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Abstract – As Artificial Intelligence is paving way for advancement of computing age, the need for efficient computation is com-

ing to the forefront as most pivotal factor. Analog neurons and neuromorphic computing have emerged as promising candidates to 

address the need of emerging computational demand. This paper presents a LIF (Leaky Integrate and Fire) CMOS spiking neuron 

design, which is implemented and simulated in GPDK 180nm technology. The functionality, power efficiency and configuration 

viability of the neuron is tested through meticulously planned test cases. The neuron layout fits in 0.02mm2 and has approximate 

energy efficiency of 10pJ/Spike. 
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1. Introduction  

 Three components make up the Von-Neumann architecture: 

memory, a central processing unit (CPU), and a connection 

between the two. Because data must be transmitted from 

memory to the CPU via a parallel data bus, the gap between 

the memory and CPU causes a bottleneck in processing. The 

Von Neumann architecture-based CPUs can process logic and 

compute at very high speeds, but they struggle with many 

tasks, like video motion detection and image recognition, and 

they are not designed to handle big data processing work-

loads. This architecture is not apt for implementing neural 

networks, which are derived from functioning of the brain [1].  

Human brain is energy efficient computing system: functions 

such as vision, object recognition, speech recognition, and 

language translation are processes with ease by the massive 

parallel neuron network of the brain [4]. Brain-inspired archi-

tectures perform computing tasks by communicating spikes 

between large network of neurons, which are connected 

through synapses between each other and locally store 

memory in form of synaptic strength [2]. It mimics the biolog-

ical neural cell where synapses receive the synaptic spikes 

from the other connected neurons. Designing a neural network 

on par with the brain requires understanding of the brains 

elementary function model and its network along with its 

essential synaptic communication protocols. A number of 

neuron models and networking structure have been developed 

over years, concepts like winner -take- all (WTA) and Spike 

timing dependent plasticity (STDP) [3] are an outcome of 

these efforts.  Before the paper describes the design of CMOS 

neuron with its integral sub blocks, an outlook of neuron 

models and its relevant developments are presented. This is 

followed with discussion of LIF neuron structure and its sub 

blocks Operational amplifier, comparator, spike generator and 

finally the simulation results of testing the neuron. 

2. Related works 

The neural network comprises of neurons and synapses that 

make up the network, it is important to know how those com-

ponents operate, and how they interact. This section discusses 

the different neuron models and synapse models. 

2.1 Neuron models:  

A biological neuron is made of cell, axon, and dendrite. The 

axon transmits information out of the neuron. Dendrites 

transmit information to the cell body and acts as receiver. 

Neurons interact by exchanging chemical molecules that gives 

signaling mechanism referred as synaptic spikes.  The neuron 

works by charging and discharging resulting in exchange of 

spikes. This spiking consumes electrical energy in a neuron 

that can reach a certain threshold, which will cause the neuron 

to “fire” or, in biological terms, produce an action force that 

will travel through the axon of the neuron to affect the charg-

ing of other neurons through synapses. A number of neuron 

models have appeared over years which have been formulated 

to mimic the electrophysiological phenomenon of the biologi-

cal neurons. Following are the most celebrated models of the 

neurons.  

Hodgkin-Huxley model: The most popular biologically plau-

sible neuron model is the Hodgkin-Huxley model [5]. The 

Hodgkin-Huxley model was first introduced in 1952 and is a 

relatively complex neuron model, consisting of different non-

linear equations that define neuron behavior about ion transfer 

within and outside the neuron. 
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Morris Lecar model:  The simplest, but most biologically 

plausible neuron model is the Morris Lecar model, which 

reduces the model to an indirect two-dimensional equation 

[6]. It is a commonly used model in neuroscience and neuro-

morphic systems. Among these models, CMOS integrate and 

fire model and Conductance based silicon neuron model are 

the most adopted models [7], [4]. These models are explicitly 

considered for discussion in this work. 

Conductance based silicon neuron: Conductance-based 

silicon neuron was reported by R. J. Wang, T. et.al. [7], where 

in synapse and soma are implemented as first-order low-pass 

filter-based based on “Tau-cell”. Conductance-based synapse 

was adopted instead of using a separate low pass filter for 

excitatory and inhibitory inputs. This reduces the area and 

makes the circuit more compact with the penalty of identical 

time constants. 

A CMOS leaky integrate and fire model:  Xinyu Wu, 

Vishal Saxena et.al [4], have presented a CMOS spiking neu-

ron design, which was implemented in a 0.18μm CMOS tech-

nology. The CMOS neuron design is based on leaky integrate 

and fire model [1] and consists of an operational amplifier, 

phase controller, comparator, and spike generator sub-blocks 

along with membrane capacitance C mem, a leaky resistor R 

leaky and switches SW1 to SW3. The CMOS neuron was 

designed to operate in integration and firing modes, i.e., dual-

mode. The mode of operation is controlled by the phase signal 

Ф fire and Ф int.  

2.2 Synapse models:  

Just as some neuromorphic work focuses primarily on neuron 

models, there was also a focus on developing synapse models. 

synapse models are often simpler unless they try to explicitly 

model biological behavior. One popular insertion of complex 

synapse models is the plasticity method, which causes the 

strength of the neuron or the amount of weight to change over 

time. Plastic methods are related to learning in the biological 

brain. The artificial neural network models are closer to bio-

logical neurons in the brain. If the neuron receives the current 

from other neurons and membrane potential exceeds a thresh-

old voltage, then the output spike will be generated and deliv-

ered to other neurons. Therefore, spike timing is considered in 

the neuron model. Learning is an essential criterion for the 

working of neuromorphic computing networks, the synapses 

adopt their weight in accordance with the learning. Different 

learning mechanisms have emerged over years. Here a brief 

account of the winner-take-all (WTA) and Spike timing-

dependent plasticity (STDP) learning mechanism is given. 

Winner -take- all and Spike timing dependent plasticity:  

Idongesit E. Ebong, et.al, highlighted the two basic learning 

rules: They are winner -take- all (WTA) and Spike timing 

dependent plasticity (STDP).  

Winner-Take-All: WTA is an algorithm in which one neuron 

clearly inhibits its neighbors in order to take the prize. There 

exists a WTA variation that is designed for design flexibility 

called the kWTA. In kWTA, two or more neurons might have 

ended up winning the prize, but the concept remains the same 

[10]. 

Spike-timing-dependent plasticity: STDP is a form of long-

term synaptic plasticity in which the precise order and timing 

of pre-synaptic and post-synaptic action potentials trigger 

long-term synaptic potentiation or depression [8], [3]. There 

are two forms of STDP: Asymmetric and symmetric. Sym-

metric STDP performs the same weight adjustment independ-

ent of the spike order between the pre-neuron and post-

neuron. Asymmetric STDP reverses weight adjustment based 

on the spike time difference between the pre-neuron and the 

post-neuron. In the asymmetric STDP case, if the pre neuron 

spikes before the post neuron, the synaptic weight is in-

creased. If the order of spikes is reversed, the synaptic weight 

is decreased. In both cases, the larger is the duration between 

the pre-neuron and the post-neuron spikes, the lesser is the 

magnitude of the synaptic change. Most circuit implementa-

tions take advantage of the asymmetric implementation [3]. 

Idongesit E. Ebong, et.al have implemented asymmetric 

STDP based on the equation. 

, t2-t1>0 

                                 -A , t2-t1<0 

 Where,  = Change in synaptic weight. 

 t2-t1 = Time difference between preneuron and the post neu-

ron. 

A+ = Maximum change in the positive direction. 

A- = Maximum change in the negative direction. 

 = Time constants. 

3. LIF Neuron Structure 

. 

Fig.3.1 Block diagram of the CMOS Neuron Circuit. 

   (2.2.1) 
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The Fig.3.1 shows the block diagram of CMOS neuron, in-

spired by the model [2]. It consists of IFN circuit, comparator 

and STDP-compatible spike generator. The IFN circuits are 

designed to generate spikes to match spiking behaviors of 

biological neurons. The IFN circuit integrates the input synap-

tic currents and generates Vmem signal as output which is 

compared with the threshold voltage Vth. Whenever Vmem 

exceeds threshold, comparator generates Vcom signal which 

drives the spike generator. As shown in Fig.3.2, the spare 

block consists of matrix of switches and operational amplifier 

that provides the reconfigurability for the neurons with respect 

to the driving capability and noise reduction. It also makes the 

implementation of area and power efficient.  

 

 

Fig.3.2. Spare switch and amplifier block 

 

4. The Design of CMOS Neuron 

This section discusses the design of CMOS neuron circuit 

blocks.  

4.1 Differential Amplifier:  

To integrate the spikes arising from pre synapses, an integra-

tor was required to be designed [2]. Differential amplifier 

founds an important integral part of this integrator. Here the 

design of a differential amplifier with a cascode load is dis-

cussed. 

The Differential amplifier forms the first block of the LIF 

neuron. As shown in Fig.4.1.1, comprising of cascode load is 

designed with using NMOS input differential pairs NM3, 

NM4 because these input type can perform larger output gain 

compared to PMOS input type. the cascode topology is em-

ployed for achieving a high gain. PM1 and PM2 form a cur-

rent mirror. NM5 and NM6 are used to provide biasing to this 

amplifier. The body of all the transistors is connected with 

their source. Current from NM5 will divide equally into two 

arms of PM1, NM1, NM3, and PM2, NM2, NM4. 

The basic differential amplifier circuit converts the difference 

between its two input voltages to a corresponding current as 

of its output. This circuit is used in the implementation of 

CMOS neurons. Table 1 shows the design specifications and 

Table 2 shows the dimensions for each transistor according to 

the W/L ratio.  

 
Fig.4.1.1: Cascode Differential Amplifier 

 

Table I Design Specification 

Open loop Gain 100 V/V 

Power Supply 2.5v 

Maximum Power Dissipa-

tion 

≤ 2mw 

Slew Rate 10 V/us 

  Gain B/W at -3 db gain 100Khz 

ICMR ≤2v 

 

The Differential amplifier is designed for 180 nm technology 

for the following specifications: -  

STEP 1 — To find DC current from Slew Rate 

                                  (4.1.1) 

STEP 2 — To find aspect ratios of MOSFETs PM1 and PM2 

from Input Common-Mode Range. Let the input common-

mode range be  to Let Vin2 be grounded and 

 be equal to . 

 

 

 

                                           (4.1.3) 

 (4.1.4) 

                 (4.1.5) 

  (4.1.2) 
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STEP 3 — To find aspect ratios of MOSFETs 5 and 6 from 

Input Common Mode Range. 

  We know that 

           (4.1.6) 

Therefore, 

                      

 

 

We know,  i 

                (4.1.9)   

 

Transistor W/L 

PM 1 500n/1u 

PM 2 500n/1u 

NM 1 8u/180n 

NM 2 8u/180n 

NM 3 8u/180n 

NM 4 8u/180n 

NM 5 2u/180n 

NM 6 2u/180n 

Table-2: Transistor Dimensions for the differential am-

plifier 

The integrated signal is continuously monitored by the com-

parator for threshold crossing. 

4.2 Comparator:  

The Comparator is used to compare the neuron membrane 

potential (Vmem) against the firing threshold (Vth). As shown 

in Fig.4.2.1, the comparator circuit uses 11 transistors. The 

design is based on differential pair MC1 and MC2, the bias 

transistor MC0, load devices MC3 and MC4 and the cross-

coupled pair MC5 and MC6. The purpose of current mirror 

and transistors MC7, MC8, MC9, MC10 is to provide addi-

tional gain and to covert the differential output to a single-

ended output. The bias transistor MC0 sets the current flowing 

the circuit. The full derivation of the comparator, as well as 

stability conditions, are presented in Gregorian’s work [8]. 

However, we mention the formulas as follows: 

                             (4.2.1) 

                        (4.2.2) 

      (4.2.3) 

                       (4.2.4) 

Where, W/L= transistor width to length ratio 

              = oxide capacitance 

              = mobility  

 

 

 
Fig.4.2.1 Circuit diagram of Comparator 

 

In this circuit, there are two paths of feedback. The first feed-

back path is negative feedback through common-source node 

MC1 and MC2 and the second feedback path is the positive 

feedback, through the gate-drain connection of MC5 and 

MC6.  

Transistor   W/L 

MC8 400n/1u 

MC3 800n/4u 

MC5 400n/1u 

MC6 800n/4u 

MC4 2u/500n 

MC7 400n/1u 

MC1 12u/180n 

MC2 12u/180n 

NM9 2u/180n 

NM10 2u/180n 

MC0 1u/500n 

Table 2: Transistor dimensions  

(4.1.7) 

(4.1.8) 
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4.3 Spike Generator:  

The Spike generator is designed, produced the customized 

spike with reconfigurable timing and amplitude parameter 

settings. 

As shown in Fig.4.3.1, the spike generator circuit is designed 

by selecting the voltage reference levels and an RC charging 

circuit for the positive pulse and negative tail respectively. A 

shape of the action potential Vspk influences the STDP learn-

ing function. A biological like STDP pulse with exponential 

rising edges is very difficult to realize in the circuit. However, 

a bio-inspired STDP pulse can be achieved with a simpler 

action potential shape: a short narrow positive pulse of large 

amplitude followed by a larger slowly decreasing negative tail 

[11]. 

 

Fig.4.3.1: Spike generator 

 

5 Simulation Result 

The circuits are designed and simulation is done using ca-

dence virtuoso in 0.18um CMOS technology. The layout sim-

ulation is carried out in a cadence virtuoso layout XL design 

environment. The design rule check (DRC) and layout versus 

schematic (LVS) were executed successfully without errors.  

5.1 Schematic testbench and simulation of Differential 

amplifier:  

 In Figure 5.1.1, a test bench is used to check the transient 

response of the amplifier. In this case, a sine 

wave signal is applied to the two inputs, and the effective 

value of the output signal is 

the voltage difference between the two terminals. Fig.5.1.2 

shows the transient response of the differential amplifier. 

Simulation is done by taking the parameters Vdd=1.8V, V1 

and V2=1mv amplitude, frequency=10khz, offset=500mV, 

bias current Idc=232uA. 

       

 

Fig.5.1.1 Testbench for Differential amplifier 

 

 

  Fig.5.1.2. Transient Response of the differential amplifier 

 

5.2 Simulated Outputs of the Comparator: 

 The transient behavior of the comparator is illustrated in 

Fig.5.2.1, The membrane potential Vmem is compared with a 

threshold voltage Vth, crossing which gives the output signals 

V1, V2, Vcom and the overall circuit performance is depend-

ing on the devices size and dimensions which are shown in 

Table 2. Here we have taken the parameters as VDD = 2.2 V, 

pulse width = 2ms, period = 4ms.  

 

 

Fig.5.2.1: Transient simulation of the comparator 
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5.3 Simulated Outputs of the Spike generator circuit:  

The transient response of the spike generator is shown in 

Fig.5.3.1. For controlling the spike generation, a digital phase 

controller generates two non-overlapping control signals Фint 

and Фfire, together with another two signals implemented 

using pulse circuits, Ф1 for the pulse and Ф2 for the negative 

tail. For instance, spike parameters Va+ =3V, Va- = 1V and 

Vrefr = 2V were chosen for a device. 

 

 

Fig.5.3.1. Transient response of the spike generator circuit 

 

To optimize the neuron circuit for the area and power dissipa-

tion, the layouts are handcrafted. This resulted in effective 

neuron implementation with the following figure of merits. 

The schematic and layout of the comparator design are shown 

in Fig.5.3.1. 

 

 

Fig.5.3.1. A layout design of the comparator 

 

Conclusion 

This paper presented a LIF neuron design for a brain-like 

neuromorphic computing system. It combines the CMOS 

design of the IFN circuit based on the operational amplifier 

with comparator and spike generator circuits. The design was 

implemented in a 180 nm CMOS process. Simulation results 

showed that the neuron is effective while consuming energy 

12PJ/spike, which is on par in computation compared to the 

circuits that have been published till now.  
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