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ABSTRACT:  

This work look at different smart ways to find problems in electronic things, which getting more important as electronic stuff get 

more complex and need to work better. We talk about five main ways: Rule-Based, Model-Based, Case-Based, Fuzzy Logic and 

Neural Networks, and Hybrid Approaches. Each way have good and bad points. Rule-Based use expert knowledge but hard to keep 

up. Model-Based try to copy how things work but often too slow for big systems. Case-Based learn from old problems but need lots 

of examples. Fuzzy Logic and Neural Networks good with unclear stuff but sometimes hard to understand. Hybrid Approaches mix 

these ways to get the best parts of each. We look at how these ways work, where they used, and what problems they have. We also 

talk about what might happen with these ways in the future. Smart ways to find problems help electronic things work better and cost 

less to fix. They used more and more in important areas like flying, health care, and big machines. These ways can look at lots of 

information fast and find problems quick, which really important for keeping things safe and working. The history of using smart 

ways to find problems in electronic things go back many years. It start with simple computer thinking in the 1980s and 1990s. Then 

it get better with new math ideas in the 2000s. Now, with big computer power and lots of data, machine learning getting really good 

at finding problems. As electronic things keep getting more complex, these smart ways to find problems will probably get even 

more important. The big goal is to make electronic things that can find and fix their own problems, so they work better and need 

less fixing by people. 
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1. INTRODUCTION  

 

Fault Diagnosis of Electronic Systems by Intelligent 

Techniques is become very important as the growing 

complexity and reliability demands of modern electronic 

systems. As electronics market become more into critical 

areas like aerospace, healthcare, industrial control etc. the 

need for accurate and efficient fault detecting and diagnosis 

has increased. Traditional methods of fault diagnosis are 

struggle to keep up with the complex of contemporary 

systems, leading to the taking help of intelligent techniques 

to address these challenges. 

The application of intelligent techniques to fault diagnosis 

offers some advantages. These methods can is processing and 

analyzing large amounts of sensor data more efficiently than 

conventional approaches, giving us real-time monitoring and 

rapid fault detection. This is too crucial for preventing 

failures or minimizing their impacting in critical systems. 

Also, intelligent techniques are better equipped to handling 

the uncertainty and incomplete information often presented in 

real-world electronic systems, which are operating in noisy 

and dynamic environments. Cost reduction also significant 

driver for the adoption intelligent fault diagnosis techniques. 

Taking predictive maintenance and more accurate 

troubleshooting, these methods can reduce maintenance costs 

and system downtime. This is particularly doable in industries 

where equipment failures can lead to big financial losses and 

safety risks. [1] 

The history of applying intelligent techniques to fault 

diagnosis in electronic systems look back several decades. 

The field began to ramp up in the late 1980s and early 1990s, 

with expert systems are the first AI techniques [2][3][4] 

applied to this domain. As the field progressed through the 

1990s, researchers have been exploring the use of neural 

networks and fuzzy logic systems for fault diagnosis. These 

techniques have new ways to model complex systems also 

make decisions based on imprecise or uncertain information. 

The 2000s saw the big development and good application of 

more advanced techniques, including support vector 

machines [5], genetic algorithms, hybrid intelligent systems 
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etc [6]. These methods are improved the accuracy and 

efficiency of fault diagnosis, giving for more sophisticated 

analysis of system behavior and fault patterns. With the 

invention of big data and more powerful computing resources 

in the 2010s, machine learning and deep learning techniques 

are very popular in this field. These approaches can ramp up 

vast amounts of historical data to improving fault detection 

and diagnosis accuracy over time. 

The field of fault diagnosis using intelligent techniques 

increase rapidly. Ongoing research focuses on developing 

new intelligent techniques and applying existing ones to 

various domains of electronic systems. As electronic systems 

become even more complex and interconnected, the 

importance of intelligent fault diagnosis is likely to grow, 

driving further innovation in this area. The ultimate goal 

remains to create more reliable, efficient, and self-diagnosing 

electronic systems that can operate with minimal downtime 

and maintenance requirements. [7][8] 

2. DIAGNOSTIC PROCESS 

Fault diagnosis in electronic systems is very important 

because to the increasing complexity and critical type of 

modern electronics. As devices becoming more complex and 

finer and interconnected, identifying and resolving issues 

quick and accurately becomes important. This diagnostic 

process is very essential for maintaining system reliability, 

minimizing downtime, reducing maintenance costs etc. In 

industries like aerospace, healthcare, manufacturing etc., 

where system failures can have severe consequences, 

efficient fault diagnosis can stop accidents, save lives, and 

avoid very much financial losses. Also, as electronic systems 

continuing to include in everyday life, from smartphones to 

smart homes, the ability to quickly diagnose and resolving 

issues becoming increasingly important for user satisfaction 

and product longevity. These steps from a basic framework 

for the diagnostic process in various electronic systems using 

intelligent techniques. 

1. Fault Information Generation: This is the first step in the 

diagnostic process. It involving collecting relevant data 

from the electronic system with observation. This data 

can be come from various sources like sensors, test 

points, system logs etc. The information generating 

might have including voltage levels, current readings, 

temperature measurements, timing signals, or any other 

parameters relating to the system's operation. Advanced 

systems can use a combination of real-time monitoring 

and previous data to generate an all-in one picture of the 

system's behaviour. [9][10] 

2. Fault Hypotheses Generation: Once the fault information 

is collecting, the next step is to generating potential fault 

hypotheses. This step involving analysing the collected 

data to select potential causes of the observed abnormal 

behaviour which is happening. Intelligent techniques 

play a very important role in this scenario like for eg, 

machine learning algorithms might be comparing the 

current system state with familiar fault patterns to 

suggesting possible issues. Expert systems could surely 

use rule-based reasoning to deducing potential faults 

based on the observed points. The goal of this step is to 

creating a list of possible faults that could have explain 

the system's current behaviour. [11][12] 

3. Fault Hypothesis Discrimination: The final step in this 

process is to make difference with between the generated 

fault hypotheses to identifying the most likely cause of 

the problem. This often involves further testing or data 

analyse to check or rule out each hypothesis. Intelligent 

techniques can be particularly important clue in this 

stage. For example, probabilistic models can have used 

to rank the preference of each hypothesis. Neural 

networks also can be used to classify the fault with 

checking on additional input data. This step can also 

involve using additional tests or measurements to take 

more information on the initial data and tell if it is 

insufficient to make a sure diagnosis. [13][14] 

While these three steps form a solid finding for the diagnostic 

process, it's important to note that in practice, the process can 

be more complex and may also contain some more additional 

steps or iterations. For example: 

4. Fault Prediction: Some advanced systems including 

predictive characteristics, using processes like trend 

analysis or machine learning to guess potential faults 

before they happen. 

5. Fault Isolation: Once a fault is diagnosed, there 

should be an additional step to isolate the specific 

component or subsystem responsible for the fault 

from all the other system. 

6. Repair Recommendation: Many modern diagnostic 

systems going beyond just identify the fault to 

suggesting appropriate repair actions or 

maintenance procedures. 

7. Learning and Adaptation: Advanced intelligent 

systems can include a feedback loop where the 

resulting of the checking process are used to 
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improve future diagnoses, learning from previous 

experience. [15] 

3. TRADITIONAL APPROACHES 

Rule-Based Systems 

Approach: Rule-based diagnostic systems have represented 

expert knowledge as a series of "IF symptom(s) THEN 

fault(s)" rules. The system giving these rules to the given 

problem information, and generating new data iteratively 

until a solution is found. This approach very often requires 

hundreds or thousands of rules to do representing knowledge 

for a particular domain, so make it a comprehensive but 

potentially complex method of fault diagnosis. 

Applications: Rule-based systems have applications in 

various electronic engineering fields. They have been using 

for diagnosing telephone networks and switching equipments 

also troubleshooting disk drives, and detected faults in 

various control systems. In the era of personal computing, 

these systems have been employing for PC repair and 

maintenance, as eaborated by the ESPCRM (Expert System 

for PC Repair and Maintenance). Other applications 

including diagnosing electronic forge press faults, analyzing 

complex PC boards, and performing server computer board 

diagnostics by is using processor memory dump analysis. 

Drawbacks: Despite their widespread use, rule-based systems 

facing several challenges. The most important is the 

knowledge acquisition bottlenecking, which referring to the 

difficulty in translating expert knowledge to comprehensive 

rule sets. These systems also struggle with handling smooth 

faults that are not explicitly include in the rulebase. A very 

important drawback is their system dependence, requiring a 

new rulebase for every new system type, which limiting their 

flexibility and scalability. As the system growing more 

complex, maintenance can become very tough, further 

limiting the long-term viability of this approach for evolving 

technologies. [16][17] 

Fault (Decision) Trees 

Approach: Fault trees using symptoms or test results as 

starting points, branching out into a decision tree structure. 

These trees consisting of actions, decisions, and finally the 

repair recommendations, providing a step-by-step guide for 

technicians to have diagnosed and resolved issues. This 

approach offering a visual and logical path through the 

diagnostic process, so making it easier for less experienced 

technicians to following. 

Applications: Fault trees have been widely using in various 

domains of electronic fault diagnosis. They have been very 

usefu usefulnessl in automotive electronic control system 

with diagnostics and color TV diagnosis. To increase their 

utility, hypermedia systems have been developing for 

navigating large diagnostic networks. Researchers have also 

working on automated fault tree generation because there are 

complex systems using circuit descriptions and fault 

simulations. Some advanced applications have added fault 

trees with case-based reasoning systems for more efficient 

tree generation. 

Drawbacks: While fault trees are intuitive and easy to follow, 

they coming with their own set of limitations. For 

sophisticated systems, these trees are really extremely large 

and complex, making them heavy unwieldy to navigate. Like 

rule-based systems, they are system-dependent, meaning 

small engineering changes can initiate important updates to 

the tree structure. Fault trees also doesn't have any idea about 

into the underlying knowledge or reasoning process, so 

provide only a predetermined path without no explaining the 

reason behind each decision. Their limited adaptability to 

new situations or not assuming faults can be problematic in 

rapidly evolving technological environments. As systems 

growing more complex over time, maintaining and updating 

these trees can becoming a significant challenge, potentially 

reducing their effectiveness as a long-term diagnosing 

solution. [18] 

4. MODEL BASED APPROACHES 

Model-based approaches have been becoming similarly 

important in fault detection for electronic systems, offering 

sophisticated methods to diagnose and isolate faults. These 

approaches rely on various types of models in expressing 

system behavior and diagnosing faults, each with its own 

strengths and limitations. Four key model-based approaches 

that have significantly contribution to the field of electronic 

fault diagnosis are: 

1. Fault Models (or Fault Dictionaries) 

Approach: Fault models, also known as fault dictionaries, 

operate on the principle of guessing potential fault types and 

modeling only these specific faults. This approach involving 

a systematic process of inserting selected fault types into each 

parts of the system and then simulating the overall system 

behavior with these fault conditions happening. in through 

this process, a comprehensive fault dictionary is generated - 

essentially a list of fault/symptom pairs that showing which 

component may be defective when a particular symptom is 
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observed in the system. This method allowing for a direct 

mapping between observed symptoms and potential faults, 

making it very much useful for rapid diagnosis in well-

understood systems. 

Applications: The fault model approaching has its primary 

application in the diagnosis of digital circuits. It has been 

particularly effective in detecting and isolating common fault 

types like stuck-at faults (where a signal is stuck at either a '0' 

or '1'), bridging faults (where unintended short circuits 

happen between components), and delay faults (where timing 

issues affect the circuit's operation). In the view of testing 

simple digital combinational circuits, the process typically 

involving applying a series of binary test vectors to the 

circuit. The behavior of the circuit for each test pattern is then 

wrote for each modeled fault type, allowing for a compact 

mapping of fault conditions to observable behaviors. 

Drawbacks: While fault models are very good at diagnosing 

guessed faults in combinational digital circuits, they are faced 

significant drawbacks when deal with unanticipated fault 

conditions. The effectiveness of this approach is mainly 

limited to the faults that have been only modeled, which may 

not cover all possible fault scenarios in complex systems. 

Also, the application of fault models becoming considerably 

more challenging when dealing with sequential circuits. In 

such cases, diagnosis requires a test sequence, not a single 

vector, and if the circuit's state is to lost during testing due to 

a fault, it may have gone impossible to complete the 

diagnostic sequence. This limitation has leading to proposals 

for techniques like circuit encapsulation, in which the circuit 

is split into more manageable parts for testing. Another major 

challenge is with large, complex circuits, where the quantity 

of test vectors are become prohibitively large, leading to 

impractical test times. To solve this, various data 

compression approaches can propose and implement, to 

reduce the volume of test data while maintaining diagnostic 

accuracy. [19][20] 

2. Causal Models 

Approach: Causal models represented a more abstract 

approach to fault diagnosis, using directed graphs to 

modelling the relationships between various system 

components and behaviors. In these models, nodes typically 

represent system variables, which correspond to symptoms 

and faults within the system. The links between these nodes 

representing the relationships between these variables, 

effectively mapping the cause-and-effect relationships within 

the system. Causal models iscan be assignment of numerical 

weights or probabilities to these links, showing the strength 

of each relationship. This probabilistic approach allows for 

the formation and ranking of fault hypotheses using Bayesian 

techniques. This providing a robust framework for dealing 

with uncertainty in the diagnostic process. Bayesian 

networks, a specific use of causal models, have gained 

particular prominence in this field due to their ability to 

handle complex, interdependent relationships. 

Applications: Causal models have applications across various 

parts of electronic system diagnosis, showing their versatility 

and power. A special example is the use of Bayesian networks 

in diagnosing IC testers. In this, the knowledge of domain 

experts regarding the probability of different tester failure 

modes is put into a Bayesian network, allow for sophisticated 

probabilistic reasoning about to happen faults. This approach 

is valuable in complex systems where the relationships 

between components and potential faults are not 

straightforward and may involve multiple interdependencies. 

The flexibility of causal models also making them adaptable 

to different types of electronic systems. 

Drawbacks: The primary limitation of causal models is can 

be called as  the "knowledge acquisition bottleneck." Making 

these models requires deep expert knowledge of the 

application area, which can be challenging to obtain, 

formalize, and encoded into the model. This process is time-

consuming and require very much resources, especially for 

complex systems with many interdependent components. 

But, once created, causal models offering important 

advantages. They can be presented complex structured 

knowledge about concepts more efficiently than rule-based 

systems, making greater computational efficiency in the 

diagnostic process. Also, causal models are build in the well-

established mathematical theory of probability, providing a 

solid theoretical foundation for their diagnostic inferences. 

Although these strengths, the initial hurdle of model 

construction is a significant challenge in the widespread 

adoption of this approach. [21][22][23][24] 

3. Models Based on Structure and Behavior 

Approach: Models based on structure and behavior present 

one of the most compact methods to electronic system 

diagnosis. This method employs a dual representation of the 

system, having both its structural composition and behavioral 

characteristics. The structural representation giving a detailed 

inventory of all components within the system and their 

interconnections, effectively showing the physical or logical 

architecture of the system. With this, the behavioral 

representation describing the correct behavior patterns for 

each component, sometimes using various levels of 
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abstraction including mathematical models, qualitative 

descriptions, functional specifications etc. These 

representations are frequently made using logical formalisms, 

providing a rigorous foundation for reasoning about the 

system's behavior. The diagnostic process in this approach 

involving comparing the operation of the model with 

observations from the real system. When a difference is 

observed between the model's predictions and actual 

observations, it triggers a diagnostic procedure to identify the 

defective component. 

Applications: The application of structure and behavior 

models have a wide range of electronic systems, from simple 

combinational digital circuits to complex sequential circuits. 

important ones are include the Hypothesis Testing system for 

digital circuits, which showed path to many of the 

fundamental techniques in this area. The General Diagnostic 

Engine also used these principles to handle multiple fault 

scenarios, introducing the use of Assumption-based Truth 

Maintenance Systems for more compact diagnosis. In the 

analog domain, systems like DEDALE have applied similar 

principles to diagnose faults in analog circuits, using 

qualitative models based on relative orders of magnitude to 

describing component behavior. These models have also been 

extending to handle more complex scenarios, like time-

variant digital circuits and microprocessor-based systems, 

demonstrating their versatility across different types of 

electronic systems. 

Drawbacks: While models based on structure and behavior 

are offering a theoretically compact approach to fault 

diagnosis, they face several practical challenges. One of the 

main issues is the computational intensity required for 

complex problems, which can make real-time diagnosis 

challenging for large-scale systems. Various strategies have 

been prepared to mitigate this, like focusing on the most 

probable failures first or incorporating fault models to 

improve efficiency. Another major challenge is the 

representation of behavior for highly complex components, 

like modern microprocessors, where creating accurate and 

complete behavioral models is still remain a significant 

research challenge. The development of complete and 

consistent models is difficult, as models are, by nature, 

approximations of real-world systems and may not have all 

possible fault scenarios like circuit bridging faults that aren't 

represented in structural models. also, these models often 

don't have information about specific failure modes, which 

can sometimes do isolation of nonsensical faults. also 

automated CAD generation is possible, the development and 

maintenance of these models can be extremely time-

consuming, particularly for complex systems that do frequent 

updates or modifications. [25][26][27] 

4. Diagnostic Inference Model 

Approach: The Diagnostic Inference Model, previously 

known as the Information Flow Model, present a unique 

approach to fault diagnosis by focusing on the flow of 

diagnostic information. This model consists of two primary 

elements: tests and conclusions. Tests contain any source of 

diagnostic information, including observable symptoms, 

logistics history, results from specific diagnostic procedures 

etc. Conclusions, typically represent faults or units that need 

replacement. The model uses a directed graph to represent the 

dependency relationships and providing a clear visual 

representation how diagnostic information goes through the 

system. with tests and conclusions, the model can include 

other elements like testable inputs, untestable inputs, and a 

special "No-Fault" conclusion. The diagnostic processing in 

this model is optimizing through algorithms based on 

maximum test information gain, ensuring efficient 

sequencing of diagnostic procedures. To handling 

uncertainties and conflicts in diagnostic information, the 

model has various logical and statistical inference techniques, 

including a modified form of Dempster-Shafer evidential 

reasoning. 

Applications: The Diagnostic Inference Model has many 

successful applications across various domains of electronic 

system diagnostics. It has been effectively used in radar 

system maintenance, where the complex components and 

potential fault scenarios is present and take good outcome 

from the model's structured approach to diagnostic 

information flow. Another application has been in the 

diagnosis of power supplies, where the model's ability to 

handle multiple information sources and solve conflicting 

diagnoses address important. In the age of personal 

computing, a similar approach has been deployed for 

troubleshooting complex PC boards down to the component 

level. This implementation, which formed part of commercial 

diagnostic tools like the Hewlett-Packard Fault Detective, 

demonstrating the practical utility of this model in real-world 

diagnostic scenarios. The model's flexibility allowing it to be 

adapting to various types of electronic systems, making it a 

versatile tool in the diagnostic toolkit. 

Drawbacks: The effectiveness of the Diagnostic Inference 

Model is heavy dependent on its implementation during the 

when designing phase of the product lifecycle. This 

requirement can be an important limitation, as many systems 

are not designed with compact diagnostics in mind. When 
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design for diagnosis is not give importance, the resulting lack 

of structured diagnostic information can severely affect the 

model's ability to provide accurate diagnoses. The model 

rests on having access to a rich set of diagnostic tests and clear 

relationships between these tests and potential faults. In 

systems with such information is limited, the model's 

performance can be compromised. However, when an enough 

big model can be constructed using available diagnostic 

information, this approach is offered both accuracy and 

computational efficiency in diagnosis. The challenge in here 

is the firing this approach to existing systems that were not 

designed with comprehensive diagnostics in mind, making 

this a time-consuming and complex process. [28][29][30] 

5. MACHINE LEARNING APPROACHES 

Machine learning approaches in fault detection for electronic 

systems offered a dynamic and adaptive methodology that 

can improve itself performance over time by learning from 

past experiences. Unlike traditional approaches that 

maintains a fixed level of performance, machine learning 

approaches can continually increase their diagnostic 

capabilities. some approaches are: 

Case-Based Reasoning 

Approach: Case-Based Reasoning is a problem-solving 

process that rests on past experiences to solve new situations. 

The CBR process involving five steps: knowledge 

representation, case retrieval, case reuse, case revision, and 

case retention. In the field of electronic fault diagnosis, each 

case representing a past diagnostic experience, including the 

symptoms seen, the diagnosis made, and the actions which 

taken. The system stored these experiences as cases and 

fetching the most similar ones when raised with a new 

problem. It then adapts the solution from the received case to 

fit the current scenario, reverts it based on its success or 

failure, and retains any new, useful experiences in its case 

memory. The case representation step involving deciding 

what information to store in a case, selecting an actual 

structure for representing this information, and implementing 

an efficient indexing scheme for quick retrieval. Case 

retrieval generally include finding key features of the current 

problem, so that it can take these features to find similar cases 

in the memory, and then performing a detailed analysis to 

select the most relevant case. The adaptation phase (case 

reuse) involves modifying the retrieved case to fit the current 

situation, may be through substitution or transformation 

techniques. The revision phase checks the adapted solution in 

a real-world context and repairs any inadequacies. and then, 

the retention phase is adding valuable new information to the 

case memory, continually expanding the system's knowledge 

base. 

Applications: CBR has been successfully applied in various 

electronic fault diagnosis scenarios. For example, one system 

represents cases using an ID number, frequency of 

occurrence, symptoms, and actions taken. It has a possibility 

metric based on similarity and frequency to rank cases during 

receiving. To solving the challenge of generating case bases 

for new products, some approaches using a combination of 

generic and product-specific case bases. The generic case 

base stored domain diagnostic rules based on symptom-defect 

causalities, but the product-specific case base generated by 

specializing these generic cases and updating their 

frequencies. 

An application is a increasing case-based electronic fault 

diagnosis system that allowing for initial case receive using 

minimal case descriptions. The system then says the operator 

to perform additional tests to difference between potential 

cases. In the age of electronic assembly operations, CBR has 

been using for real-time diagnosis, chosen over model-based 

diagnosis as to its lower computational overhead. This system 

performing initial case retrieval and then optimally takes 

additional tests to refine the diagnosis, updating its case base 

for each diagnosis to take new fault information. 

Drawbacks: The effectiveness of CBR heavily depends on the 

availability and quality of suitable case data. This data has 

come from historical records or simulations, but noting a 

comprehensive and representative set of cases can be 

challenging, especially for new or rare fault scenarios. Also, 

the selection of effective indexing, retrieval, and adaptation 

methods is crucial for the system's performance. If these 

components are not well-designed, the system may difficult 

to find relevant cases or adapt them appropriately to new 

situations. And, as the case base growing, retrieval efficiency 

can become a concern, requiring sophisticated indexing and 

receive mechanisms to maintain performance. [31][32][33] 

Explanation-Based Learning (EBL) 

Approach: Explanation-Based Learning is a machine learning 

technique that using domain knowledge and a single training 

example to learn a new concept. In the age of electronic fault 

diagnosis, EBL can use a system model and an example of 

misdiagnosis to do an explanation for an appropriate 

diagnosis. This approach goes to improve the diagnostic 

process by learning from mistakes and refining the 

underlying diagnostic model. The EBL process typically 

involving several steps. First, it is taking a training example 
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(in this case, which is a misdiagnosis) and uses domain 

knowledge to generating an explanation for why the 

diagnosis was incorrect. It then generalized this explanation 

to create a new rule or concept that can prevented similar 

misdiagnoses in the future. This new knowledge is then 

composed into the existing diagnostic model, improving its 

performance. 

Applications: One notable application of EBL in electronic 

fault diagnosis is improving diagnostic inference models. 

After a misdiagnosis occurs, the system performs additional 

testing steps until a correct diagnosis is reached. This new 

information is then used to modifying the diagnostic model, 

ensuring that it can correctly handle similar cases in the 

future. This approach is allowed for the diagnostic system to 

continuously refining its knowledge and improve its accuracy 

over time. 

Drawbacks: The primary limitation of EBL is its heavy load 

on the availability of adequate domain knowledge. For 

complex electronic systems where, extensive knowledge is 

needed to do new concepts, the approach may become 

computationally impossible. The quality and completeness of 

the initial domain knowledge significantly affecting the 

system's ability to learn effectively. If the domain knowledge 

is incomplete or inaccurate, the explanations generated may 

be faulted, leading to the learning of incorrect or suboptimal 

diagnostic rules. Also, EBL may struggle with novel fault 

scenarios that which fall outside the scope of its existing 

domain knowledge, limiting its all ability to adapt to 

completely new types of faults. [34][35][36] 

Learning Knowledge from Data 

Approach: This approach focus on extracting knowledge 

bases from existing databases or case bases for overcome the 

knowledge acquisition bottleneck in developing intelligent 

diagnostic systems. It involve using machine learning 

algorithms to analyze large datasets of historical fault and 

repair information for automatically generate diagnostic rules 

or models. This method is particularly useful when extensive 

historical data is available but structuring this data into a 

formal knowledge base would be time-consuming and error-

prone if done manually. The process typically involve 

applying data mining and machine learning techniques to 

identify patterns and relationships in the historical data. 

Common techniques includes decision tree induction 

algorithms (like ID3 and its extensions), neural networks, and 

various forms of statistical learning. These algorithms 

analyze the relationships between symptoms, test results, and 

final diagnoses in the historical data for generate rules or 

models that can be used for future diagnoses. 

Applications: A very important application of this approach 

have been in the automotive industry. For instance, General 

Motors have used an extended form of the ID3 decision tree 

induction algorithm to extract general diagnostic rules from a 

massive database containing 300,000 cases of vehicle 

symptoms and repair information. The ID3 algorithm 

generate decision trees from the database examples, which 

are then used to classify the examples into suitable diagnostic 

rules. Extensions to the basic ID3 algorithm was developed 

to handle inconclusive data sets, where the available 

examples is insufficient to specify a single conclusive 

outcome. 

This approach have also been applied in other areas of 

electronic systems diagnosis, where large repositories of 

historical fault and repair data exists. By analyzing this data, 

companies can automatically generate knowledge-based 

diagnostic systems that encapsulate years of practical 

experience. 

Drawbacks: The primary limitation of this approach is its 

reliance on the availability of large, high-quality databases of 

domain information. It is therefore unsuitable for new 

systems or rare fault scenarios where substantial historical 

data is not yet available. The quality and representativeness 

of the available data directly impact the effectiveness of the 

generated knowledge base. If the historical data is biased, 

incomplete, or contains errors, the resulting diagnostic system 

may inherits these flaws. Additionally, the choice of learning 

algorithm and its parameters can significantly affects the 

quality of the extracted knowledge. Careful tuning and 

validation are often required to ensure that the generated rules 

or models accurately capture the underlying diagnostic 

relationships without overfitting to noise or anomalies in the 

data. Finally, while this approach can greatly speed up 

development time and reduce the knowledge acquisition 

bottleneck, it may struggle to captures subtle expert 

knowledge or intuitions that are not explicitly represented in 

the historical data. This can sometimes results in a diagnostic 

system that perform well on common cases but may miss 

nuanced or complex fault scenarios that human experts would 

recognize. 

So, machine learning approaches offer powerful tools for 

developing and improving electronic fault diagnosis systems. 

By leveraging past experiences and large datasets, these 

methods can create adaptive, efficient diagnostic systems. 

However, their effectiveness depends on the quality and 
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quantity of available data or domain knowledge, and careful 

implementation is required to overcome their respective 

limitations. As electronic systems continue to grow in 

complexity, these machine learning approaches are likely to 

play an increasingly important role in fault diagnosis, 

potentially in combination with traditional model-based 

methods to create hybrid systems that leverage the strengths 

of multiple approaches. [37][38][39][40] 

6. OTHER APPROACHES 

Fuzzy Logic and Neural Networks is also good for finding 

problems in electronics, not just model-based and machine 

learning ways. They good at handling unsure things and 

seeing hard patterns in finding faults. 

 

1. Fuzzy Logic 

Approach: Fuzzy logic use words instead of exact numbers. 

It let things be part of a group, not just in or out. This good 

for electronics because measurements not always exact. 

Fuzzy logic use rules like "IF signal little noisy AND voltage 

very high, THEN maybe component broke." It mix these 

rules to find answers. Fuzzy logic good at using expert 

knowledge with words. 

Application: Fuzzy logic used in FLAMES program for 

fixing analog circuits. It also used in self-fixing copy 

machines. These machines use fuzzy values to think about 

problems like humans do. 

Drawbacks: Hard to make good fuzzy rules. Take long time 

and need experts. If rules not good, answers might be wrong. 

Also, for big systems, might need too many rules. Fuzzy logic 

might not work for new problems it never saw before. [41] 

 

2. Neural Networks 

Approach: Neural networks copy how brain works. They 

learn to match symptoms with faults by looking at lots of 

examples. They have parts called neurons that connect to 

each other. The connections change as the network learns. 

After learning, they can find faults in new situations. 

Application: Neural networks used to find problems in digital 

circuits like adders. They also used for analog circuits, 

looking at circuit outputs to find faults. Some neural networks 

help technicians decide where to look in a circuit. They also 

used in phone systems to find problems fast. 

Drawbacks: Neural networks need lots of examples to learn 

from. Hard to get examples for rare faults. Also, neural 

networks don't explain why they think something wrong. This 

bad when need to know why. They might make weird 

mistakes with new problems. For big systems, neural 

networks might get too big and hard to use. Need to learn 

again if system changes, which take long time. [42] 

 

Both fuzzy logic and neural networks good for finding 

electronic faults, especially with unsure things or hard 

patterns. But they work best when used with other ways of 

finding faults. As electronics get more complex, these ways 

will be more important. 

 

7. HYBRID APPROACHES 

Hybrid approaches for fault detection in electronic systems 

use different ways together to find problems better. They mix 

model-based reasoning (MBR), case-based reasoning (CBR), 

fuzzy logic, artificial neural networks (ANNs), and genetic 

algorithms (GAs). Each way help fix problems with the 

others. Hybrid approaches for fault detection in electronic 

systems important for finding problems better. Mixing MBR, 

CBR, fuzzy logic, ANNs, and GAs use good parts of each 

way while fixing bad parts. But mixing these different ways 

is hard and need lot of computer power. These problems need 

to be fixed for more people to use them. 

1. Model-Based Reasoning and Case-Based Reasoning: 

Model-based reasoning (MBR) break device into parts, each 

with own problem patterns in a database. It look at device part 

by part to find problems. Case-based reasoning (CBR) help 

MBR by using old problem cases. This make finding 

problems better by learning from past, both good and bad, and 

fixing the model. 

Application: This mix good for big systems where model not 

perfect. It used in phone systems and airplane navigation 

systems. 

Drawback: Need lot of computer power to keep case database 

up to date. Also, work good only if old data is good and 

complete. [43] 

2. Model-Based Reasoning and Fuzzy Logic: Fuzzy logic 

help MBR deal with unsure measurements. It make fault 

guesses more clear. This good for systems where data not 

sure. 

Application: Used in car and airplane industries to find 

problems better when things not sure. 

Drawback: Hard to make and fix fuzzy systems. Need experts 

and take long time. [44] 

3. Case-Based Reasoning, Artificial Neural Networks, and 

Fuzzy Logic: Mixing CBR, ANNs, and fuzzy logic make 

system that learn and change over time. ANN learn from old 

problem data to guess problems. Fuzzy logic help understand 
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unsure inputs. If ANN can't find problem, CBR use old cases 

to find answer. 

Application: Used in airplane and phone systems. Help fix-it 

people by learning from new cases. 

Drawback: Hard to mix these different ways. Need lot of 

computer power and space for case database and training 

neural networks. [45] 

4. Model-Based Reasoning and Genetic Algorithms: 

Genetic algorithms (GAs) help MBR by making test order 

better to find problems fast. GAs use evolution ideas to find 

best answers. Good when need to keep making problem 

finding better. 

Application: Used in power systems and other important 

systems where making problem finding better is good. 

Drawback: GAs take lot of computer power. How good they 

work change based on how they start and what rules used. 

[46] 

8. COMPARISON 

Rule-Based Approaches is a way to find problems in 

electronic things using rules made by experts. These rules tell 

what fault might happen when certain signs show up. It good 

because it easy to understand and follow the steps to find the 

problem. Many people use this way in real life. But it have 

problems too. Making all the rules take long time and is hard 

work. Also, it only can find problems that people think of 

when making the rules. If a new problem happen that no one 

thought of, the rules can't help. This way not so good for 

things that change fast, like many electronic things, because 

making new rules all the time is too much work. 

Model-Based Approaches try to use how the electronic thing 

is made and how it should work to find problems. This way 

sound really good because it can find all kinds of problems, 

even ones no one thought of before. It also can find more than 

one problem at the same time. But when people try to use it 

for real, they find big problems. It take too much computer 

power to work for big things with lots of parts. It also hard to 

make models for really complex parts like microprocessors. 

The models often not perfect and miss some kinds of 

problems. Making these models take a long time if you can't 

use computer design data. Some people try to make simpler 

models that just look at test results, not how the whole thing 

work. This way work better in real life and save money for 

some companies. 

Case-Based Approaches use old examples of problems to 

solve new ones. This way work good in real life for finding 

problems in circuits. It get better the more it used because it 

learn from each new problem it solve. It faster to make and 

keep working than other ways because it learn by itself as it 

go. But it have problems too. It can't find problems until it 

have enough old examples to look at. It might not be good at 

finding rare problems that don't happen much. Also, it not 

always clear how it decide what the problem is, which can be 

confusing. As it get more and more old examples, it might get 

slow at finding the right one to use. People also not sure if it 

can learn general ideas from specific problems like humans 

can. 

Fuzzy Logic and Neural Networks is ways to deal with unsure 

things and find patterns. Fuzzy logic help other ways like 

rules and models work better when things not clear or 

complete. Neural networks try to copy how brains work to 

find problems. Both these ways can be good for some kinds 

of problems, but they might not work well for really complex 

things. Most people think they work best when used with 

other ways of finding problems. 

Hybrid Approaches try to use more than one way together to 

find problems better. A lot of people try to use Model-Based 

and Case-Based together. The model help make sense of 

things, but cases help fix mistakes in the model and make it 

better over time. Sometimes people use Case-Based first 

because it faster, then use Model-Based to check the answer 

when there time. Fuzzy logic often used with models to help 

deal with unsure measurements in things like analog circuits. 

Some people even try to use models, cases, and fuzzy logic 

all together to find problems in complex electronic boards. 

These mixed ways try to use the good parts of each way and 

fix the bad parts. They seem to work better for real, complex 

problems than any one way by itself. [47][48] 

9. FUTURE SCOPE 

Future scopes for these techniques in finding problems in 

electronic things look promising, but they all have room to 

get better. For Rule-Based Approaches, people trying to make 

ways for rules to learn and change by themselves. This could 

help fix the problem of rules being hard to keep up to date. 

They also working on making rules that can handle more 

complex situations and work with other ways of finding 

problems. The big challenge is to make rule systems that can 

deal with new kinds of problems they never saw before, just 

like humans can. 
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Model-Based Approaches have lots of room to grow. People 

working on ways to make models that work faster and can 

handle bigger, more complex systems. They trying to find 

better ways to model really complicated parts like big 

computer chips. Another big area they working on is making 

models that can learn and get better over time, maybe by 

using information from real problems that happen. They also 

trying to make models that can work with incomplete or 

unsure information better. The dream is to have models that 

almost perfect at copying how real electronic things work, but 

still fast enough to use in real life. 

 

Case-Based Approaches might get much better as computers 

get more powerful and can store more information. People 

working on better ways to organize and find the right old 

cases quickly, even when there millions of them. They also 

trying to make Case-Based systems that can learn general 

rules from specific cases, like humans do. Another big area is 

making Case-Based systems that can work across different 

kinds of electronic things, not just be good at one kind. Some 

people also trying to use fancy math to make Case-Based 

systems work better with less old cases to start with. 

 

For Fuzzy Logic and Neural Networks, the future look 

exciting. People trying to make Neural Networks that can 

explain how they make decisions, which would make them 

more useful for finding problems in important systems. They 

also working on Neural Networks that need less examples to 

learn from. For Fuzzy Logic, people trying to find ways to 

make the fuzzy rules automatically, without needing experts 

to make them. Both these ways might get much better as 

computers get more powerful and can handle more complex 

systems. 

 

Hybrid Approaches probably have the most exciting future. 

People working on ways to mix different techniques that 

work even better together. They trying to make systems that 

can choose the best way to find a problem based on what kind 

of problem it is. Some people working on ways to use new 

kinds of math to make hybrid systems work better. Another 

big area is making hybrid systems that can learn and improve 

themselves over time, using all the different ways they know. 

The dream is to have a system that as good as a human expert 

at finding problems, but can work much faster and never get 

tired. [49][50] 

 

10. CONCLUSION 

In conclusion, finding problems in electronic things using 

smart ways is a big and growing area. All the different ways 

we talked about - rules, models, cases, fuzzy logic, neural 

networks, and mixing them together - they all have good and 

bad points. No one way is perfect for all kinds of problems. 

Rule-Based good for simple things but hard to keep up. 

Model-Based sound great but often too slow or hard to make 

for big systems. Case-Based work well in real life but need 

lots of old examples. Fuzzy Logic and Neural Networks good 

for some things but not always clear how they work. Mixing 

different ways together seem to be the best idea for now, 

because it can use the good parts of each way. In the future, 

we probably see these ways get even better and smarter. They 

might learn to work more like human experts, but faster and 

without getting tired. We might see systems that can handle 

really big and complex electronic things, find problems we 

never thought of before, and explain their thinking in ways 

we can understand. But there still big challenges to solve. We 

need to make these systems faster, able to work with less 

information, and able to learn and get better over time. The 

most exciting part is how these smart ways of finding 

problems might change how we make and fix electronic 

things. We could see machines that fix themselves, or tell us 

exactly what wrong before we even notice a problem. This 

could save lots of time and money, and make electronic things 

work better and last longer. But we also need to be careful 

and make sure these systems are safe and we can trust them, 

especially for important things like airplanes or medical 

devices. Overall, the future of smart problem-finding in 

electronics look very interesting, and we probably see lots of 

new and exciting things in the coming years.  
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