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Abstract—Let G be a simple, finite, and undirected graph. If there is at most a one-size difference in the sizes of the color classes, then a 

graph of G has an equitable vertex coloring. The least k that makes a graph G equitably k-colorable is its equitable chromatic number, 

shown by𝝌=(𝑮),\. We will talk about a fair coloring scheme for the union of two graphs. 
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I. INTRODUCTION 

All graphs considered in this paper are finite, undirected 
and without loops and multiple edges. Let 𝐺 = (𝑉, 𝐸)  be a 
simple connected graph with vertex set 𝑉(𝐺) and edge set 
𝐸(𝐺). Any definitions not covered in this study can be found at 
[2, 3]. Euler's work on the Königsberg bridge issues is where 
graph theory first emerged [1]. It may be used for many 
different things, such determining communities inside 
networks, figuring out the shortest path, examining chemical 
structures, and more. Since the four color problem's inception 
in 1852, graph coloring has grown to become one of graph 
theory's most fascinating subfields [7]. Graph coloring, in 
particular, is essential to computer science and discrete 
mathematics. The applications of these coloring challenges 
have been the focus of several research publications over the 
previous few decades. A proper 𝑘− coloring of a graph 𝐺 is a 
function 𝑓 ∶  𝑉 (𝐺)  →  {1, 2, . . . , 𝑘} define in such a way that 
𝑓(𝑥)  ≠ 𝑓(𝑦)  whenever 𝑥𝑦 ∈  𝐸(𝐺).  The vertices of the 
samecolor form a color class. The chromatic number 𝜒(𝐺) of a 
graph 𝐺, is the smallest integer 𝑘 such that 𝐺 has a proper 𝑘− 
coloring. An edge coloring assigns a color to each so that no 
two adjacent edges share the same color. In this work, we 
concentrate on equitable coloring, a common application of 
graph coloring [5]. Meyer [4] established the idea of fair 
colorability for the first time. Tucker's program, which had 
vertices representing garbage collection routes connected when 
comparable routes shouldn't be performed on the same day, 
served as his inspiration. If the set of vertices of a graph 𝐺 can 
be partitioned into 𝑘 classes 𝑉1 , 𝑉2, . . . , 𝑉𝑘such that each 𝑉𝑖  is an 
independent set and the condition ||𝑉𝑖  | − |𝑉𝑗 || ≤ 1 holds for 

every pair (𝑖, 𝑗), then 𝐺  is said to be equitably 𝑘 − colorable. 

The smallest integer 𝑘 for which 𝐺 is equitably 𝑘− colorable is 
known as the equitable chromatic number of [13–16] 𝐺 and is 
denoted by 𝜒=(𝐺). Since equitable coloring is a proper coloring 
with additional condition, 𝜒(𝐺)  ≤ 𝜒=(𝐺) for any graph 𝐺. It is 
interesting to note that if a graph 𝐺 is equitably 𝑘 − colorable, 
it does not imply that it is equitably 𝑘 +  1− colorable. A 

counter example is the complete bipartite graph 𝐾3,3 which can 

be equitably colored with two colors, but not with three. The 
equitable chromatic threshold of 𝐺is 𝜒∗

=
(𝐺)  = 𝑚𝑖𝑛{𝑡 ∶

 𝐺 𝑖𝑠 𝑒𝑞𝑢𝑖𝑡𝑎𝑏𝑙𝑦 𝑘 −  𝑐𝑜𝑙𝑜𝑟𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥  𝑡} . In 1964, 
Erdos [8] conjectured that any graph 𝐺 with maximum degree 
∆(𝐺)  ≤  𝑘  has an equitable (𝑘 +  1) −  coloring, or 

equivalently is 𝜒∗
=

(𝐺)  ≤  ∆(𝐺)  +  1 . Hajnal and Szemeredi 

proved this conjecture in 1970 [9]. Recently, a polynomial 
technique for such a coloring was described by Kierstead and 
Kostochka [10], along with a brief demonstration of the 
theorem. Meyer [4] proposed the following hypothesis in 1973: 
Conjecture on Equitable Coloring [4]. For any connected graph 
𝐺, other than a complete graph or an odd cycle, 𝜒=(𝐺)  ≤
 ∆(𝐺).For any graphs with six vertices or less, this conjecture 
has been confirmed. The Equitable Coloring Conjecture holds 
for all bipartite graphs, as demonstrated by Lih and Wu [16]. 
Wang and Zhang [19] examined r-partite graphs, a more 
general type of graphs. Meyer's hypothesis holds for entire 
graphs in this class, as they demonstrated. Furthermore, the 
hypothesis was verified for planar graphs with a maximum 
degree of at least 13 [18] and outerplanar graphs [17]. We also 
have a more robust hypothesis: Equitable  ∆ −  Coloring 
conjecture [13], If 𝐺 is a connected graph of degree ∆, other 
than a complete graph, an odd cycle or a complete bipartite 
graph 𝐾2𝑛+1,2𝑛+1  for any n ≥ 1, then G is equitably  ∆ − 

Colorable. The Equitable ∆ Coloring Conjecture holds for some 
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classes of graphs, e.g., bipartite graphs [16], outerplanar graphs 
with ∆ ≥  3  [17] and planar graphs with ∆ ≥  13  [18]. The 
detailed survey of this type of coloring is found in Lih [6]. In 
the present paper, we study on equitable coloring for union of 
graphs. 

 

II. PRELIMINARIES 

 
We would want to discuss some early findings about 

equitable coloring before moving on to the major findings. 
Definition 2.1. Let 𝐺1 = (𝑉1 , 𝐸1) and 𝐺2 = (𝑉2 , 𝐸2) be two 

simple graphs. 𝐺1 ∪ 𝐺2 denotes the Union of two graphs 𝐺1and 
𝐺2 has the vertex set 𝑉1 ∪ 𝑉2and edge set 𝐸1 ∪ 𝐸2 . When  𝐺1 
and 𝐺2 are disjoint 𝐺1 ∪ 𝐺2 is denoted by 𝐺1 + 𝐺2. 

Lemma 2.2. [20] If two graphs G and 𝐻  with disjoint 
vertex sets are both equitably 𝑘 −  colorable, then 𝐺 +  𝐻  is 
also equitably 𝑘 − colorable. 

Lemma 2.3. [20] 𝑚𝐾𝑛,𝑛 is equitably 𝑘 − colorable for any 

𝑚 ≥  2, 𝑛 ≥  2 𝑎𝑛𝑑 𝑘 ≥  2. 
Lemma 2.4. [20] Let 𝐺 be a graph and suppose that |𝑉 (𝐺)| 

is not divisible by a positive integer 𝑛 ≥  3. If 𝐺 is equitably 

𝑛 − colorable, then 𝐺 + 𝐾𝑛,𝑛  is also equitably 𝑛 − colorable.  

Lemma 2.5. [20] Let 𝐺  be a graph and suppose that 
|𝑉 (𝐺)| is divisible by a positive integer 𝑛 ≥  3. If there exists 
a proper 𝑛 − coloring of G such that the sizes of color classes 

in nondecreasing order are 
|𝑉 (𝐺)| 

𝑛
 − 1,

|𝑉 (𝐺)| 

𝑛
 − 2 . . . , 

|𝑉 (𝐺)| 

𝑛
 , 

|𝑉 (𝐺)| 

𝑛
  + 1, then 𝐺 + 𝐾𝑛,𝑛 is equitably 𝑛 −  𝑐𝑜𝑙𝑜𝑟𝑎𝑏𝑙𝑒.  

Lemma 2.6. [20] Let 𝑛 ≥  2 be a positive integer and let 

𝐺 be a graph with ∆(𝐺)  ≤  𝑛 −  1 . Then 𝐺 + 𝐾𝑛,𝑛 is 

equitably  𝑛 −  colorable if and only if  𝑛  is even, or 𝐺 is 
different from m𝐾𝑛  for all 𝑚 ≥  1.  

 
Lemma 2.7. [20] Let G be a graph with ∆(𝐺)  ≥  𝜒(𝐺). If 

𝐺 is equtably ∆(G)− colorable, then at least one of the 
following statements holds.  

1. ∆(𝐺) is even.  
2. No components or at least two components of 𝐺  are 

isomorphic to 𝐾∆ G ,∆(G)  .  

3. Only one component of G is isomorphic to 𝐾∆ G ,∆(G)  and 

𝛼(𝐺 − 𝐾∆ 𝐺 ,∆(𝐺)  )  >
|𝑉 (𝐺−𝐾∆ 𝐺 ,∆(𝐺) )| 

∆
>  0. 

 

III. FAIR COLORING FOR THE INTERSECTION OF TWO 

GRAPHS 

 
The generalized formula for the equitable chromatic 

number for the union of any two graphs was found in this 
section. 

Theorem 3.1. Let 𝐺1  and 𝐺2  be two graphs. Let 𝑘 =
𝑚𝑎𝑥(𝜒∗

=(𝐺1) , 𝜒∗
=(𝐺2) ) . Then 𝐺1 ∪ 𝐺2 is equitably  𝑘 − 

colorable. 
 
Proof. Let 𝐺1 and 𝐺2 be two graphs with 𝑛1and 𝑛2 vertices 

respectively. Let max  𝜒∗
=
 𝐺1 , 𝜒∗

=
 𝐺2  = 𝑘. With out loss 

of generality,  let  𝜒∗
=
 𝐺1 = 𝑘 . Case 1: Let  𝑛2 ≥ 𝑘 . 

𝜒∗
=(𝐺2) ≤ 𝑘 ≤ 𝑛2 . Since 𝐺2   is equitably 𝑘  colorable. Let 

𝜑1  = {𝑉1, 𝑉2, . . . , 𝑉𝑘} be an equitable color partition of 𝐺1such 
that |𝑉𝑖  |  ≤  |𝑉𝑖+1| and 𝑖 =  1, 2, . . . , 𝑘 −  1 . Let 𝜑2 = 
{𝑊1,𝑊2, . . . ,𝑊𝑘} be an equitable color partition of 𝐺2such that  

|𝑊𝑖  |  ≤ |𝑊𝑖+1  | and 𝑖 =  1, 2, . . . , 𝑘 −  1. Assume that the first 
𝑡 color classes in 𝜑1 has 𝑙 elements and the remaining 𝑘 −  𝑡 
color classes has 𝑙 +  1  elements. Similarly the first  𝑠 color 
classes in 𝜑2 has 𝑚 elements and the remaining 𝑘 −  𝑠 has 
color classes has 𝑚 +  1 elements. Here 0 ≤  𝑠, 𝑡 ≤  𝑘. When 
either 𝑠 or 𝑡 ∈  {0, 𝑘}, {𝑉1∪𝑊1 , 𝑉2∪𝑊2 , . . . , 𝑉𝑘∪𝑊𝑘 } is an 
equitable coloring of 𝐺1 ∪ 𝐺2. In this case 𝜒= 𝐺1 ∪ 𝐺2 ≤  𝑘. 
Let  𝑠, 𝑡 ∉  {0, 𝑘}.  Subcase 1: Let  𝑠 ≤  𝑘 −  𝑡 . Consider the 

partition  𝜑3 =  𝑉1 ∪𝑊𝑘 , 𝑉2 ∪𝑊𝑘−1, … , 𝑉𝑡 ∪𝑊𝑘− 𝑡−1 , 𝑉𝑡+1 ∪
𝑊𝑘−𝑡 , . . . , 𝑉𝑘 ∪𝑊1 . In this partition  𝑠 +  𝑡  classes have 

𝑙 +  𝑚 +  1  elements and the remaining classes contain 
𝑙 +  𝑚 +  2  elements. Hence 𝜑3 is an equitable coloring of   
𝐺1 ∪ 𝐺2 . Subcase 2: Let 𝑡 ≥  𝑘 −  𝑠. Clearly 𝑠 ≥  𝑘 −  𝑡. In 
this case 𝜑3 becomes an equitable coloring of 𝐺1 ∪ 𝐺2 where 
each color class contains either 𝑙 +  𝑚 elements or 𝑙 +  𝑚 +
 1 . Hence 𝜒= 𝐺1 ∪ 𝐺2 ≤  𝑘 = 𝑚𝑎𝑥(𝜒∗

=(𝐺1) , 𝜒∗
=(𝐺2) ) .  

Case 2: Let  𝑛2 ≤  𝑘 . Since 𝐺2  is 𝑛2  equitably colorable, we 
can always obtain an equitable color partition 𝜑2for 𝐺2 with 𝑛2 
color class when each color class contains single vertex. Let 

𝜑2 = {{𝑊1}, {𝑊2}, . . . , { 𝑊𝑛2
}}. Clearly  𝑉1 ∪ {𝑊1}, 𝑉2 ∪

{𝑊2}, … , 𝑉𝑛2
∪ {𝑊𝑛2

}, 𝑉𝑛2+1 , . . . , 𝑉𝑘  is an equitable class 

partition for 𝐺1 ∪ 𝐺2. Hence 𝜒= 𝐺1 ∪ 𝐺2 ≤  𝑘. 
 
Note1: The upper bound for 𝜒=(𝐺1 ∪ 𝐺2)  given in the 

above theorem is attainable. 
For 

example1:  𝜒=(𝐾1,3 ∪ 𝐾2,7)   ≤

𝑚𝑎𝑥(𝜒∗
=(𝐾1,3) , 𝜒∗

=(𝐾2,7) ) .  𝜒= 𝐾1,3 ∪ 𝐾2,7 =

3, 𝜒∗
= 𝐾1,3 = 3 , 𝜒∗

= 𝐾2,7 = 4Therefore 3< 4. The equitable 

chromatic number of   𝐾1,3 ∪ 𝐾2,7  is given in the following 

figure. 
 
 

 
 

Figure 1: 𝜒= 𝐾1,3 ∪ 𝐾2,7 = 3. 
 
Note2: The equality condition attain for the above theorem. 
 
 
Corollary 1.𝜒=(𝐺1 ∪ 𝐺2)  ≤ 𝑚𝑎𝑥(𝜒∗

=
(𝐺1) , 𝜒∗

=
(𝐺2) ).   

 
Proof. In view of the above theorem, if 

𝑘 = 𝑚𝑎𝑥(𝜒∗
=(𝐺1) , 𝜒∗

=(𝐺2) ) , then 𝐺1 ∪ 𝐺2 is equitably  𝑘 

colorable. Hence 
𝜒=(𝐺1 ∪ 𝐺2) ≤ 𝑘 = 𝑚𝑎𝑥(𝜒∗

=(𝐺1) , 𝜒∗
=(𝐺2) ).  
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Theorem 3.2. If 𝐺1  , 𝐺2 , … , 𝐺𝑛 are 𝑙 disjoint graphs then 

𝜒= ∪ 𝐺𝑖 ≤ 𝑚𝑎𝑥 {𝜒∗
=
 𝐺1 , 𝜒∗

=
 𝐺2 , . . , 𝜒∗

=
 𝐺𝑙 }.   

 
Proof. We prove the theorem by the method of induction 

on 𝑛 . The theorem is true for 𝑛 =  2  in view of the above 
theorem. Assume that the theorem is true for 𝑛 <  𝑘. We prove 
the theorem for 𝑛 =  𝑘. 

𝜒=   𝐺𝑖

𝑘

𝑖=1

 = 𝜒=   𝐺𝑖 ∪

𝑘−1

𝑖=1

𝐺𝑘 

≤ max⁡(𝜒∗
=   𝐺𝑖

𝑘−1

𝑖=1

 , 𝜒∗
=
 𝐺𝑘 )

≤ max⁡(max⁡(𝜒∗
=
 𝐺1 , 𝜒∗

=
 𝐺2 , … , 𝜒∗

=
 𝐺𝑘−1 ), 𝜒∗

=
 𝐺𝑘 )

≤ max⁡(𝜒∗
=
 𝐺1 , 𝜒∗

=
 𝐺2 , … 𝜒∗

=
 𝐺𝑘−1 , 𝜒∗

=
 𝐺𝑘 ). 

Corollary 2.𝜒= Pm ∪ 𝑃𝑛 = 2.  
 
Proof. We know that 𝜒= 𝑃𝑚  = 𝜒= 𝑃𝑛 = 2 ,𝜒∗

=
 𝑃𝑚  =

𝜒∗=𝑃𝑛=2  for all 𝑚,𝑛. So 2=𝜒= (Pm)≤𝜒=Pm∪𝑃𝑛≤max2,2. 
Hence 𝜒= Pm ∪ 𝑃𝑛 = 2. 

 

Corollary 3.𝜒= Pn ∪ 𝐶𝑚  =  
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

.  

Proof. It is easy to verify that 𝜒=  ( Pn ) = 𝜒∗
=
 𝑃𝑛 =

2, 𝜒= 𝐶𝑚  =  𝜒∗
=
 𝐶𝑚  =  

2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

 . By the above 

theorem , 𝜒= Pn ∪ 𝐶𝑚  =  
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

 . 

  

Corollary 4.𝜒= Cn ∪ 𝐶𝑚 =  
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

.  

Proof.Similarly from the above corollary, 𝜒= Cn ∪ 𝐶𝑚  =

 
2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

 . 

The equitable chromatic number of  C5 ∪ 𝐶6  is given in 
the following figure. 

 

 
 

Figure 2: 𝜒= C5 ∪ 𝐶6 = 3 
 
Corollary 5.𝜒= Kn ∪ 𝑃𝑛 = 𝑛.  
 
Proof. It is easy to verify that 𝜒= 𝑃𝑛 = 𝜒∗

=
 𝑃𝑛 = 2 and 

𝜒= 𝐾𝑛 = 𝜒∗
=
 𝐾𝑛 = 𝑛 . So  𝑛 = 𝜒=  ( Kn ) ≤ 𝜒= Kn ∪ 𝑃𝑛 ≤

max 𝑛, 2 . Hence 𝜒= Kn ∪ 𝑃𝑛 = 𝑛. 
 
Corollary 6.𝜒= Kn ∪ 𝐶𝑚  = 𝑛.  
 
Proof. It is easy to verify that 𝜒= (Kn ) = 𝜒∗

=
 𝐾𝑛 =

𝑛, 𝜒= 𝐶𝑚  =  𝜒∗
=
 𝐶𝑚  =  

2, 𝑖𝑓 𝑚 = 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑚 = 𝑜𝑑𝑑

 . By the above 

theorem,  𝜒= Kn ∪ 𝐶𝑚  = 𝑛. 

 
Corollary 7.𝜒= Kn ∪ 𝐾𝑛 = 𝑛. 
 
Proof. It is easy to verify that𝜒= Kn = 𝜒∗

=
 𝐾𝑛 = 𝑛. 

So 𝑛 = 𝜒=  (Kn )≤ 𝜒= Kn ∪ 𝐾𝑛 ≤ max 𝑛, 𝑛 . Hence 𝜒= Kn ∪
𝐾𝑛=𝑛. 

 

IV. CONCLUSION 

 
We have attempted to derive a generalized formula for the 

equitable chromatic number of the union of any two graphs in 

this study. The equitable chromatic number of the complete 

graph union path, complete graph union cycle, cycle union 

cycle, path union path, and complete graph union complete 

graph were also found. 
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