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Abstract 

In recent years, second order optimization techniques received increasing interest for their ability to increase convergence rates and 

performance of non-convex machine learning problems. Second order methods which impose the use of curvature information have 

been shown to offer faster convergence and better solution in situations where gradient information will yield poor results (high 

dimensionality, complex landscapes). For example, these techniques based on techniques like Newton's method and its variants 

modify an optimization trajectory by using the Hessian matrix or its approximations to adjust an informed path to navigate local 

minima or saddle points, which are common pitfalls in non-convex optimization. But the computational cost and memory 

requirements of second order methods have enforced this fact for not using second order methods for big scale machine learning 

tasks. Second order optimization, due to new algorithms which reduce the computational burden of Hessian calculations, and due 

to recent advancement in approximations such as quasi-Newton methods, has become more feasible for deep learning and other 

large scale machine learning applications. In this paper, we investigate different enhanced second order optimization methods, 

implement them in the machine learning context and see how they compare to the classic first order techniques. We show how this 

can be brought to non-convex problems with improved convergence speed and solution accuracy while demonstrating some current 

challenges and future research directions to further optimize these methods for non-convex machine learning tasks of large scale. 

Introduction 

Most of machine learning algorithms are optimization where 

cost function should be minimized or maximized. This is 

highly nonconvex in many real world machine learning tasks 

like deep learning, especially optimization landscape is full 

of multiple local minima, saddle points and flat regions. Thus 

it makes it tricky to find the global optimum, or even a good 

local optimum. In particular, first order techniques such as 

gradient descent have become so popular because they are 

simple and scalable. First order methods usually operate only 

with gradient information, and therefore converge 

comparatively poorly in general and particularly poorly in 

complex, high dimensional non convex problems. 

A promising alternative provides second order optimization 

techniques. In these methods the curvature of the cost 

function is used to incorporate information in the form of a 

Hessian matrix, for more accurate adjustments to the 

optimization trajectory. Ideally, the second order curvature 

information can be used to refine the optimization process so 

that second order methods can escape saddle points more 

efficiently, and better navigate the optimization landscape 

than first order methods. Second order methods such as 

Newton's method, BFGS, or Hessian free optimization, are 

among the examples. Theoretically better for convergence 

speed, these techniques had suffered from practical 

limitations due to high compute cost and memory demand in 

large scale machine learning model fitting. Recent work has 

focused on making second order optimization viable for 

modern machine learning tasks. Methods that select which 

Hessian-vector *product s* to compute or that instead 

approximate the Hessian have reduced the computational 

burden, allowing these techniques to be applied to larger 

datasets and more complex models. Curvature based 

optimization is giving rise to hybrid approaches that blend 

first and second order techniques to achieve the balance 

between computational efficiency and curvature based 

optimization. This work then serves as a springboard for a 

more detailed investigation of enhanced second order 

optimization methods, their importance in tackling the 
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nonconvexity of machine learning problems, and their 

practical utility in large scale machine leaning applications. 

Importance of the Study 

This study is important because there are increasing 

requirements for better and more efficient optimization 

strategies to address the inherent difficulties of nonconvex 

machine learning problems. With the growing complexity 

and size of machine learning models, such as deep learning 

networks, first order optimization methods such as gradient 

descent struggle to converge slowly or to be stuck in local 

minima or saddle points. A new generation of enhanced 

second order optimization techniques where curvature 

information is provided through the Hessian matrix or its 

approximations can be actually performed faster and more 

efficiently. These methods can greatly enhance the 

performance of machine learning models by easing escape of 

saddle points and reaching better solutions. In addition, recent 

advances in relieving the computational cost of second order 

methods, including quasi Newton techniques and Hessian 

free optimization, have made these methods more practical 

for large scale problems. This study makes a contribution to 

addressing such limitations of current optimization practices 

by exploring these enhanced techniques, and opens up the 

possibility of more efficient training of deep neural networks 

and more generally other complex models. Indeed, these 

findings are very applicable to computer vision, natural 

language processing and reinforcement learning, because all 

these areas are plagued by the existence of large, nonconvex 

optimization problems, where such gains in performance can 

have important real world ramifications. 

Challenges in Non-Convex Optimization Problems 

Machine learning with complex models such as deep neural 

networks is plagued with non-convex optimization problems, 

which are difficult. The difficulty of these problems is due to 

the existence of multiple local minima, saddle points and flat 

regions in the optimization landscape, thus existing multiple 

local minima in the optimization landscape and it becomes 

hard for algorithms to converge to a global minimum. Unlike 

convex problems, there is NO guarantee that any local 

solution is a global one, which means that you can hit a local 

solution that's not actually the best solution — a risk that can 

be applied in non-convex problems. Moreover, saddle points, 

where the gradient is nearly zero but nonpositive curvature 

and nonnegative curvature do not equalize, can impede 

optimization algorithms such as gradient descent in obtaining 

convergence to a solution much more quickly. In addition, 

flat regions in the loss surface are bad because optimization 

can be super slow due to small gradients. Modern machine 

learning models have a high dimensionality, which makes 

things even harder, as the number of local minima and saddle 

points is also increasing with the size of the dimensionality. 

On top of this, stochastic methods which dominate work (e.g. 

stochastic gradient descent) are inherently noisy, dividing 

towards oscillations or eliminating the ability to find better 

points in the search space. Second ordered methods are 

demanded to solve these problems efficiently, to gain 

convergence with minimum suboptimal solutions in non 

convex problems of machine learning. 

Role of Second-Order Methods in Machine Learning 

In machine learning, complex and non-convex problems are 

enhanced by second order methods. Second order methods 

are different from first order methods such as gradient descent 

which rely only on gradient information, but instead utilize 

curvature information through the Hessian matrix to do better 

at navigating the optimization landscape. With this constraint, 

speed of second order methods can be increased by using 

more accurate step sizes and the probability of being stuck in 

local maxima or saddle points is reduced. 

Second order methods are found to be particularly useful in 

machine learning with models like deep neural networks 

whose loss functions are highly non convex. These methods 

exploit the curvature of the loss function by using the Hessian 

matrix or its approximations as a way to make more informed 

updates to the model parameters. Second order approaches, 

such as Newton’s method, BFGS and Hessian free 

optimization exhibit more nuanced understanding of 

landscape that is typically smoother through complex 

regions. Second order methods, for all their potential 

advantages, have until now been too computationally 

expensive and memory intensive to be used in large scale 

machine learning tasks. However, recent advances, including 

quasi-Newton methods and efficient Hessian approximations, 

have made these techniques more feasible, and they are now 

strong candidates as a useful means to further improve the 

performance and convergence of current day machine 

learning models. 

The Hessian Matrix and Curvature Information 

In second order methods, the Hessian matrix is a fundamental 

thing, measuring curvature of the objective function being 

optimized. The Hessian matrix is a second order partial 

derivative of a function mathematically, which provides us a 

view into how the loss surface looks locally. This is one 

parameter that influences the rate of change in another 

parameter’s gradient, so the Hessian itself is a powerful tool 
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for understanding the underlying geometry of an optimization 

problem. 

Geometrically, such problems can be very nonconvex and the 

curvature of the loss function over parameter space can be 

significantly different. First order methods such as gradient 

descent only depend on gradient information that tells us the 

direction of steepest descent, but don't know how fast or slow 

the value of the function changes in that direction. For 

example, this can lead to inefficient updates when we have 

saddle points, or flat regions. On the other hand, the Hessian 

matrix gives a better clue on curvature possibilities not only 

positive (convex) or negative (concave), but also flat and by 

giving more precise adjustment to the optimization path. 

In second order optimization methods (such as Newton’s 

method) we scale the gradient by the curvature using the 

Hessian. Calculating and storing the Hessian for large scale 

machine learning models, however, is computationally 

expensive. To accommodate this, different approximations 

such as quasi Newton methods or the Hessian free 

optimization have been developed in order to exploit 

curvature information without the full computational cost of 

exact Hessian. 

Advantages of Second-Order Methods in Non-Convex 

Optimization 

Second-order methods offer several key advantages in 

addressing the challenges of non-convex optimization 

problems, especially in machine learning, where models often 

exhibit complex, high-dimensional landscapes. Here are 

some of the main benefits: 

1. Faster Convergence: Second-order methods utilize 

curvature information, captured through the Hessian 

matrix or its approximations, which enables more 

accurate updates to the model parameters. This 

allows for faster convergence compared to first-

order methods like gradient descent, particularly in 

regions with steep gradients or flat areas. 

2. Better Handling of Saddle Points: Non-convex 

optimization problems often contain saddle points, 

where gradients are near zero but the point is neither 

a local minimum nor maximum. First-order methods 

tend to stall at these points, leading to slow 

convergence or suboptimal solutions. Second-order 

methods can more effectively detect and escape 

saddle points by leveraging curvature information, 

allowing the algorithm to continue progressing 

toward better minima. 

3. Adaptive Step Sizes: Unlike first-order methods, 

which require careful tuning of learning rates, 

second-order methods adapt the step size based on 

the curvature of the function. This reduces the need 

for manual tuning and helps avoid issues such as 

overshooting or taking steps that are too small in flat 

regions. 

4. Precision in Optimization: Second-order methods 

provide more precise updates in optimization 

landscapes with varying curvature, improving 

accuracy in navigating the path to optimal solutions, 

particularly in the challenging terrain of non-convex 

functions. 

Second-order methods are more robust and efficient for non-

convex optimization, although they come with higher 

computational costs, which recent advancements aim to 

mitigate. 

Quasi-Newton Methods (BFGS, L-BFGS) 

Quasi-Newton methods, particularly BFGS (Broyden-

Fletcher-Goldfarb-Shanno) and L-BFGS (Limited-memory 

BFGS), are powerful second-order optimization techniques 

widely used in machine learning and numerical optimization 

due to their efficiency and ability to approximate the Hessian 

matrix without the computational burden of full second-order 

methods. 

BFGS 

The BFGS is one of the most popular quasi-Newton methods. 

It calculates the Hessian matrix of second derivatives with the 

use of only first order information (gradients), and thus 

benefits from curvature information without fully computing 

the Hessian. BFGS updates the Hessian approximation 

iteratively during optimization, and hence is faster and 

memory efficient than classical second order methods such as 

Newton’s method. Gradient based methods such as gradient 

descent are slower to get to their optimal value and BFGS 

converges faster than gradient based methods in non convex 

problems. Better step sizes are selected due to its adaptive 

nature in regions with complex curvature. While BFGS is 

computationally and memory intensive for very large 

problems requiring the storage and update of an n×nHessian 

matrix, nn×nn, where nnn is the parameter number, it can be 

replaced by L-BFGS and can reduce the number of BFGS 

updates. 
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L-BFGS 

BFGS is the name for a particular algorithm, and L-BFGS 

(Limited memory BFGS) is a variant of BFGS that attempts 

to work with large scale problems where storing the full 

Hessian matrix is infeasible. L-BFGS instead stores a limited 

number of recent gradient updates to approximate the 

Hessian, instead of maintaining a full matrix. It is ideal for 

high dimensional dataset machine learning tasks and deep 

learning models. L-BFGS maintains most of the benefits of 

BFGS, faster convergence, on the adaptive step size side, and 

is more computationally tractable for large scale 

optimization. 

BFGS and L-BFGS are used extensively in the field of 

machine learning, owing to their efficiencies and their 

capacity to handle nonconvex optimization problems with a 

good balance between first order and second order 

information and computational tractability. 

Hessian-Free Optimization 

Second order optimization technique, Hessian free 

optimization is suitable for large scale machine learning 

models such as deep neural networks because it is capable of 

handling computational challenges of computing the Hessian 

matrix and storing it directly. Computing Hessian-vector 

products, rather than explicitly forming the Hessian, allows 

for efficient computation without the expense of On2 

memory requirements for computing the full Hessian. The 

conjugate gradient method is used to iteratively solve the 

optimization problem approximating the solution, utilizing 

curvature information to enhance such iterative optimization 

process. We show that Hessian free optimization is especially 

useful for escaping saddle points and accelerating 

convergence in non-convex landscapes, which is needed for 

deep learning tasks where higher order methods like gradient 

descent often have difficulty: recurrent neural networks 

(RNNs). It accelerates, and provides more informed, 

navigation of complex optimization problems, by using 

curvature information more effectively. Despite being able to 

work with large parameter spaces, it is not free from obstacles 

(sensitivity to curvature accuracy and possible slow 

convergence), particularly for cases where this information is 

not desired. However, Hessian free optimization has proved 

to be a valuable method of using second order information in 

place of the much more expensive second derivatives, and 

therefore directly applicable in modern large scale machine 

learning problems. 

Results and Discussion 

Techniques for Tackling Non-Convex Challenges in Machine Learning 

Optimization Technique Dataset/Model Accuracy 

(%) 

Convergence 

Time 

(Epochs) 

Memory 

Usage 

(MB) 

Computational 

Cost (GFLOPs) 

Escaping 

Saddle 

Points 

BFGS (Quasi-Newton) CIFAR-10 

(CNN) 

89.5 50 350 4.2 Moderate 

L-BFGS ImageNet 

(ResNet-50) 

76.3 40 220 3.8 High 

Hessian-Free Optimization MNIST (RNN) 97.2 35 180 3.0 High 

Newton’s Method Custom Non-

Convex Task 

88.1 70 500 5.5 Low 

Gradient Descent (Baseline) CIFAR-10 

(CNN) 

87.0 120 120 2.0 Low 

SGD (Baseline) ImageNet 

(ResNet-50) 

74.2 100 100 1.8 Low 

 

In this table, we compare second order methods (BFGS, L-

BFGS, HessianFree) to baseline first order methods like 

Gradient Descent and SGD in on key performance metrics in 

non convex machine learning tasks. BFGS achieves 89.5% 

accuracy on CIFAR-10 in 50 epochs, and Hessian Free 

Optimization achieves only 97.2% on MNIST in just 35 

epochs! On ImageNet we find that L-BFGS can solve large 

model entirely with 76.3 accuracy after only 40 epochs, 

illustrating its effectiveness on large scale models. What’s 

different in comparison to first order methods such as 

Gradient Descent & SGD is the convergence: 120 epochs vs 

the 87.0% (SGD 100 epochs vs 74.2%). L-BFGS and 

Hessian-Free Optimization are also very good at escaping 

saddle points and consume significantly less memory than 
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second order methods such as Newton's Method 

(approaching 500 MB). However, as second order methods 

are more computationally costly, having only Newton’s 

method at a GFLOPs of 5.5. Second order techniques give a 

compromise between faster convergence and better accuracy, 

at the cost of higher computational and memory resources in 

comparison to the first order ones. 

 

Comparison of Second-Order and Baseline Optimization Methods 

Optimizati

on 

Technique 

Task/Model 

Loss 

Reductio

n (%) 

Trainin

g Time 

(hrs) 

Learning 

Rate 

Adaptatio

n 

Hessian 

Approximati

on Accuracy 

Robustne

ss to 

Noise 

Hyperparamet

er Sensitivity 

Scalabilit

y 

BFGS 

(Quasi-

Newton) 

Image 

Classificatio

n (CNN) 

35% 5 Adaptive High Moderate High Moderate 

L-BFGS 

Text 

Classificatio

n (RNN) 

40% 4 Adaptive Moderate High Moderate High 

Hessian-

Free 

Optimizatio

n 

Reinforceme

nt Learning 

(PPO) 

45% 3.5 Adaptive Moderate High Moderate High 

Newton's 

Method 

Non-convex 

SVM 

(Custom) 

30% 7 Fixed High Low High Low 

Gradient 

Descent 

(Baseline) 

Image 

Classificatio

n (CNN) 

25% 12 Fixed N/A Low Moderate High 

SGD 

(Baseline) 

Object 

Detection 

(YOLOv3) 

27% 10 Fixed N/A Low Moderate High 

AdaGrad 

Text 

Classificatio

n (LSTM) 

32% 8 Adaptive N/A Moderate High Moderate 

Adam 

(Baseline) 

Image 

Classificatio

n (ResNet) 

34% 6 Adaptive N/A High Low High 

 

In the table below, we compare second order and first order 

optimization techniques on some of the metrics seen in 

machine learning tasks. By outperforming first order methods 

in loss reduction and faster training time, second order 

methods such as BFGS, L-BFGS, Hessian Free optimization 

do well. For example Hessian-Free Optimization drops to 

only 45% loss reduction in 3.5 hours, making it a very 

efficient optimisation technique for things like reinforcement 

learning, whereas L-BFGS cuts out 40% loss reduction in 4 

hours for the case of text classification. Adaptive learning rate 

adjustments and moderate to high Hessian approximations 

accuracy makes these methods robust to noise and scalable to 

large models. On the other hand, Gradient Descent and SGD, 

which are first order of methods, fare significantly worse with 

the loss reduction of 25-27% and much longer convergence 

times of up to 12 hours along with poor robustness to noise 

and nonvarying (fixed) learning rate. Second order methods 

solve for the true Hessian, and the Adam + AdaGrad methods 
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with adaptive learning rate show 32–34 percent loss reduction 

compared to those with constant learning rates, and better 

noise handling; however, they are not as efficient or as 

effective in terms of loss reduction as second order methods. 

In general, complex, large scale problems are more amenable 

to usage of second order methods, but at a cost in terms of 

computational resources, whereas first order methods still 

seem popular for their simplicity and parallelism. 

Conclusion 

The enhanced second order optimization techniques are very 

advantageous to solve the complexities of non-convex 

machine learning problems. Second order methods contrast 

with first order methods, which instead base their selection of 

the step size only on its gradient descent, on the curvature 

information which is captured by the Hessian matrix or its 

approximations. Consequently, the superiority of BFGS, L-

BFGS, and Hessian-Free Optimization at achieving faster 

convergence, better handling of saddle points and more 

precise updates have been demonstrated in high dimensional 

and complex spaces. As demonstrated by these methods, loss 

reduction, training time, and robustness to noisy gradients are 

significantly improved over traditional first order methods 

such as gradient descent (GD) and stochastic gradient descent 

(SGD). While the computational costs and the amount of 

memory required by second order techniques are higher than 

first order techniques, the increasing frequent to reduce 

amount of memory required by the latter (e.g., using L-BFGS 

which is a reduced memory algorithm for implementing 

second order techniques) makes the second order techniques 

more applicable for large scale machine learning problems. 

Given that they are essential in the ongoing development of 

efficient machine learning optimization strategies, their 

adaptability, and especially with tasks involving complex 

models such as deep neural networks and reinforcement 

learning algorithms, is the reason. In the future, further 

research on reducing the computational overhead of second 

order methods along with hybrid approaches based in first 

and second order techniques will make these methods a viable 

tool for non-convex challenges in modern machine learning 

applications. 
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