the probability of moving

Move in the tracking mode

Search between average and optimal

 Fitness(TPmax=TPmin)

)).(
1

2
sin(.

max
jdd

new
d ZZ

iteration
rZZ −+=



Update the velocity vector

Choose the best solution for each iteration and increase

the iteration count

Utilizing balance factor with adaptive values

Step<=Max step
Increase the iteration

count,Step=step+1

The optimal value in the last iteration is selected as the

optimal global solution

Stop

True False

True

False

)).(
1

2
sin(.

max
djd

new
d ZZ

iteration
rZZ −+=



Fig 3 Flowchart of AOCHO algorithm

4. Results and discussions

This section consists of experiment results constructed

on the system model and the proposed AOCHO

algorithm. An adaptive computation offloading system

is simulated under a heterogenous environment and the

experimental results are validated and compared by

using some existing state-of-art techniques.

4.1 Simulation setup

To assess the proposed AOCHO model efficiency is

performed by Matlab with Intel® core™ i5-9300H

system. It consists of a 2.4 GHz CPU and 8GB RAM.

Moreover, the parameter settings of this experiment are

provided in Table 3.

Table 3 Description of network parameters

Simulation parameters Value

Number of tasks 61,223

Computation size of edge servers 10 GHz

Channel bandwidth 180 KHz

Computation size of local devices 0.5-1 GHz

Data size 300~1000 kb

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1760
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Computation size of MEC server 10 GHz

UE’s transmission power 3 W

Distance among MEC server and UE 80~100 m

Density of computation tasks per UE 500~800 cycle/bit

Number of MECs 3-7

Number of MDs 6

4.2 Comparison assessment

To assess the efficiency of the proposed AOCHO

method, additionally six baseline algorithms are

introduced as follows,

• Local Execution Task (LET): The MD perform their

respective tasks locally whenever possible within the

higher acceptable delay.

• Server Execution Task (SET): The MD transmit all

computation tasks to the MEC server using high

transmission power.

• Offloading Scheduling (OS): The offloading

mechanisms are optimized to diminish the EC of the

whole MEC system, without taking resource

allocation optimization into account. The MEC

server's resources are evenly allocated among each

offloaded UE.

• Random Task (RT): The MDs randomly distribute

energy for transmitting information to the server,

while the MEC server arbitrarily assigns computing

resources to the offloaded tasks.

• DECO [22]: This algorithm primarily focuses on

computation offloading decisions in various

scenarios. It takes into consideration task priorities

and the heterogeneity of ECSs during the task-node

mapping progression.

• NSGAIII-TOMEC [23]: This algorithm is based on

a multi-objective evolutionary approach and

involves multiple MEC servers, MDs, and tasks.

4.3 Performance analysis

Figs 4(a-c) illustrate the performance of delay, EC and

cost for each MD following task offloading. Lower

index values signify superior performance. The

comparison in Figs 4(a-c) reveals that, in contrast to

NSGAIII-TOMEC, the AOCHO algorithm outperforms

in delay, EC and cost for each device.

Tasks

LET

[46]
OS [46]

DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOAHE

(proposed)

(s) (s) (s) (s) (s) (s)

1 0.0325 0.032 0.005 0.012 0.023 0.007 0.004

2 0.043 0.007 0.018 0.014 0.021 0.012 0.005

3 0.06 0.016 0.014 0.015 0.012 0.013 0.006

4 0.082 0.023 0.025 0.016 0.015 0.015 0.008

5 0.112 0.027 0.015 0.017 0.016 0.014 0.007

6 0.152 0.051 0.014 0.018 0.025 0.012 0.006

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1761
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Fig. 4(a)

Tasks

LET

[46]
OS [46]

DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s) (s) (s) (s) (s) (s)

1 1.77 0.13 0.05 1.23 0.05 0.08 0.05

2 1.45 0.19 0.16 0.46 0.05 0.07 0.03

3 0.9 0.38 0.15 0.69 0.08 0.11 0.09

4 0.56 0.58 0.18 0.96 0.06 0.14 0.05

5 0.32 0.74 0.32 1.32 0.09 0.14 0.09

6 0.12 0.92 0.28 1.56 0.1 0.21 0.1

Fig. 4(b)

Devices LET [46] OS [46]
DECO

[46]

SET

[46]
RT [46]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1762
IJRITCC | November 2023, Available @ http://www.ijritcc.org

(s) (s) (s) (s) (s)

NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s)

1 0.98 0.48 0.31 0.35 0.37 0.26 0.22

2 1.07 0.43 0.37 0.75 0.49 0.25 0.19

3 0.92 0.58 0.33 0.48 0.45 0.19 0.14

4 0.98 0.36 0.31 0.39 0.24 0.23 0.18

5 0.96 0.83 0.35 0.59 0.47 0.3 0.22

6 0.91 0.66 0.33 0.61 0.42 0.18 0.13

Fig. 4(c)

Fig 4 Effects on mobile devices in related to (a)Delay (b) Energy consumption (c) Cost

Additionally, the delay and cost for each device show

superiority over other methods. However, while DECO

delivers commendable outcomes in EC and enhances the

overall system benefits compared to various benchmark

algorithms, but it lags significantly behind AOCHO

concerning delay, cost and overall offloading benefits.

The test validates the efficacy of the AOCHO algorithm

and underscore that the offloading policy derived from

the AOCHO algorithm demonstrates a more robust

balance.

Fig 5(a) demonstrates the influence of task generation

rates for the MD, ranging from 5 to 10 per seconds.

When the quantity of tasks multiplies, the execution cost

of these tasks progressively rises. In comparison to SET,

the proposed AOCHO cuts the execution cost in half. Fig

5(b) illustrates the effect of the computation power of the

MEC server on the execution cost. A higher CPU rate of

the server results in a reduced execution cost for the

tasks. Specifically, when the frequency is 10 GHz, the

execution costs of the AOCHO system decrease by 18%,

35%, 38%, 43%, 49% and 87% compared to the other

six baseline models.

Tasks
LET [46] OS [46]

DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s) (s) (s) (s) (s) (s)

5 11.46 1.45 1.28 2 3.74 3.22 2.15

6 12.41 2.2 1.73 3.01 3.57 2.62 1.95

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1763
IJRITCC | November 2023, Available @ http://www.ijritcc.org

7 13.11 2.54 1.96 3.35 2.71 2.16 1.55

8 13.65 3.49 2.42 3.67 2.89 1.96 1.15

9 13.99 3.81 3.05 3.95 2.2 1.33 0.86

10 14.2 4 3.57 4.09 1.39 0.93 0.35

Fig. 5(a)

Tasks
LET [46] OS [46]

DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOCHE

(proposed)

(s) (s) (s) (s) (s) (s)

2 9.77 3.22 2.79 3.57 3.04 2.79 2.52

4 9.73 3.62 3.33 4.03 3.43 2.95 2.64

6 9.77 3.84 3.53 4.26 3.82 3.47 2.91

8 9.83 4.13 3.57 4.77 4.05 3.47 3.16

10 9.75 4.22 3.78 4.92 4.24 3.55 3.45

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1764
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Fig. 5(b)

Mobile

Devices

LET [46] OS [46]
 DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s) (s) (s) (s) (s) (s)

20 11.5 3.66 1.05 4.6 2.97 2.78 0.53

25 11.45 2.99 1.25 4.14 2.66 2.28 0.89

30 11.52 2.66 1.51 3.66 2.2 1.92 0.96

35 11.52 2.06 1.96 3.14 1.6 1.63 1.22

40 11.57 1.8 2.01 2.8 1.41 1.25 1.44

45 11.45 1.7 2.37 2.4 1.22 0.96 1.63

50 11.43 1.22 2.68 1.92 1.92 0.84 1.92

Fig. 5(c)

Fig 5 Task execution performance with (a) Task generation rate (b)Computation capacity of server (c) Different

quantity of MD

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1765
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Fig 5(c) illustrates the effect of varying the quantity of

MDs on the execution cost. An increased number of

MDs leads to higher execution delays for the tasks due

to the increased task load. With 20 MDs, the AOCHO

algorithm reduces the execution cost by 20%, 28%,

32%, 36%, 54%, and 92% compared to the other six

baseline models.

As depicted in Fig 6, the typical delay for all approaches

increases with the rising demand for computational

resources by tasks. Significantly, the OS method

consistently shows higher average delays in comparison

to the other six methods, primarily due to the restricted

resources of the MEC server. In contrast, the AOCHO

method excels, exhibiting the smallest average delay

among the baseline algorithms.

Computation

Resources

required by

Tasks

LET [46]
OS

[46]

DECO

[46]

SET

[46]

RT

[46]
NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s) (s) (s) (s) (s) (s)

1500 1.3 1.64 2.36 3.06 2.26 2.53 2.19

2000 1.69 1.96 2.24 2.85 2.13 2.38 2.08

2500 1.99 2.32 2.04 2.57 1.96 2.18 1.9

3000 2.34 2.68 1.79 2.22 1.74 1.9 1.69

3500 2.56 3.04 1.55 1.77 1.5 1.59 1.45

4000 2.76 3.35 1.23 1.33 1.17 1.27 1.11

Fig 6 Performance of average delay with respect to computation resources

In Fig 7(a), it is noticeable that an increase in the number

of tasks on MDs leads to a rise in the average delay

experienced by the AOCHO algorithm. This

phenomenon primarily occurs due to the constant total

computing resources available in the MEC system. In

Fig. 7(b), while dealing with a low number of tasks, the

AOCHO algorithm primarily offloads most tasks to the

MEC server, reducing delay and keeping MDs energy

consumption low. However, as the quantity of tasks

multiplies, the obtainable resources on the MEC server

become inadequate, certainly resulting in increased

delay. To manage this situation, certain tasks are

allocated for local execution. As illustrated in Fig. 7(c),

the average cost progressively diminishes as the amount

of tasks on MDs increases, leading to changes in cost

efficiency.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1766
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Tasks
LET [46] OS [46]

DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s) (s) (s) (s) (s) (s)

2 0.079 0.018 0.012 0.01 0.02 0.01 0.005

3 0.08 0.019 0.013 0.01 0.024 0.012 0.007

4 0.083 0.02 0.014 0.02 0.025 0.013 0.009

5 0.085 0.034 0.018 0.02 0.03 0.016 0.01

6 0.086 0.042 0.022 0.02 0.04 0.017 0.012

7 0.088 0.058 0.026 0.03 0.05 0.018 0.014

Tasks
LET [46] OS [46]

DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s) (s) (s) (s) (s) (s)

2 0.9 0.48 0.15 1.25 0.1 0.875 0.07

3 0.91 0.6 0.17 0.875 0.12 0.88 0.071

4 0.92 0.7 0.19 0.75 0.14 0.89 0.072

5 0.94 0.8 0.25 0.62 0.16 0.9 0.073

6 0.94 1 0.27 0.5 0.18 0.92 0.073

7 0.96 1.2 0.31 0.4 0.2 0.93 0.074

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1767
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Tasks
LET [46] OS [46]

DECO

[46]

SET

[46]
RT [46]

NSGAIII-

TOMEC

[47] (s)

AOCHO

(proposed)

(s) (s) (s) (s) (s) (s)

1 0.05 0.65 0.5 0.97 0.39 0.48 0.01

2 0.054 0.625 0.45 0.96 0.4 0.39 0.02

3 0.058 0.55 0.41 0.95 0.55 0.37 0.03

4 0.062 0.62 0.4 0.98 0.57 0.36 0.03

5 0.066 0.6 0.4 0.96 0.56 0.35 0.04

6 0.07 0.58 0.39 0.95 0.53 0.34 0.05

Fig.7(c)

Fig 7 Performance of MEC in terms of (a)Time (b) Energy consumption (c) Cost

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1768
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Fig 8(a) represents the evolution of the average

offloading ratio in the AOCHO algorithm. This curve

indicates the offloading ratio within the model stabilizes

over time, reflecting its rapid convergence. Fig 8(b)

illustrates the loss curve of the AOCHO model. The

outcomes illustrate a gradual reduction in the final loss

value, which eventually reaches a stable state.

(b)

Fig 8 Performance of AOCHO in (a) offloading ratio (b) Loss ratio

Figs 9(a-c) display the variations in delay, EC and

computing frequency within the AOCHO algorithm,

offering insights into its convergence under different

exploration rates. The results indicate the exploration

rate of the AOCHO algorithm is set to 0.05, it achieves

the most favourable overall performance and the

changes in computing frequency eventually stabilize.

(a) (b)

(c)

Fig 9 Exploration rates for AOCHO algorithm in terms of (a)Time (b) Energy consumption (c) Frequency

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1769
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Fig10(a) displays the average EC of two algorithms. The

AOCHO algorithm demonstrates a significant reduction

in EC with a minimal relative error compared to the

conventional CHO algorithm. Its performance remains

superior, especially in terms of EC during task

offloading

.

(a)

(b)

Fig 10 Performance of (a)energy consumption (b) resource utilization impact on CHO Vs proposed AOCHO

Fig 10(b) illustrates the resource utilization of two

algorithms. The AOCHO algorithm achieves the highest

resource utilization performance with a minimal relative

error compared to the CHO algorithm.

The convergence level to local optima is a key metric for

evaluating metaheuristic algorithms. In Fig 11, the

average convergence amount, represented as a

percentage, towards local optima is illustrated for the

proposed AOCHO algorithm and various additional

algorithms when applied to complex evaluation

functions. The experiments reveal the AOCHO

algorithm demonstrates a slower convergence rate

towards local optima in comparison to the other

algorithms. Specifically, AOCHO achieves a local

optimal convergence rate of approximately 7.8%,

whereas the other algorithms, such as CHO, Firefly

Algorithm (FA), Crayfish Optimization Algorithm

(COA), Grey Wolf Optimization (GWO), Grasshopper

Optimization Algorithm (GOA), Differential Evolution

(DE), Spotted Hyena Optimization (SHO) and Particle

Swarm Optimization (PSO) have local optimal

convergence rates of 8.3%,15%, 14.6%,13%,10.3%,

14.3%, 12.6% and 15.6% respectively [28].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1770
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Fig 11 Comparison of AOCHO algorithm convergence with other algorithms

Among those, the PSO algorithm exhibits the highest

convergence rate, while the proposed AOCHO

algorithm shows the lowest convergence rate to local

optima. Specifically, the AOCHO algorithm's

convergence to local optima is approximately 1.5%

lower than that of the CHO algorithm, making it one of

the best-performing algorithms in this regard compared

to existing algorithms.

The overall comparison of delay, EC and cost are compared with the existing techniques is presented in Table 4.

Table 4 Overall performance comparison of AOCHO method with existing techniques

Methods Delay (Sec) EC (10-3J) Cost

DRLCO [16] 1.002 0.467 1.469

DDQN [17] 2.325 0.652 -

MOIA [19] 1.897 0.982 -

MOWOA [21] 2.271 0.295 -

MOWOA2[21] 2.265 0.342 -

DECO (Type 1) [22] 0.198 0.752 -

DECO (Type 2) [22] 3.992 0.482 -

NSGAIII-TOMEC [23] 0.0198 0.351 0.451

AOCHO(Proposed) 0.0172 0.251 0.387

From Table 4, the proposed AOCHO method attains

the lowest delay of 0.0172 Sec when compared with

other methods. Thus, minimizing delay is pivotal in

enhancing mobile computation offloading, as it directly

impacts user experience, QoS, resource utilization,

energy efficiency, and the overall efficiency of mobile

networks and applications. Mobile computing systems

prioritize low-latency offloading strategies to meet the

demands of real-time and resource-efficient mobile

applications. When comes to the EC, the proposed

AOCHO method consumes lowest energy of 0.251J,

which shows the proposed model is very efficient for

computation offloading mechanism. Optimizing EC

performance in mobile computation offloading is crucial

for improving device battery life, ensuring

sustainability, accommodating resource-constrained

devices, enabling real-time applications, and enhancing

the efficiency of networks and remote resources. When

comes to the cost performance, the proposed AOCHO

method utilizes the lowest cost of 0.387, which shows

that efficient offloading decisions allocate

computational tasks to the most cost-effective resources.

Thus, the proposed AOCHO method effectively reduces

the EC and attains favorable average delay and resource

utilization for all computation tasks under various

scenarios. This demonstrates the considerable stability

and superiority of the AOCHO method when compared

with other existing approaches in the computation

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1771
IJRITCC | November 2023, Available @ http://www.ijritcc.org

offloading system.

5. Conclusion

In this research, the AOCHO algorithm has been

proposed to address multi-objective optimization by

simultaneously focusing on critical objectives such as

EC, delay reduction and cost optimization. These factors

are of utmost importance in assessing the QoE for

mobile users. initially, this research formulates the

offloading problem related to DAGs to describe the

intricate connection among offloading and resource

allocation strategies in heterogeneous environments,

considering constraints on delay and the need for EC

minimization. Then, the proposed AOCHO method

leverages a balance factor with adaptive values to

enhance the global search capabilities of partial

populations, leading to improved results. In comparative

analyses with other baseline schemes and the simulation

outcomes demonstrate the effectiveness of the AOCHO

algorithm in significantly reducing task delays,

optimizing resource utilization and minimizing the EC

of MDs. In future, this research will extend to explore

more complex MEC systems, wherein offloaded tasks

can be segmented into different partitions. Additionally,

need to leverage this algorithm to enhance decision-

making processes, optimize offloading strategies and

adapt to dynamic network conditions to further

enhancing system performance.

References

1. Ren T, Niu J, Dai B, Liu X, Hu Z, Xu M, Guizani

M. Enabling efficient scheduling in large-scale

UAV-assisted mobile-edge computing via

hierarchical reinforcement learning. IEEE Internet

of Things Journal. 2021 Apr 7;9(10):7095-109.

2. Hilal AM, Alohali MA, Al-Wesabi FN, Nemri N,

Alyamani HJ, Gupta D. Enhancing quality of

experience in mobile edge computing using deep

learning based data offloading and cyberattack

detection technique. Cluster Computing. 2021:1-2.

3. Xiao H, Xu C, Ma Y, Yang S, Zhong L, Muntean

GM. Edge intelligence: A computational task

offloading scheme for dependent IoT application.

IEEE Transactions on Wireless Communications.

2022 Mar 11;21(9):7222-37.

4. Guo M, Huang X, Wang W, Liang B, Yang Y,

Zhang L, Chen L. Hagp: A heuristic algorithm

based on greedy policy for task offloading with

reliability of mds in mec of the industrial internet.

Sensors. 2021 May 18;21(10):3513.

5. Ali A, Iqbal MM, Jamil H, Qayyum F, Jabbar S,

Cheikhrouhou O, Baz M, Jamil F. An efficient

dynamic-decision based task scheduler for task

offloading optimization and energy management in

mobile cloud computing. Sensors. 2021 Jul

1;21(13):4527.

6. Hussain W, Merigo JM, Gao H, Alkalbani AM,

Rabhi FA. Integrated AHP-IOWA, POWA

framework for ideal cloud provider selection and

optimum resource management. IEEE

Transactions on Services Computing. 2021 Nov 4.

7. Wang R, Zang C, He P, Cui Y, Wu D. Auction-

based profit maximization offloading in mobile

edge computing. Digital Communications and

Networks. 2023 Apr 1;9(2):545-56.

8. Zhou H, Wu T, Chen X, He S, Guo D, Wu J.

Reverse auction-based computation offloading and

resource allocation in mobile cloud-edge

computing. IEEE Transactions on Mobile

Computing. 2022 Jul 18.

9. Keshavarznejad M, Rezvani MH, Adabi S. Delay-

aware optimization of energy consumption for task

offloading in fog environments using metaheuristic

algorithms. Cluster Computing. 2021 Sep:1-29.

10. Shen H, Jiang Y, Deng F, Shan Y. Task Unloading

Strategy of Multi UAV for Transmission Line

Inspection Based on Deep Reinforcement

Learning. Electronics. 2022 Jul 12;11(14):2188.

11. Liu T, Guo D, Xu Q, Gao H, Zhu Y, Yang Y. Joint

Task Offloading and Dispatching for MEC With

Rational Mobile Devices and Edge Nodes. IEEE

Transactions on Cloud Computing. 2023 May 26.

12. Gopi R, Suganthi ST, Rajadevi R, Johnpaul P,

Bacanin N, Kannimuthu S. An enhanced green

cloud based queue management (GCQM) system

to optimize energy consumption in mobile edge

computing. Wireless Personal Communications.

2021 Apr;117:3397-419.

13. Liao L, Lai Y, Yang F, Zeng W. Online

computation offloading with double reinforcement

learning algorithm in mobile edge computing.

Journal of Parallel and Distributed Computing.

2023 Jan 1;171:28-39.

14. Zhou H, Jiang K, Liu X, Li X, Leung VC. Deep

reinforcement learning for energy-efficient

computation offloading in mobile-edge computing.

IEEE Internet of Things Journal. 2021 Jun

22;9(2):1517-30.

15. Zalat MS, Darwish SM, Madbouly MM. An

Adaptive Offloading Mechanism for Mobile Cloud

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023

 1772
IJRITCC | November 2023, Available @ http://www.ijritcc.org

Computing: A Niching Genetic Algorithm

Perspective. IEEE Access. 2022 Jul 19;10:76752-

65.

16. Zhu SF, Cai JH, Sun EL. Mobile edge computing

offloading scheme based on improved multi-

objective immune cloning algorithm. Wireless

Networks. 2023 May;29(4):1737-50.

17. Zhang X, Wu W, Liu S, Wang J. An efficient

computation offloading and resource allocation

algorithm in RIS empowered MEC. Computer

Communications. 2023 Jan 1;197:113-23.

18. Huang M, Zhai Q, Chen Y, Feng S, Shu F. Multi-

objective whale optimization algorithm for

computation offloading optimization in mobile

edge computing. Sensors. 2021 Apr 8;21(8):2628.

19. Azizi S, Othman M, Khamfroush H. DECO: A

Deadline-Aware and Energy-Efficient Algorithm

for Task Offloading in Mobile Edge Computing.

IEEE Systems Journal. 2022 Jul 6;17(1):952-63.

20. Chu X, Leng Z. Multiuser computing offload

algorithm based on mobile edge computing in the

internet of things environment. Wireless

Communications and Mobile Computing. 2022

Mar 3;2022:1-9.

21. Zhu SF, Sun EL, Zhang QH, Cai JH. Computing

Offloading Decision Based on Multi-objective

Immune Algorithm in Mobile Edge Computing

Scenario. Wireless Personal Communications.

2023 May;130(2):1025-43.

22. Sun F, Zhang Z, Chang X, Zhu K. Towards

Heterogeneous Environment: Lyapunov-orientated

ImpHetero Reinforcement Learning for Task

Offloading. IEEE Transactions on Network and

Service Management. 2023 Apr 13.

23. Fang J, Shi J, Lu S, Zhang M, Ye Z. An efficient

computation offloading strategy with mobile edge

computing for IoT. Micromachines. 2021 Feb

17;12(2):204.

24. Ghaedi A, Bardsiri AK, Shahbazzadeh MJ. Cat

hunting optimization algorithm: a novel

optimization algorithm. Evolutionary Intelligence.

2023 Apr;16(2):417-38.

http://www.ijritcc.org/

