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Abstract 

During the process of drug discovery, the molecular property prediction of drugs is one of the time-consuming steps. The molecular 

property prediction includes solubility, toxicity etc., the proposed Bi-LSTM approach which helps in predicting the solubility of 

targets identified at the target identification step of drug discovery. SMILES(Simplified Molecular Input Line Entry System) which 

are molecular sequences are taken as inputs for this sequence-based approach. Outperforming traditional models, the proposed 

model demonstrates superior performance in predicting solubility from molecular SMILES representations taken from the FreeSolv 

dataset. The proposed model is achieved a rmse of 1.22. In this process we go through tokenization, where each string is broken into 

tokens. These tokens are embedded into the embedding layer to convert into dense vectors. We train our data and test it. Then we 

apply our model to get the outputs. 
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1. INTRODUCTION 

Drug discovery involves the identification and creation of 

novel medications to address and prevent diseases. Drug 

discovery playing a crucial role in impacting both human 

health and society. In the Drug discovery mainly 

considerable properties are solubility, metabolism and 

toxicity. In that Solubility is a main factor influencing drug 

related researches. Solubility holds significant importance in 

drug discovery across various aspects. It plays a crucial role 

in influencing the bioavailability, synthesis, and 

manufacturing processes of drugs, impacting different stages 

of drug design. Chemists aim to enhance the solubility of 

molecules by optimizing their molecular structures during 

the drug design phase. Once a drug-like compound exhibits 

satisfactory properties, it becomes a candidate for further 

development into a new medication. The solubility of a drug 

significantly affects its absorption into the body, making it a 

key factor in this aspect of drug [1]. So that in Drug 

discovery, Solubility plays a vital role. We need to find the 

solubility of each molecule or chemical compound. But in 

traditional way, time - consuming and expensive. 

Traditional analytical methods are insufficient for handling 

extensive datasets; therefore, it is necessary to processing 

and converting such data into valuable knowledge [2]. We 

can achieve this by using Machine Learning techniques.  

A machine learning (ML) algorithm capable of precisely 

characterizing the compositions of behavioural components 

can meet this requirement. By employing ML techniques, it 

becomes possible to assess a considerable number of 

materials without the need for physical samples and to 

http://www.ijritcc.org/
mailto:kvrsnsg@gmail.com
mailto:kvrsnsg@gmail.com
mailto:sitagokuruboyina@gmail.com


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023 

___________________________________________________________________________________________________________________ 
 

 

    1610 
IJRITCC | November 2023, Available @ http://www.ijritcc.org 

efficiently ascertain their physical properties, like solubility. 

Machine Learning Techniques such as, Random Forest, 

Multilinear regression and some other regression models 

were used previously. But the main obstacle is the final 

output RMSE (root mean square error) is greater than 2. By 

using ML approaches the error is more [4].  At these 

difficulties, we can use either sequenced-based approach or 

graph-based approach[5-6]. A sequenced-based approach. 

Sequence-based models typically involve Recurrent Neural 

Networks (RNNs), Long Short-Term Memory networks 

(LSTMs), or transformer-based models. These models 

operate on sequential data and are well-suited for tasks 

where the order of elements matters, such as natural 

language processing (NLP). In sequence-based approaches, 

molecules are represented as linear sequences of characters 

or tokens. The most common representation is the SMILES 

notation, which represents a molecule as a string of 

characters[7]. 

2. DATASET 

The FreeSolv dataset is a freely available dataset commonly 

used for benchmarking molecular property prediction 

models, particularly those related to solvation free energies. 

It contains a collection of small organic molecules along 

with their experimental solvation free energies in water. 

Each molecule in the dataset is represented by its SMILES 

string (a compact textual representation of a molecule's 

structure) and the corresponding experimental solvation free 

energy in kcal/mol. 

3. RELATED WORK 

SMILES offers a linear textual representation of molecules. 

However, a single molecule can have multiple 

corresponding SMILES strings. To resolve this, canonical 

SMILES have been established, providing a unique SMILES 

string for each molecule. This characteristic, where multiple 

SMILES strings can represent the same molecule, has been 

leveraged for data augmentation in molecular QSAR 

datasets modeled using LSTM neural networks. By 

enhancing the dataset in this way, the size increased by 130 

times compared to the original[8]. The LSTM model trained 

on the augmented data outperformed a model trained using 

only one canonical SMILES string per molecule, as 

evidenced by an improvement in the correlation coefficient 

R2 from 0.56 to 0.66 on the test set, and a reduction in the 

root mean square error (RMSE) from 0.62 to 0.55. 

Additionally, applying this technique during the prediction 

phase—by averaging the predictions for the enumerated 

SMILES—further improved the R 2 to 0.68 and reduced the 

RMSE to 0.52[9]. 

Recent studies have demonstrated that LSTM generative 

neural networks, commonly used for learning grammar, can 

effectively learn to generate SMILES strings for drug-like 

molecules. When trained on SMILES data from bioactive 

compound databases like ChEMBL, these networks can later 

be adapted through transfer learning to generate focused 

compound sets with specific bioactivity profiles. In this 

study, we trained an LSTM using molecules sourced from 

ChEMBL, DrugBank, commercially available fragments, or 

the FDB-17 database (which contains fragments up to 17 

atoms). We then applied transfer learning to generate new 

analogs of a single known drug. This method successfully 

generated hundreds of relevant and diverse drug analogs and 

was most effective with training sets containing around 

40,000 compounds, including simple commercial fragments. 

These findings indicate that fragment-based LSTMs present 

a promising approach for generating new molecules[10]. 

The prediction of drug properties, such as solubility, is 

critical in the process of drug discovery. Recently, sequence-

based embedding methods, such as SMILES, represents the 

chemical structures as sequence of characters, have gained 

popularity in the field due to their ability to encode chemical 

structures in a text-based format that machine learning 

models can easily utilize. Accurately predicting solubility 

remains a challenging task, despite advancements in 

computational algorithms. Various representations, 

including fingerprint-based, feature-based, and molecular 

graph-based methods, have been employed alongwith the 

different deep learning approaches for solubility prediction. 

It is well established that the choice of molecular 

representation significantly influences both the accuracy of 

model predictions and their interpretability. [11]. 

The process of drug discovery focuses on finding new 

medications, where solubility is a key physicochemical 

property necessary for drug development. Active 

pharmaceutical ingredients (APIs) are essential for the 

effectiveness of drugs, and aqueous solubility (AS) is a 

fundamental aspect needed to characterize APIs during the 

drug discovery process. Predicting solubility accurately 

through computational methods can vastly reduce both the 

cost and time required for drug development. Various 

machine learning and deep learning techniques have been 

applied to this task. This study aims to create deep learning 

models capable of predicting the solubility of a wide range 

of molecules, using the most extensive solubility dataset 

currently available. The models utilized SMILES strings as 

a representation of molecular structures and included 

techniques such as simple graph convolution, graph 

isomorphism networks, graph attention networks, and the 

AttentiveFP network. The AttentiveFP-based model showed 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 October 2023 

___________________________________________________________________________________________________________________ 
 

 

    1611 
IJRITCC | November 2023, Available @ http://www.ijritcc.org 

the best performance and was trained and tested on a dataset 

of 9,943 compounds, achieving a Pearson correlation 

coefficient (R²) of 0.52 and a root-mean-square error of 0.61 

on 62 anticancer compounds. Improving AS prediction may 

be possible by refining graph algorithms or incorporating 

additional molecular characteristics. [12]. 

SMILES-based deep learning models are becoming 

increasingly significant in cheminformatics. In this study, 

we present SMILES Pair Encoding (SPE), a tokenization 

algorithm that is driven by data. SPE initially learns a 

vocabulary of frequently occurring SMILES substrings from 

a large chemical dataset, such as ChEMBL, and then utilizes 

this vocabulary to tokenize SMILES strings for training 

deep learning models. Unlike traditional atom-level 

tokenization, SPE introduces human-readable and 

chemically interpretable SMILES substrings as tokens. 

Through various case studies, SPE has demonstrated its 

ability to achieve superior performance in both molecular 

generation and QSAR prediction tasks[13]. Especially, 

generative models using SPE outperformed those based on 

atom-level tokenization, and their capacity to replicate the 

training set distribution. SPE-based QSAR prediction 

models were tested across 24 benchmark datasets, 

consistently matching or surpassing the performance of 

models using atom-level and k-mer tokenization. 

Consequently, SPE shows potential as an effective 

tokenization method for SMILES-based deep learning 

models[14]. 

Machine learning is increasingly recognized for its potential 

in materials science and related fields. However, these 

domains often work with small datasets ranging from a few 

dozen to several thousand samples which limits the use of 

advanced machine learning methods typically designed for 

large-scale data. Additionally, materials informatics often 

relies on manually crafted descriptors that must be 

specifically tailored for predicting the desired 

physicochemical properties. To overcome these limitations, 

we propose a new approach called SMILES-X. This method 

addresses both the challenge of small datasets and the need 

for specialized descriptors by using an autonomous pipeline 

for characterizing molecular compounds. SMILES-X 

employs a neural network architecture based on the 

{Embed-Encode-Attend-Predict} framework, combined 

with Bayesian hyperparameter optimization tailored to the 

data. The system processes de-canonicalized SMILES 

strings to facilitate data augmentation[15]. A key feature of 

SMILES-X is its attention mechanism, which allows for 

interpreting the model’s predictions without additional 

computational overhead. SMILES-X delivers impressive 

results in predicting aqueous solubility (with a test RMSE of 

approximately 0.57 ± 0.07 mol/L), hydration free energy 

(with a test RMSE of around 0.81 ± 0.22 kcal/mol, showing 

a ~24.5% improvement over molecular dynamics 

simulations), and octanol/water distribution coefficient (with 

a test RMSE of about 0.59 ± 0.02 for LogD at pH 7.4). This 

method is poised to become a valuable tool for researchers 

in materials science and chemistry[16]. 

SMILES is a sequence based method for encoding chemical 

structures into a format which can be efficiently handled by 

computer systems. This format enables the use of various 

computational techniques, such as ANNs, on SMILES data. 

CNNs are well-suited for handling image or matrix-like 

data, among the most effective ANN types. This paper 

focuses on preparing SMILES datasets for CNNs. It starts 

with an introduction to the SMILES format and then 

explains how to convert the dataset into an NPY matrix-

based format suitable for CNNs. The paper includes some 

examples proving the use of popular CNN architectures with 

the transformed dataset. The approach shows strong 

performance, with an Area Under the Curve (AUC) of 0.92, 

and the transformation process is efficient, averaging 0.08 

seconds per data point[17]. 

4. NEURAL NETWORKS IN QSAR 

QSAR, or Quantitative Structure-Activity Relationship 

analysis, is a crucial aspect of ligand-based screening in 

drug discovery. It involves understanding how the structure 

of molecules relates to their biological effects. Ligand-based 

screening focuses on the chemical features of known active 

compounds to predict the activity of new ones. By 

recognizing patterns and similarities in compound 

structures, these methods help forecast the activity of novel 

compounds. 

5. METHODOLOGY 

The process begins with encoding molecular structures into 

SMILES strings, a compact representation capturing 

molecular composition and connectivity. These SMILES 

strings serve as input data for training Bi-LSTM models. 

The Bi-LSTM architecture, known for its ability to capture 

sequential dependencies, is trained on a dataset containing 

SMILES-encoded molecules paired with experimentally 

measured solubility values[18]. The Tokenizer class from 

Kera’s pre-processing module is initialized to tokenize the 

SMILES strings character-wise. Then, the Tokenizer fits on 

the SMILES column of the dataset to generate a vocabulary 

index. The sequences are to be normalized to unique 

sequence length for learning so maximum sequence length 

of SMILES in the dataset is known and all the SMILES 
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strings are converted into sequences of integers using the 

fitted tokenizer[19]. The sequences are then padded with 

zeros to make them uniform in length i.e., maximum length 

sequence using the pad_sequences function. An embedding 

layer is added to the model. This layer converts the integer-

encoded SMILES sequences into dense vectors of fixed size. 

Two bidirectional LSTM layers are added to the model[20]. 

These layers process the input sequences in both forward 

and backward directions, capturing contextual information 

effectively. A dense layer with a linear activation function is 

added to the model to produce the output (predicted 

solubility). During training, model parameters are optimized 

to minimize prediction errors, typically quantified using 

metrics like mean squared error (MSE)[21]. 

5.1. Long Short-Term Memory 

It is a type of neural network which is good at 

learning patterns and relationships in sequences of data, like 

text or time series. Unlike standard feedforward neural 

networks, which transfer data forward after processing, 

LSTM networks have feedback connections. These 

connections allow LSTM networks to store the results of the 

current input for use in the near future when making other 

predictions. This ability to retain and selectively utilize 

information over time makes LSTMs particularly effective 

for the tasks involving sequential data, such as natural 

language processing and time series prediction [7]. LSTM is 

applicable, especially for tasks like text recognition, speech 

recognition etc. LSTM was created to address the challenge 

of retaining information over longer periods, unlike other 

deep learning models. Its unique design allows it to 

remember crucial details for extended durations, making it 

effective for tasks where understanding sequences over time 

is important, like language translation or sentiment analysis. 

It uses a gate mechanism similar to logic gates there are 

three gates in main input, forget, and output gates and one 

more important aspect is cell state which is like a memory to 

LSTM. The input gate decides which information from the 

current state should be stored in the cell state. It controls the 

flow of new information into the cell. Forget gate decides 

which information from the previous cell state should be 

forgotten or discarded. It helps the model decide what to 

remember and what to forget from long-term memory. The 

output gate decides what information from the current cell 

state should be output to the next layer in the network. It 

helps the model decide what information to use for 

predictions. Three gates of LSTM are sigmoid activated, this 

activation ensures that the gate values fall within the range 

of 0 and 1. In practical terms, a value of 0 indicates blocking 

or inhibiting the flow of information, while a value of 1 

signifies allowing the information to pass through the gate. 

Gates equations are as follows:  

ft = σ(Wf ⋅[ht−1 ,xt ]+bf ) (1) 

it =σ(Wi ⋅[ht−1 ,xt ]+bi ) (2) 

ot = σ(Wo ⋅[ht−1 ,xt ]+bo)  (3) 

           c ̃t=tanh(WC ⋅[ht−1 ,xt ]+bC )  (4)   

ft, it, ot, c ̃t is the forget gate, input gate, output gate and 

candidate gate output at time step t respectively, σ represents 

the sigmoid activation function, and W is the weight matrix 

for the respective gates. ht−1 is the previous hidden state, xt is 

the current input, and b is the bias term of corresponding 

gates.  

The final states are represented as: 

          Ct=ft*ct-1+it*c ̃t    (5) 

          ht=ot*tanh(ct)   (6) 

Where Ct, represents the cell state at time t and ht is the final 

output of the LSTM cell. Figure 2 represents the various 

gates at a given time t, by giving values into the above 

equation’s gates can be analyzed. 

From below figure 1 architecture is discussed in the form of 

three layers. The First layer Embedding Layer converts each 

SMILES sequence into a dense vector representation suitable 

for processing by the LSTM layer. LSTM layer processes the 

embedded SMILES sequences, capturing dependencies and 

patterns within the data over time. Finally, the Dense layer 

performs the final classification based on the LSTM's output, 

predicting the solubility level. 

 

Figure 1. LSTM layer at a timestep t 

The Figure 1. illustrates the working of LSTM, which has 

three gates. It is designed to capture long-term dependencies 

on sequential data. There are three gates in LSTM. LSTMs 

are effective for tasks involving sequential data, such as 

natural language processing(NLP) and time series 

prediction, etc. At the start of processing a sequence, the 

LSTM initializes its cell state and hidden state to zeros (or 
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another initial value). The LSTM receives an input vector 

and also receives the previous time step’s hidden state and 

cell state. The forget gate calculates how much of the 

previous cell state to retain. The input gate determines which 

new information to add to the cell state. The cell state is 

updated based on the forget gate and the input gate. The 

output gate determines the next hidden state based on the 

updated cell state. Now, the hidden state is passed to the 

next time step and can also be used for predictions. During 

training, LSTMs use BPTT to propagate errors back through 

the sequence, updating the weights based on the gradient of 

the loss function with respect to the weights. 

5.2. Bi-directional LSTM 

From the Figure 1 architecture which is segregated into 

three layers, BiLSTM architecture will have more layers as 

it passes the information bidirectionally, it includes loss 

function one more step. The loss function calculates the 

discrepancy between the predicted outputs and the ground 

truth labels, providing feedback to the model on how to 

adjust its parameters (weights and biases) to minimize this 

discrepancy. The complete flow from the inputs (i.e., 

SMILES) taken to the model and the output i.e., prediction 

of toxicity label is shown in below architecture figure 2. 

Bidirectional LSTMs process data in both directions 

simultaneously, from past to future (forward direction) and 

from future to past (backward direction). The first layer is 

the Input Layer where SMILES strings, which represent 

molecular structures, are fed into the network. The second 

layer Embedding layer where each character or token in the 

SMILES string is converted into a dense vector 

representation through an embedding layer. This dense 

representation captures the semantic meaning of each 

character in the context of the molecular structure. The next 

layer is BiLSTM Layer. The embedded SMILES sequences 

are passed into a BiLSTM layer. This layer consists of two 

LSTM networks, one processing the input sequence in the 

forward direction (from start to end) and the other 

processing it in the backward direction (from end to start). 

The BiLSTM captures both past and future dependencies in 

the SMILES sequences, allowing the network to understand 

the context of each character/token based on its surrounding 

characters/tokens. Finally, the Output layer is where the 

hidden states from both the forward and backward LSTM 

networks are combined to obtain the final output. This 

output here is predicting molecular properties. Three gates 

of LSTM are sigmoid activated, This activation ensures that 

the gate values fall within the range of 0 and 1. In practical 

terms, a value of 0 indicates blocking or inhibiting the flow 

of information, while a value of 1 signifies allowing the 

information to pass through the gate. 

 

 

Figure 2. Architecture of proposed model using BiLSTM 

Figure 2 is about the architecture of proposed model using 

BiLSTM. Here we can see the overall process of the model. 

It represents a deep learning model designed for predicting 

solubility based on SMILES notations.  At beginning of the 

process we have given SMILES data as an input. The 

process undergoes to provide the complete output i.e., 

prediction of solubility. 

 

Figure 3. BiLSTM model at a timestep t 
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Figure 3. clearly shows the forward and backward pass of the 

BiLSTM and in each pass, there are many LSTM and these 

working is shown in figure 3. The Forward LSTM follows 

the natural order, it process the sequence from first element 

to the last element. The backward LSTM processes the same 

input sequence but in reverse order, from the last element to 

the first.After processing in both directions, the both outputs 

are combined. This combined output contains information 

from both past and future contexts at each time step. 

 

5.3. Implementation of Bi-LSTM with SMILES data 

BiLSTM architecture will have more layers as it passes the 

information bidirectionally, it includes loss function one 

more step. The loss function calculates the difference 

between the predicted outputs and the actual target output. 

The complete flow from the inputs (i.e., SMILES) taken to 

the model and the output i.e., prediction of toxicity label. 

BiLSTMs can process the data in both forward and 

backward directions. Forward direction is from past to 

future where backward direction is from future to past.  

The first layer is the Input Layer where SMILES strings, 

represent molecular structures, are fed into the network. The 

second layer is an Embedding layer. The tokenized SMILES 

strings are fed into the embedding layer. The embedding 

layer converts each token into a dense vector of fixed size, 

which captures semantic information about the token of the 

SMILES string. The next layer after the embedded layer is 

Bidirectional LSTM Layer. Now the embedded SMILES 

data is passed into a BiLSTM layer. Bi LSTM layer consists 

of two LSTM networks, one is for processing the input 

sequence in the forward direction and the other is to 

processing it in the backward direction. The embedded 

sequences are send into a BiLSTM network. The BiLSTM 

consists of two LSTM layers, one is forward layer and 

another one is backward layer. 

The outputs from both the forward and backward LSTM 

layers are combined at each time step. This combined 

representation takes context from both directions, it allows 

the model to understand the relationship between the tokens 

in both directions. Finally, the Output layer is where the 

hidden states from both the forward and backward LSTM 

networks are combined to obtain the final output. This output 

here is predicting molecular properties (i.e., toxicity, 

solubility). Three gates of LSTM are sigmoid activated. This 

activation ensures that the gate values fall within the range of 

0 and 1. The value 0 indicates blocking or inhibiting the flow 

of information, while the value 1 signifies allowing the 

information to pass through the gate. 

From the Figure 4., we have seen the implementation of 

BiLSTM to get the solubility prediction. We have gone 

through several steps to implement the model and to get 

accurate results. Sequence-based learning focuses on 

modeling and predicting data which is represented as 

sequences. For example time series, text, etc. It takes an input 

sequence, processes it, and generates an output sequence. It 

involves processing input sequences to learn patterns, 

dependencies, and relationships with in the sequence. At first 

the SMILES string undergoes an   

 

 

Figure 4. Implementation of BiLSTM 
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Embedding Layer process which begins with Tokenization, 

where each string is divided into individual tokens. These 

tokens are then converted into dense vectors, capturing the 

semantic relationships between different tokens.  

After the data is split into training and testing, the embedded 

sequences are fed into either an LSTM or BiLSTM model. 

LSTM models are designed to capture long term 

dependencies in the sequence, learning how past information 

influences future predictions. BiLSTM models, however, 

consider both past (backward) and future (forward) context 

in the sequence, providing a more comprehensive 

understanding of the sequential data. The final model is used 

to make predictions based on the learned sequence patterns. 

6. RESULTS 

Comparative analysis demonstrates the effectiveness of the 

sequence-based approach in solubility prediction. Bi-LSTM 

models trained on SMILES data outperform traditional 

methods, yielding superior prediction accuracy and 

efficiency. By capturing complex relationships between 

molecular structures and solubility, these models offer 

significant advancements in predictive performance. The 

proposed model outperforms the previous best model 

GLAM with RMSE difference of 0.1. where GLAM RMSE 

value is1.31 [3]. and proposed model achieved 1.2 RMSE. 

The lower RMSE value indicates the better model. The 

proposed model compared with few machine learning 

algorithms which is shown in below figure. 

 

 

Figure 5. Comparison of BiLSTM with previous regression models. 

The figure 5. is about the RMSE comparison for the Freesolv 

dataset. It compares the RMSE for different models on the 

FreeSolv dataset. The models, such as DMPNN, show higher 

RMSE values around 2.082. More complex models, such as 

ChemRL-GEM and SPMM, reduce RMSE to around 1.877 

and 1.859. The best performance is achieved by the BiLSTM 

model, with the lowest RMSE of 1.21, indicating it predicts 

hydration-free energies most accurately in this dataset. The 

lower the RMSE value, the higher its performance. The trend 

shows that as model complexity increases, prediction accuracy 

improves. 

7. CONCLUSIONS 

Sequence-based approaches, particularly Bi-LSTM 

networks, offer a promising avenue for enhancing solubility 

prediction efficiency in drug discovery. By leveraging 

SMILES information, these models provide a more accurate 

and streamlined approach to predicting solubility compared 

to traditional methods. This research highlights the potential 

of sequence-based methodologies in advancing 

computational drug discovery techniques and underscores 

the importance of incorporating machine learning 

approaches in predictive modelling tasks. 
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