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Abstract: Pedestrian detection in low-light environments presents unique challenges for applications such as autonomous 

driving and unmanned aerial vehicle (UAV) surveillance. Traditional detection methods often fall short under poor visibility, 

noise, and variable lighting conditions, resulting in inaccuracies and inefficiencies. This study introduced DuoLightNet, a 

novel dual-path framework designed to enhance pedestrian detection under low-light conditions. The primary objective was 

to develop a robust model capable of effectively identifying pedestrians in challenging lighting scenarios. DuoLightNet 

integrates two specialized networks: GlowEdgeNet, which improves edge clarity and adjusts for lighting variations, and 

NoiseResilientNet, which focuses on reducing noise while preserving the essential details. The model was thoroughly 

evaluated using the Exclusively Dark (ExDark) dataset, achieving a mean average precision (mAP) of 89.0% and processing 

speed of 33.5 frames per second (FPS) under balanced lighting conditions. These results indicate a significant improvement 

over the existing methods, with up to 15% higher mAP in low-light scenarios. In addition, DuoLightNet maintains real-time 

processing capabilities, emphasizing its suitability for time-sensitive applications. However, challenges remain in handling 

extremely low-light conditions and partially occluded pedestrians. Future research should focus on enhancing the 

generalization of the model across broader low-light scenarios and optimizing it for deployment in resource-constrained 

environments. The findings of this study contribute to the advancement of pedestrian detection technologies and offer practical 

solutions for improving the safety and operational efficiency of autonomous and surveillance systems 
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1. Introduction 

Pedestrian detection is a critical component in many 

modern applications such as unmanned aerial vehicle 

(UAV) surveillance systems and autonomous driving 

technologies [1]. Accurate detection and tracking of 

pedestrians are essential for ensuring safety, security, and 

efficiency in these contexts. However, low-light conditions 

present significant challenges to pedestrian detection 

systems, necessitating advanced techniques to overcome 

these obstacles and achieve a reliable performance. In recent 

years, there has been a growing demand for surveillance 

systems and autonomous vehicles capable of operating 

effectively in a wide range of environments, including 

night-time and other low-light settings. For UAVs 

employed in surveillance tasks, detecting pedestrians under 

these conditions is paramount for maintaining situational 

awareness and responding to potential security threats. 

Similarly, in autonomous driving, the ability to identify 

pedestrians in low-light environments is vital for preventing 

accidents and ensuring the safety of both the pedestrians and 

vehicle occupants. As these applications continue to 

expand, the need for robust pedestrian detection solutions 

that perform well under low light conditions has become 

increasingly critical [2]. 
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Low-light environments introduce several complexities 

that significantly hinder the performance of conventional 

pedestrian-detection algorithms. The primary challenge is 

poor visibility, which reduces the contrast between 

pedestrians and the background, making it difficult for 

traditional image-processing techniques to accurately 

identify and delineate human figures. In addition to 

diminished visibility, low-light conditions often exacerbate 

image noise, which further complicates the detection 

process. Noise can obscure important features and lead to 

false positives or missed detections, thereby reducing 

system reliability. Moreover, low-light environments are 

characterized by varied lighting conditions such as shadows, 

glare from artificial lights, and uneven illumination across 

the scene [3]. These factors can create complex visual 

artifacts that standard detection models struggle to interpret, 

resulting in decreased accuracy. Furthermore, the dynamic 

nature of lighting in outdoor environments, such as 

headlights from vehicles or streetlights casting shadows, 

adds an additional layer of complexity, which necessitates 

advanced adaptive techniques. Therefore, novel approaches 

that integrate image enhancement and advanced detection 

algorithms are required. Such approaches must be capable 

of adapting to varying lighting conditions, minimizing 

noise, and enhancing the visibility of pedestrians without 

introducing artifacts. The development of these solutions is 

crucial for the advancement of pedestrian detection 

technologies and their successful deployment in real-world, 

low-light scenarios [4]. 

The task of pedestrian detection in low-light 

environments presents substantial technical challenges that 

conventional image processing and machine-learning 

models struggle to address. Low visibility, exacerbated by 

lighting variations, noise, and reduced contrast, 

significantly impairs the ability of the existing detection 

algorithms to accurately identify and track pedestrians. 

Furthermore, the dynamic nature of outdoor lighting—

characterized by factors such as shadows, glare from 

artificial lights, and uneven illumination—adds complexity 

to the detection process, often leading to false positives or 

missed detections. Despite advancements in image 

enhancement techniques, current approaches fall short of 

achieving the processing efficiency and accuracy required 

for real-time applications in scenarios such as UAV 

surveillance and autonomous driving. This study addressed 

the need for a more effective solution that can reliably detect 

pedestrians in low-light environments [5]. 

The primary objective of this study is to develop a robust 

framework for pedestrian detection that can operate 

effectively under low-light conditions. This study seeks to 

answer the following research question: 

1. How can pedestrian detection algorithms be 

enhanced to perform reliably in low-light 

environments characterized by poor visibility, 

noise, and varied lighting? 

2. What novel techniques can be developed to 

improve the image quality and visibility in low-

light settings without introducing artifacts or losing 

essential details? 

3. How can image processing be optimized for real-

time applications in UAV surveillance and 

autonomous driving to ensure accurate and 

efficient pedestrian detection? 

4. What impact does the integration of dual-path 

networks, such as GlowEdgeNet and 

NoiseResilientNet, have on the robustness and 

accuracy of pedestrian detection systems under 

low-light conditions? 

This study makes significant contributions to the field of 

low-light pedestrian detection. 

1. Development of DuoLightNet: A novel dual-path 

network architecture that significantly enhances 

pedestrian detection in low-light environments by 

combining the strengths of GlowEdgeNet and 

NoiseResilientNet. 

2. Advanced Image Enhancement Techniques: 

Integration of sophisticated methods such as 

dynamic histogram intensity balancing (DHIB) 

and Attention-Guided Denoising (AGD) to 

improve image clarity and noise resilience leads to 

more accurate detection. 

3. Real-Time Robust Performance: Achieved high 

detection accuracy and real-time processing 

capabilities across various low-light scenarios, 

outperforming existing methods under challenging 

conditions. 

This study is of critical importance because it addresses 

a significant gap in the current capabilities of pedestrian 

detection systems, particularly in low-light environments. 

By developing and validating the DuoLightNet framework, 

which integrates advanced image processing techniques 

with dual-path networks, this research has the potential to 

significantly enhance the accuracy and reliability of 

pedestrian detection under challenging lighting conditions. 

The results of this study are expected to contribute to the 

advancement of technologies in autonomous driving and 

UAV surveillance, where the ability to detect pedestrians 

under low-light conditions is vital for ensuring safety and 

operational effectiveness. The proposed solutions can lead 
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to broader applications and improved performance of 

intelligent systems in diverse and complex environments, 

ultimately contributing to the development of safer and 

more reliable autonomous technologies. 

The remainder of this paper is structured as follows: 

Section 2 presents a literature review of existing techniques 

for pedestrian detection under low-light conditions, 

highlighting their limitations. Section 3 details the proposed 

DuoLightNet framework, which integrates GlowEdgeNet 

and NoiseResilientNet to enhance image clarity and 

detection accuracy. Section 4 reports the experimental 

results that demonstrate the effectiveness of DuoLightNet 

compared to existing methods. Section 5 discusses the 

findings, explores the strengths and limitations of the 

approach, and suggests directions for future research. 

Section 6 concludes the paper by summarizing the key 

contributions and implications of this study for applications 

in UAV surveillance and autonomous driving. 

2. Literature Review 
The detection of pedestrians in challenging 

environments such as low-light conditions and complex 

urban scenes is a critical area of research, particularly for 

applications in autonomous driving, video surveillance, and 

UAV-based monitoring. This literature review synthesizes 

the findings from ten recent studies that have addressed 

various aspects of pedestrian detection under these 

challenging conditions, highlighting the methodologies 

employed, the datasets used, and the limitations identified. 

Low-light conditions pose significant challenges for 

pedestrian detection, primarily because of the degradation 

in image quality and the reduced visibility of pedestrians. 

Several studies have proposed methods to enhance image 

quality and improve detection accuracy under such 

conditions. The study in [6] introduced a method for low-

illumination image enhancement specifically designed for 

UAV-based pedestrian detection at night. The method 

utilizes a hyperbolic tangent curve (HTC) for brightness 

enhancement and block-matching and 3D filtering (BM3D) 

for image denoising. Despite showing improvements in 

detection accuracy, this study highlighted the need for 

further optimization to achieve real-time processing speeds. 

Expanding on low-light detection, [7] proposed a two-stage 

fusion method that leverages visible-light and thermal 

infrared images to improve detection accuracy. The use of 

the NightOwls dataset demonstrated significant 

improvements over traditional methods, but reliance on 

large-scale multispectral data remains a limitation. 

To address the specific challenges of nighttime 

detection, the authors of [8] combined multiple sensors into 

an AI-based detection framework. This study utilized the 

KAIST Multispectral Pedestrian Benchmark and 

demonstrated superior performance under low-light 

conditions. However, the study also pointed out the high 

computational complexity associated with the processing of 

multispectral data. 

In another approach to low-light detection, the study in 

[9] developed a multitask learning framework that 

simultaneously enhances image quality and performs 

pedestrian detection. Using the CityPersons dataset, this 

method outperformed state-of-the-art approaches in dark 

environments. However, the generalizability of this method 

to normal lighting conditions has not yet been fully 

explored, representing a potential area for future research. 

Attention mechanisms have also been explored to 

improve pedestrian detection in real-time. The work in [10] 

proposed a deep learning model that incorporates an 

adaptive selection mechanism that utilizes visible or 

infrared images depending on lighting conditions. This 

method achieved high accuracy in complex environments; 

however, potential issues with false positives in highly 

dynamic scenes were noted. 

The challenge of generalizing pedestrian detection 

models across different domains, such as varying weather 

conditions or urban settings, has been addressed through 

domain-adapted transfer learning. The study in [11] 

introduced a framework that pre-trained a model on low-

resolution thermal imagery captured by UAVs and fine-

tuned it using high-resolution data. Although this approach 

improves the cross-domain detection performance, it 

remains dependent on the availability of labeled target 

domain data, which can be a significant limitation. 

Given the computational constraints of deploying 

pedestrian detection systems on mobile platforms such as 

drones, there has been a growing interest in developing 

lightweight detection engines. The authors of [12] presented 

a two-stage low-complexity detection network combined 

with an adaptive region-focusing technique. This approach, 

tested on the Caltech Pedestrian Dataset, achieved a balance 

between the detection accuracy and computational 

efficiency. However, the slight reduction in accuracy 

compared with more complex models suggests room for 

further optimization. 

To address the need for real-time detection, the work in 

[13] proposed a multispectral image fusion technique using 

a deep neural network specifically designed for challenging 
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environments. Although the model demonstrated strong 

real-time capabilities, it struggled with extremely crowded 

scenes, indicating a limitation in handling high-density 

environments. 

Finally, [14] explored the use of attention-guided 

mechanisms in pedestrian detection, particularly in complex 

environments where occlusions and distractions are 

prevalent. The HRBUST-LLPED dataset [15] used in this 

study revealed that attention mechanisms could 

significantly improve detection accuracy in such scenarios. 

However, the study also highlighted potential difficulties in 

managing extreme occlusions, which remains an area for 

further investigation. 

Table 1: Comparative Analysis of Pedestrian Detection Methods in Challenging Environments 

Reference Objective Method Used Dataset Used Accuracy Limitations 

[6] Enhance low-light 

UAV pedestrian 

detection 

HTC for brightness 

enhancement, 

BM3D for denoising 

Custom low-light 

UAV dataset 

Improved 

detection accuracy 

Requires further 

optimization for 

processing speed 

[7] Improve low-light 

pedestrian detection 

Weakly supervised 

learning 

NightOwls dataset Significant 

improvement over 

traditional methods 

High dependency on 

large amounts of 

unlabeled data 

[8] Pedestrian detection 

in low-light using 

multi-spectral 

Deep learning with 

fusion of visible and 

thermal images 

KAIST 

Multispectral 

Pedestrian 

Benchmark 

Superior 

performance in 

low-light 

conditions 

High computational 

complexity 

[9] Improve detection 

in dark 

environments 

Multi-task learning 

with feature fusion 

and sharing 

CityPersons 

dataset 

Outperforms state-

of-the-art in low-

light scenarios 

Limited 

generalizability to 

normal-light 

conditions 

[10] Real-time 

pedestrian detection 

with attention 

mechanism 

Deep learning 

incorporating an 

attention mechanism 

Custom low-light 

and complex 

environment 

dataset 

High detection 

accuracy in 

complex 

environments 

Potential issues with 

false positives in 

dynamic scenes 

[11] Enhance 

generalization of 

pedestrian detection 

models 

Domain-adapted 

transfer learning 

Caltech Pedestrian 

Dataset, ETH 

Dataset 

Improved cross-

domain detection 

performance 

Reliance on 

availability of target 

domain data 

[12] Night-time 

pedestrian detection 

Multi-spectral 

imaging combined 

with deep learning 

KAIST 

Multispectral 

Pedestrian 

Benchmark 

Superior night-

time detection 

accuracy 

Requires multi-

spectral imaging 

equipment 

[13] Develop 

lightweight 

pedestrian detection 

engine 

Two-stage low-

complexity network 

with adaptive region 

focusing 

Caltech Pedestrian 

Dataset 

Precision: 85.18%, 

Miss Rate: 25.16% 

Slightly reduced 

accuracy compared to 

more complex models 

[14] Real-time detection 

in challenging 

environments 

Cascade network 

with feature pyramid 

Custom urban 

environment 

dataset 

Strong real-time 

detection, 

especially for small 

objects 

May struggle in 

extremely crowded 

scenes 
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[15] Detect pedestrians 

in complex 

environments 

Attention-guided 

detection network 

Custom complex 

environment 

dataset 

Improved 

detection in 

complex scenarios 

Difficulty in handling 

extreme occlusions 

 

Research Gaps: The reviewed literature revealed several 

gaps that future research should address. First, although 

many methods have improved the detection accuracy, there 

is a need for further optimization to achieve real-time 

performance in resource-constrained environments. 

Second, the generalization of pedestrian detection models 

across diverse domains remains an open challenge, 

requiring more robust domain adaptation techniques. Third, 

the handling of extreme occlusions and crowded scenes 

remains problematic for the current models, indicating the 

need for more sophisticated methods to manage these 

challenges. In addition, the trade-off between accuracy and 

computational efficiency, particularly in lightweight 

models, must be better balanced. Finally, while some 

methods have begun to address varying lighting conditions, 

there is a need for models that can dynamically adapt 

without relying on specialized equipment, such as 

multispectral cameras. 

3. Proposed Methodology: DuoLightNet - A 

Dual-Path Framework for Low-Light Image 

Enhancement and Pedestrian Detection 

The DuoLightNet framework was designed to enhance 

pedestrian detection in low-light environments by 

employing a dual-path approach that integrates advanced 

image enhancement techniques with robust detection 

models. This methodology aims to address the challenges of 

poor visibility, noise, and variable lighting conditions 

inherent in low-light scenarios, ultimately transforming the 

input image data into accurate pedestrian predictions, as 

shown in figure 1. 

 

Figure 1. Enhanced Pedestrian Detection in Low-Light Conditions Using DuoLightNet Framework 

http://www.ijritcc.org/
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The methodological components of the proposed model 

for enhanced pedestrian detection in low-light conditions 

focus on a series of image processing and deep learning 

techniques aimed at improving detection accuracy and 

reliability, as shown in Figure 1. Low-Illumination Image 

Enhancement is critical, where methods such as dynamic 

histogram intensity balancing (DHIB) adjust the frame 

brightness and contrast through a series of steps involving 

histogram initialization, cumulative distribution function 

calculation, dynamic intensity mapping, and intensity 

adjustment to achieve a uniform and balanced brightness 

distribution. This is complemented by the Tailored 

Adaptive Local Contrast Stretching (TALCS) method, 

which enhances local contrast using a modified contrast-

limited adaptive histogram equalization (CLAHE) method 

without causing overexposure. To address noise, Attention-

Guided Denoising (AGD) with BM3D was employed, 

utilizing an attention mechanism and 3D filtering to 

minimize noise while preserving essential details. Image 

Sharpening and Detail Enhancement further improve 

pedestrian differentiation through hierarchical multiscale 

retinex with guided restoration (HMRGR) for edge 

enhancement and Structural Detail Augmentation (SDA) 

with guided filtering, which smooths images while retaining 

critical details. The pedestrian detection stage leveraged two 

deep learning models: GlowEdgeNet (GEN) and 

NoiseResilientNet (NRN). GlowEdgeNet utilizes a dual-

path network architecture designed for lighting variation 

handling and edge enhancement, featuring components such 

as the Lighting Variation Path, Edge Enhancement Path, 

Fusion Layer, and Fully Connected Layers, which outputs 

pedestrian classification and bounding box regression. In 

contrast, NoiseResilientNet emphasizes noise reduction 

and detail preservation with components such as Denoising 

Layers and a Detail Preservation Module to achieve precise 

classification and localization of pedestrians. To enhance 

the model robustness, Contextual Low-Light 

Augmentation (CLLA) introduces synthetic low-light 

variations through intensity scaling, Gaussian noise, and 

spatial transformations, thereby simulating diverse lighting 

conditions. Finally, post-processing refines the detection 

outputs using Adaptive Bounding Box Refinement 

(ABBR), which applies Non-Maximum Suppression 

(NMS) and regression techniques to accurately adjust 

bounding box coordinates, ensuring precise and reliable 

pedestrian detection even in challenging low-light 

environments. 

3.1 Data used : The Exclusively Dark (ExDark) Dataset 

[16] was utilized for implementing and evaluating the 

DuoLightNet framework, providing a robust testbed for 

pedestrian detection in low-light environments. This dataset 

comprises over 7,000 images designed to reflect realistic 

low-light conditions across various scenarios, making it 

highly suitable for testing the proposed methodology's 

effectiveness. The key features of the ExDark dataset 

include diverse lighting conditions, as shown in figure 2, 

comprehensive annotations, and realistic scenarios. The 

dataset features a wide range of lighting scenarios, such as 

low ambient light, shadows, and artificial glare, presenting 

significant challenges for traditional image processing 

techniques, and is ideal for assessing DuoLightNet's 

capabilities in enhancing image quality and detection 

accuracy. Each image is meticulously annotated with 

bounding boxes and class labels, focusing on pedestrian 

detection amidst complex backgrounds and lighting 

variations, supporting the evaluation of the model's 

precision, recall, and mean average precision (mAP). The 

dataset captures real-world environments, including urban, 

rural, and indoor settings, ensuring DuoLightNet is tested 

on scenarios that mimic actual deployment environments 

like UAV surveillance and autonomous driving. 

The ExDark dataset is distributed across various scene 

types and lighting conditions to ensure a balanced 

evaluation of the model. Scene types include urban 

environments (40%), rural landscapes (25%), indoor 

settings (20%), and mixed scenarios (15%). Lighting 

variations include low ambient light (35%), shadowed 

regions (30%), glare and reflections (20%), and balanced 

lighting (15%). This comprehensive distribution enables 

rigorous evaluation of DuoLightNet, validating its 

effectiveness in improving pedestrian detection in low-light 

scenarios. 

 

 

Figure 2. Sample images from the ExDark dataset 
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3.2 Low-Illumination Image Enhancement 

Low-light video frames often suffer from inadequate 

brightness, making it difficult for detection algorithms to 

distinguish pedestrians from the background. Our approach 

focuses on enhancing these frames to ensure reliable 

pedestrian detection. This enhancement is achieved through 

a series of steps: Adaptive Brightness Adjustment, Contrast 

Enhancement, and Noise Reduction. 

3.2.1 Adaptive Brightness Adjustment: The Adaptive 

Brightness Adjustment using the Dynamic Histogram-

Intensity Balancing (DHIB) method provides an effective 

solution for enhancing low-light video frames, improving 

visibility and contrast while preserving natural details. This 

method is a critical component of the DuoLightNet 

framework, enabling reliable pedestrian detection in 

challenging low-light environments. By incorporating this 

technique, we achieve significant improvements in 

pedestrian detection accuracy and robustness, making it 

suitable for practical applications in autonomous driving 

and UAV surveillance. 

Dynamic Histogram-Intensity Balancing (DHIB) Method:  

The DHIB method aims to enhance the brightness of low-

light video frames by adjusting the histogram distribution 

of intensity values dynamically, ensuring a uniform 

brightness level across frames while preserving natural 

details. 

Context of Video Frames: 

• Frame Size: For this discussion, we assume a 

unique frame size of 1920 × 1080 pixels, typical 

for high-definition video. 

• Intensity Range: Each pixel's intensity value 

ranges from 0 to 255 (8-bit depth), where 0 

represents complete darkness and 255 represents 

maximum brightness. 

• Challenge: Low-light frames have a skewed 

intensity distribution towards lower values, 

reducing visibility and contrast. 

 

Figure 3. Histogram Analysis of Video Frame Intensity Distribution in Low-Light Conditions 

This figure  3 illustrates the intensity distribution of video 

frames with a resolution of 1920 x 1800 pixels, comparing 

low-light and high-brightness scenarios. The histogram 

shows a skewed intensity distribution towards low intensity, 

highlighting the challenge of low visibility and contrast 

inherent in low-light video frames. The intensity range is 

mapped from 0 (dark) to 255 (bright), emphasizing the 

skewness towards darker intensities in low-light frames 

[17]. 

1. Initialize Histogram [18]: The first step of the algorithm 

involves initializing a histogram array to count the 

frequency of each pixel intensity in the input frame. Given 

that pixel intensities range from 0 to 255, the histogram is a 

256-element array where each element corresponds to a 

particular intensity level. 

Histogram Calculation: To calculate the histogram of the 

image by iterating through each pixel in the frame and 

incrementing the corresponding histogram value based on 

the pixel's intensity. 

Given a frame 𝐹(𝑥, 𝑦)  with intensity values 𝐼 ∈ [0,255] , 

the histogram 𝐻(𝑖) is calculated as follows: 

𝐻(𝑖) = ∑  1919
𝑥=0 ∑  1079

𝑦=0 𝛿(𝐹(𝑥, 𝑦) − 𝑖)                                     (1) 

where 𝛿 is the Dirac delta function, and the frame size is 

1920 × 1080.  

to calculate the histogram of the image by iterating through 

each pixel in the frame and incrementing the corresponding 

histogram value based on the pixel's intensity. 

2. Cumulative Distribution Function (CDF): With the 

histogram computed, the algorithm proceeds to calculate the 

http://www.ijritcc.org/
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Cumulative Distribution Function (CDF)[19]. The CDF is 

essential for determining how the pixel intensities should be 

mapped to achieve a balanced brightness distribution. 

Compute the CDF to determine the cumulative probability 

of the intensity values by initializing the CDF array. The 

first element of the CDF was set to the first element of the 

histogram. For each subsequent intensity level, the CDF was 

computed as the sum of the current histogram value and the 

preceding CDF value. 

𝑐𝑑𝑓[0] =  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[0] 

𝑓𝑜𝑟 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 255 𝑑𝑜  

𝑐𝑑𝑓[𝑖] =  𝑐𝑑𝑓[𝑖 − 1] +  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[𝑖] 

3. Dynamic Intensity Mapping: The Dynamic Intensity 

Mapping step uses the CDF to adjust the intensity of each 

pixel, spreading the intensities more uniformly across the 

range. This step is crucial for improving the visibility of the 

details in the frame. Dynamic mapping is applied to adjust 

the intensity levels using CDF to ensure balanced 

brightness. 

Intensity Remapping: For algorithm calculates a new 

intensity value for each pixel in the frame by normalizing 

the CDF value corresponding to the pixel's original 

intensity. This remapping enhances dynamic range and 

contrast. 

𝑡𝑜𝑡𝑎𝑙_𝑝𝑖𝑥𝑒𝑙𝑠 =  𝑤𝑖𝑑𝑡ℎ ∗  ℎ𝑒𝑖𝑔ℎ𝑡 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 (𝑥, 𝑦) 𝑖𝑛 𝐹 𝑑𝑜 

    𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  𝐹(𝑥, 𝑦) 

    𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
(𝑐𝑑𝑓[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦] ∗  255)

𝑡𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠

 

    𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑓𝑟𝑎𝑚𝑒[𝑥, 𝑦]  =  𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

This step ensures that the intensity levels are redistributed, 

allowing for a better separation between the different 

intensity levels in the image. 

4 Dynamic Scaling Factor:  Computes a dynamic scaling 

factor α that adapts the intensity adjustment based on the 

local lighting conditions in the image. Ensuring 

adaptability across frames. 

The scaling factor was calculated as the ratio of the 

maximum value of the CDF to its mean value. This dynamic 

adjustment helps prevent overexposure in bright areas while 

enhancing the darker regions. 

𝛼 =
max(𝐶𝐷𝐹)

mean (𝐶𝐷𝐹)
                                                   (2) 

In this step, the scaling factor α is applied to the adjusted 

frame, ensuring that the intensity of each pixel is 

appropriately scaled. This step refines intensity mapping 

to achieve a balanced brightness distribution. 

5 Final Intensity Adjustment: Finally, the enhanced 

frame 𝐹final (𝑥, 𝑦), which exhibits improved brightness 

and contrast. This enhanced frame is better suited for 

subsequent processing, such as pedestrian detection.  

The final adjusted intensity for each pixel is calculated, 
and the final output is a frame where details are more 

visible and the overall appearance is more balanced, 

facilitating effective analysis under low-light conditions. 

𝑅𝑒𝑡𝑢𝑟𝑛 𝐹𝑓𝑖𝑛𝑎𝑙(𝑥,𝑦)𝑎𝑠𝑓𝑖𝑛𝑎𝑙𝑓𝑟𝑎𝑚𝑒 

Algorithm 1: Adaptive Brightness Adjustment Using Dynamic Histogram-Intensity Balancing (DHIB) 

Input: 

• Frame 𝐹(𝑥, 𝑦) : A low-light video frame with dimensions 𝑤𝑖𝑑𝑡ℎ ×  ℎ𝑒𝑖𝑔ℎ𝑡. 

• 𝑥, 𝑦 : Pixel coordinates. 

• Intensity Range: 0 to 255 (8-bit grayscale image). 

Output: 

• Enhanced Frame 𝐹𝑟𝑎𝑚𝑒final (𝑥, 𝑦) : The brightness-enhanced frame with improved visibility and 

contrast. 

Steps: 

1. Initialize histogram: 

    histogram = [0] ∗  256 
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2. Calculate histogram: 

    for each pixel (𝑥, 𝑦) in F do 

        intensity = 𝐹(𝑥, 𝑦) 

        ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦]+=  1 

3. Compute Cumulative Distribution Function (CDF): 

    𝑐𝑑𝑓[0]  =  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[0] 
    for i from 1 to 255 do 

        𝑐𝑑𝑓[𝑖] =  𝑐𝑑𝑓[𝑖 − 1] +  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[𝑖] 
4. Dynamic Intensity Mapping: 

    total_pixels = width * height 

    Initialize 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑓𝑟𝑎𝑚𝑒 as 2D array of size 𝑤𝑖𝑑𝑡ℎ ×  ℎ𝑒𝑖𝑔ℎ𝑡 

    for each pixel (x, y) in F do 

        original_intensity = F(x, y) 

        adjusted_intensity = 
(𝑐𝑑𝑓[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦]∗ 255)

𝑡𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠
 

        𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑓𝑟𝑎𝑚𝑒[𝑥,𝑦] =  𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

5. Calculate Dynamic Scaling Factor: 

    alpha = 
max(𝑐𝑑𝑓)

𝑚𝑒𝑎𝑛(𝑐𝑑𝑓)
 

6. Apply Scaling Factor: 

    Initialize 𝑓𝑖𝑛𝑎𝑙𝑓𝑟𝑎𝑚𝑒  as 2D array of size 𝑤𝑖𝑑𝑡ℎ ×  ℎ𝑒𝑖𝑔ℎ𝑡 

    for each pixel (x, y) in 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑓𝑟𝑎𝑚𝑒 do 

        𝑓𝑖𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑎𝑙𝑝ℎ𝑎 ∗  𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑓𝑟𝑎𝑚𝑒[𝑥,𝑦] 

        𝑓𝑖𝑛𝑎𝑙𝑓𝑟𝑎𝑚𝑒[𝑥,𝑦] = min(max(𝑓𝑖𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 , 0) , 255) 

7. Output Enhanced Frame: 

    Return 𝐹final (𝑥, 𝑦)  as 𝑓𝑖𝑛𝑎𝑙𝑓𝑟𝑎𝑚𝑒  

End Algorithm 

 
 

The Adaptive Brightness Adjustment algorithm 

effectively enhances low-light video frames by 

redistributing the intensity values using the dynamic 

histogram intensity balancing method. This process yields 

frames with improved visibility and contrast, which are 

essential for accurate pedestrian detection in challenging 

lighting environments. Through careful manipulation of the 

histogram and cumulative distribution, the algorithm 

achieves natural enhancement that preserves important 

details while adapting to varying lighting conditions. 

3.2.2 Contrast Enhancement 

Contrast enhancement is a crucial step for improving 

the visibility of video frames captured under low-light 

conditions. The Tailored Adaptive Local Contrast 

Stretching (TALCS) method is designed to effectively 

enhance the local contrast while preserving the natural 

appearance of the scene. This method addresses the uneven 

illumination typically found in low-light environments, 

ensuring that critical features such as pedestrians are more 

discernible. 

Tailored Adaptive Local Contrast Stretching (TALCS): 

To enhance local contrast by applying a context-aware 

contrast stretching approach, preserving the natural 

appearance of the image using a modified contrast-limited 

adaptive histogram equalization (CLAHE) technique[20]. 

Context of Video Frames: 

• Local Contrast: In low-light frames, contrast may 

be locally varied due to uneven lighting, resulting 

in loss of detail in darker regions. 

• Natural Appearance: It's essential to maintain the 

scene's natural appearance while enhancing 

contrast to avoid overexposed or unnatural-looking 

regions. 

In the context of enhancing contrast for low-light video 

frames, the Tailored Adaptive Local Contrast Stretching 

(TALCS) method employs a structured approach to balance 

local intensity variations while preserving the natural 

appearance of the scene. For each non-overlapping tile 

𝑇(𝑥, 𝑦)  within a frame 𝐹(𝑥, 𝑦) , the local histogram 
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𝐻local (𝑖)  is computed, capturing the distribution of pixel 

intensities using the Dirac delta function, 𝛿, to count pixels 

at each intensity 𝑖 . This computation allows for detailed 

analysis of local contrast characteristics. The clip limit 𝛽 is 

then calculated as 𝛽 = 𝛾 ×
 tile size 

 number of bins 
, where 𝛾 is a user-

defined parameter that prevents excessive noise 

amplification and ensures appropriate scaling of contrast 

enhancement. Subsequently, the contrast-limited 

cumulative distribution function (CDF) is derived for each 

tile, given by CDFclip  (𝑖, 𝑥, 𝑦) =  min (
∑𝑗=0

𝑖  𝐻local (𝑗)

 tile size 
, 𝛽) , 

which ensures that the cumulative intensity distribution 

does not exceed the predefined clip limit, thereby 

maintaining balance in intensity values. Using the adjusted 

CDF, adaptive intensity mapping is performed, where each 

pixel intensity is recalibrated according to 𝐹enhanced (𝑥, 𝑦) =
255

 tile size 
× CDFclip (𝐹(𝑥, 𝑦), 𝑥, 𝑦) , effectively redistributing 

pixel intensities to enhance local contrast. Finally, bilinear 

interpolation is applied to smooth transitions between 

adjacent tiles, calculated as 𝐹final (𝑥, 𝑦) = ∑𝑖=0
1  ∑𝑗=0

1  𝑤𝑖𝑗 ×

𝐹enhanced (𝑥 + 𝑖, 𝑦 + 𝑗), where 𝑤𝑖𝑗  are interpolation weights 

determined by the proximity to tile centers. This process 

ensures a seamless blend of tiles, enhancing the frame's 

visibility and detail without introducing artifacts, thus 

improving the overall quality of the frame for applications, 

such as pedestrian detection under low-light conditions. 

3.2.3 Noise Reduction 

In low-light video frames, noise poses a significant 

challenge for accurate image analysis, often obscuring the 

critical features necessary for tasks such as pedestrian 

detection. Attention-Guided Denoising (AGD) with BM3D 

offers a sophisticated solution by integrating an attention 

mechanism with a block-matching and 3D filtering (BM3D) 

method to effectively reduce noise while preserving 

essential image details. Initially, the frame 𝐹(𝑥, 𝑦)  is 

divided into overlapping patches 𝑃𝑘, where block matching 

identifies and groups similar patches, denoted as 𝑃𝑘 = 

{𝐹(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈  block 𝑘} . This grouping facilitates 

collaborative filtering by exploiting patch redundancies. 

The attention map 𝐴(𝑥, 𝑦)  is then calculated using the 

gradient magnitude, 𝐴(𝑥, 𝑦) = √(
∂𝐹

∂𝑥
)

2

+ (
∂𝐹

∂𝑦
)

2

, to 

highlight regions of significant detail, effectively guiding 

the denoising process. The weighting function 𝑤(𝑥, 𝑦) =
𝐴(𝑥,𝑦)

max(𝐴)
 assigns higher weights to detailed areas, ensuring that 

these regions receive more focused noise reduction efforts. 

The BM3D filtering is subsequently applied to the weighted 

patches, 𝑃̂𝑘 = BM3D(𝑃𝑘 , 𝑤(𝑥, 𝑦)), where the collaborative 

filtering process removes noise while maintaining texture 

integrity. Finally, the denoised frame 𝐹denoised (𝑥, 𝑦)  is 

reconstructed by aggregating these filtered patches, 

𝐹denoised (𝑥, 𝑦) = 
1

|𝑃𝑘|
∑𝑘  𝑃̂𝑘, effectively restoring the frame's 

clarity and preserving essential details. This attention-

guided approach ensures that noise reduction is both 

effective and adaptive, enhancing the frame's quality 

without compromising critical features, thereby optimizing 

the frame for further analytical tasks in low-light 

environments. 

 

4(a)                      4(b) 

Figure 4 : Low-light image to Enhanced Image 

Figure 4(a) depicts a low-light image, illustrating the 

challenges of diminished visibility and contrast, as shown in 

the obscured pedestrian figure. Figure 4(b) shows the 

image following the application of the enhancement 

algorithm, resulting in increased brightness, improved 

contrast, and reduced noise, thereby enhancing the visibility 

of the pedestrian. 

3.3 Image Sharpening and Detail Enhancement 

In the context of enhanced pedestrian detection under 

low-light conditions, image sharpening and detail 

enhancement play pivotal roles in accentuating the critical 

features that enable accurate detection. This process 

involves refining the visibility of edges and textures, which 

is essential for differentiating pedestrians from complex 

backgrounds. This section explores the hierarchical 

multiscale retinex with guided restoration (HMRGR) 

method as a sophisticated approach to edge enhancement, 

particularly suited for environments with poor illumination. 

3.3.1 Edge Enhancement 

Edge enhancement is vital for improving the clarity and 

definition of objects in an image, thereby facilitating more 

accurate pedestrian detection. The hierarchical multiscale 

retinex with guided restoration (HMRGR) technique is 

particularly effective in this regard, as it combines 

multiscale retinex (MSR) and guided filtering to enhance 

image features. 
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Hierarchical Multi-Scale Retinex with Guided 

Restoration (HMRGR) 

Conceptual Framework: The HMRGR method is 

designed to mitigate the challenges posed by low-light 

conditions by enhancing edge details and textures. The core 

principle of retinex theory is to decompose an image into its 

illumination and reflectance components. This 

decomposition allows for the correction of uneven 

illumination, thereby preserving the essential features that 

are critical for pedestrian detection. 

Multi-Scale Retinex (MSR): The Multi-Scale Retinex 

approach applies the retinex model at various scales to 

capture a wide range of details, from fine textures to larger 

structural elements. This is achieved by convolving the 

image with Gaussian kernels of different standard 

deviations σ\sigmaσ, resulting in multiple outputs that 

highlight various spatial frequencies. 

𝑅(𝑥, 𝑦) = ∑  𝑛
𝑖=1 𝑤𝑖[log (𝐼(𝑥, 𝑦) + 1) − log (𝐺𝑖(𝑥, 𝑦) ∗

𝐼(𝑥, 𝑦) + 1)]                                      (3) 

Where: 

• 𝑅(𝑥, 𝑦) is the Retinex output at pixel (𝑥, 𝑦). 

• 𝐼(𝑥, 𝑦) is the input image intensity at pixel (𝑥, 𝑦). 

• 𝐺𝑖(𝑥, 𝑦)  is the Gaussian kernel at scale 𝑖  with 

standard deviation 𝜎𝑖. 

• 𝑤𝑖  is the weight assigned to each scale. 

This multi-scale approach enhances the reflectance 

component across different spatial frequencies, thereby 

normalizing illumination and emphasizing details crucial 

for detecting pedestrians against low-contrast backgrounds. 

Guided Restoration: Guided filtering is employed within 

the Retinex framework to further refine image details. This 

filter utilizes a guidance image, often the original image, to 

preserve edges while smoothing areas prone to noise: 

𝑞(𝑥, 𝑦) = 𝑎(𝑥, 𝑦)𝐼(𝑥, 𝑦) + 𝑏(𝑥, 𝑦)                                    (4) 

Where: 

• 𝑞(𝑥, 𝑦) is the output image. 

• 𝑎(𝑥, 𝑦)  and 𝑏(𝑥, 𝑦)  are linear coefficients 

determined by local mean and variance within a 

neighborhood window. 

Algorithm 2: Enhanced Edge and Detail Enhancement using Multi-Scale Retinex with Guided Filtering 

Algorithm EnhancedImageSharpening(input_image) 

    # Step 1: Multi-Scale Retinex Computation 

    Input: input_image (2D array of pixel intensities) 

    Output: enhanced_image (2D array of pixel intensities) 

     

    1. Initialize scales as a list of standard deviations for Gaussian smoothing 

    2. For each scale σ in scales do: 

        a. Apply Gaussian smoothing to input_image with standard deviation σ to get smoothed_image 

        b. Calculate the Retinex output: 

           - For each pixel (x, y) in input_image do: 

               i. Compute Retinex_output(x, y) = log(input_image(x, y) + 1) - log(smoothed_image(x, y) + 1) 

        c. Store Retinex_output for each scale 

     

    # Step 2: Guided Filtering 

    3. Set the guidance image as input_image 

    4. Define a window size for local statistics computation 

    5. For each pixel (x, y) in input_image do: 

        a. Extract a local window centered at (x, y) from input_image 

        b. Compute local mean and variance within the window 

        c. Calculate linear coefficients a(x, y) and b(x, y): 

           - a(x, y) = variance / (variance + ε), where ε is a regularization parameter 

           - b(x, y) = mean - a(x, y) * guidance_image(x, y) 

        d. Compute the guided filter output: 

           - Guided_output(x, y) = a(x, y) * input_image(x, y) + b(x, y) 

     

    # Step 3: Hierarchical Enhancement 
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    6. Initialize an empty image Enhanced_output of the same size as input_image 

    7. For each Retinex output do: 

        a. Integrate the Retinex output with the Guided_output: 

           - Enhanced_output(x, y) = Retinex_output(x, y) + Guided_output(x, y) 

        b. Normalize Enhanced_output to ensure pixel values are within the valid range [0, 255] 

     

    # Step 4: Output Refinement 

    8. Combine Enhanced_output across all scales: 

        a. Initialize Final_output as an empty image 

        b. For each pixel (x, y) in Enhanced_output do: 

           - Final_output(x, y) = average of Enhanced_output(x, y) across all scales 

        c. Normalize Final_output to ensure pixel values are within the valid range [0, 255] 

     

    9. Return Final_output as enhanced_image 

End Algorithm 
 

The Enhanced Edge and Detail Enhancement algorithm 

integrates Multi-Scale Retinex (MSR) and Guided Filtering 

to improve image clarity, particularly in low-light 

conditions. The process begins by applying Gaussian 

smoothing at multiple scales to the input image, capturing 

both fine and coarse details. For each scale, the algorithm 

calculates the Retinex output by computing the logarithmic 

difference between the original and smoothed images, 

thereby enhancing the reflectance component and 

normalizing illumination imbalances. Subsequently, the 

algorithm employs guided filtering, utilizing the original 

image as a guidance map to compute local statistics, which 

determine the linear coefficients that preserve edges and 

smooth regions. This filtering step further refines the 

Retinex outputs by integrating edge-preserving details. The 

hierarchical enhancement phase then combines the outputs 

from both processes across multiple scales, resulting in 

improved edge detail and texture enhancement. Finally, the 

outputs are normalized and averaged across scales, ensuring 

that pixel values remain within a valid range and producing 

an enhanced image with heightened contrast and detail. This 

comprehensive approach is particularly effective in 

improving the visibility of pedestrians in low-light 

environments by accentuating critical features that facilitate 

more accurate detection. 

3.3.2 Structural Detail Augmentation (SDA) with 

Guided Filtering 

Structural Detail Augmentation (SDA) aims to enhance 

fine details and textures in images by employing a targeted 

approach that emphasizes the preservation of structural 

information. This method is particularly valuable for images 

captured under suboptimal lighting conditions, where 

details may be obscured or lost due to noise and poor 

contrast. 

Guided Filtering plays a pivotal role in this process by 

acting as an edge-preserving filter that smooths images 

while retaining critical details. The filter operates by using 

a guidance image, which can be the original image or a 

smoothed version, to direct the filtering process. This allows 

for effective denoising and detail enhancement without 

sacrificing structural integrity. 

Equation and Algorithm Details: The guided filter 

operates by computing a linear transformation of the input 

image using the guidance image. For a given input image 𝐼 

and a guidance image 𝐺 , the output 𝑂  is computed as 

follows: 

𝑂(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) ⋅ 𝐼(𝑥, 𝑦) + 𝑏(𝑥, 𝑦)                 (5) 

Where: 

• 𝑂(𝑥, 𝑦) is the output image at pixel (𝑥, 𝑦). 

• 𝐼(𝑥, 𝑦) is the input image intensity at pixel (𝑥, 𝑦). 

• 𝐺(𝑥, 𝑦)  is the guidance image intensity at pixel 

(𝑥, 𝑦). 

•  𝑎(𝑥, 𝑦)  and 𝑏(𝑥, 𝑦)  are linear coefficients 

computed based on the local mean 𝜇 and variance 

𝜎2 within a window around (𝑥, 𝑦) : 

𝑎(𝑥, 𝑦) =
𝜎2(𝑥, 𝑦)

𝜎2(𝑥, 𝑦) + 𝜖

𝑏(𝑥, 𝑦) = 𝜇(𝑥, 𝑦) − 𝑎(𝑥, 𝑦) ⋅ 𝜇𝐺(𝑥, 𝑦)

                                 (6) 

Where: 

• 𝜇(𝑥, 𝑦) is the mean of the input image within the 

local window centered at (𝑥, 𝑦). 
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• 𝜎2(𝑥, 𝑦) is the variance of the input image within 

the same window. 

• 𝜇𝐺(𝑥, 𝑦) is the mean of the guidance image within 

the local window. 

• 𝜖  is a regularization parameter that controls the 

smoothness of the filter. 

The Structural Detail Augmentation with Guided Filtering 

technique is particularly advantageous for applications 

requiring high-fidelity detail preservation, such as 

surveillance and autonomous driving in low-light 

environments. By focusing on the enhancement of structural 

details and textures, this method provides a significant 

improvement in image clarity, making it easier to detect and 

recognize pedestrians and other critical features in 

challenging lighting conditions. The use of guided filtering 

ensures that the process remains efficient and effective, 

preserving essential information while enhancing the 

overall perceptual quality of the image[21]. 

3.4 Pedestrian Detection 

The task of pedestrian detection in low-light conditions 

requires sophisticated deep learning models capable of 

overcoming challenges such as lighting variability, noise 

interference, and inadequate contrast. The GlowEdgeNet 

(GEN) and NoiseResilientNet (NRN) models are 

meticulously designed to address these issues, focusing on 

enhancing edge clarity, adjusting lighting variations, 

reducing noise, and preserving crucial details. The 

following sections provide an in-depth exploration of these 

models, detailing their architecture and processing 

mechanisms. 

3.4.1 Deep Learning Model: GlowEdgeNet (GEN) 

GlowEdgeNet (GEN) is a dual-path convolutional 

neural network specifically engineered to address lighting 

variations and edge clarity issues in low-light images. The 

architecture is designed to concurrently process images 

through two paths: the Lighting Variation Path and the Edge 

Enhancement Path as shown in figure 5. This dual-path 

approach allows GEN to extract complementary features 

that enhance pedestrian detection performance. 

 

Figure 5. Proposed GEN Model Architecture 

The GlowEdgeNet (GEN) model is an advanced 

convolutional neural network architecture designed to 

enhance pedestrian detection in low-light conditions by 

addressing challenges such as lighting variations and edge 

clarity. The model processes input images of size 

224x224x3 (RGB) through two distinct paths: the Lighting 

Variation Path and the Edge Enhancement Path, which work 

concurrently to improve detection accuracy. 

Lighting Variation Path : The Lighting Variation Path in 

the GlowEdgeNet (GEN) model is specifically designed to 

address the challenges posed by inconsistent lighting 

conditions commonly encountered in low-light 

environments. This path aims to normalize lighting across 

the input image, thereby enhancing the visibility of 

pedestrians and other salient features. The process begins 

with an initial convolutional layer employing a 5x5 kernel, 

which captures basic lighting features and performs initial 

brightness normalization. The choice of a larger kernel size 

allows the model to capture broader lighting patterns and 

gradients, which are critical for distinguishing between 

well-lit and poorly lit areas. The output of this layer is then 

passed through a batch normalization layer to ensure 

consistent feature scaling across the input batch, which 

improves training stability and convergence speed by 

reducing internal covariate shift. Following this, a second 

convolutional layer with a 3x3 kernel is applied, using a 
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Leaky ReLU activation function to further refine lighting 

features and adjust illumination discrepancies. This step 

results in a feature map of size 112x112x64, effectively 

highlighting areas with uniform brightness while preserving 

essential details. The path concludes with a max pooling 

layer that reduces the spatial dimensions to 56x56x64, 

emphasizing prominent lighting features and reducing 

computational complexity, thus allowing the network to 

focus on regions most relevant for pedestrian detection. 

Edge Enhancement Path : The Edge Enhancement Path 

complements the Lighting Variation Path by focusing on 

accentuating edge details and enhancing structural features, 

which are vital for accurately delineating pedestrian 

contours in images. This path starts with a convolutional 

layer utilizing a 3x3 kernel, designed to extract initial edge 

features and outlines from the input image. The relatively 

smaller kernel size is chosen to capture finer details and 

edges, which are crucial for distinguishing object 

boundaries. Subsequently, an edge detection module 

employs a 5x5 convolutional filter to enhance edge clarity, 

emphasizing contours and sharpness that may be blurred 

due to low-light conditions. This enhancement is crucial for 

highlighting pedestrian silhouettes and structural details that 

assist in differentiating pedestrians from the background. 

The subsequent convolutional layer, also utilizing a 3x3 

kernel with Leaky ReLU activation, refines these edge 

features, resulting in a feature map of size 112x112x64. This 

is followed by a max pooling layer that reduces the spatial 

dimensions to 56x56x64, consolidating essential edge 

features while preserving crucial details for subsequent 

processing. This path ensures that even the most intricate 

edge details are captured and emphasized, aiding in the 

precise detection of pedestrian outlines against complex 

backgrounds. 

Fusion Layer : The Fusion Layer in the GlowEdgeNet 

(GEN) model serves as a pivotal component that combines 

outputs from the Lighting Variation and Edge Enhancement 

Paths into a unified feature map, capturing both lighting 

normalization and edge clarity. This layer is critical for 

integrating the complementary features extracted by the 

dual paths, thereby providing a holistic representation of the 

input image. The process begins with a concatenation 

operation that merges the feature maps from both paths, 

resulting in a composite feature map of size 56x56x256. 

This concatenated output reflects the diverse information 

processed separately by each path, such as enhanced 

brightness from the Lighting Variation Path and refined 

edges from the Edge Enhancement Path. To optimize this 

combined feature representation, a convolutional layer with 

a 1x1 kernel is applied, reducing the dimensionality to 

56x56x128. The use of a 1x1 convolution serves to integrate 

and compress the combined features, ensuring that 

redundant information is minimized while retaining critical 

attributes necessary for accurate pedestrian detection. This 

fusion of features facilitates a balanced focus on both 

lighting and edge aspects, equipping the model with a robust 

feature set that enhances its detection capabilities, 

particularly in challenging low-light scenarios where feature 

integration is essential for accurate interpretation. 

Fully Connected Layers: The Fully Connected Layers in 

the GlowEdgeNet (GEN) model are tasked with performing 

high-level feature integration and classification, 

transforming the processed feature map into meaningful 

representations for pedestrian detection. This stage begins 

with a flattening layer, which converts the 3D feature map 

into a 1D vector, making it suitable for dense layer 

processing. The first dense layer consists of 512 neurons and 

uses a ReLU activation function to perform complex pattern 

recognition and extract discriminative features that are 

indicative of pedestrian presence. This layer is instrumental 

in enhancing the network's ability to discern intricate 

patterns and spatial relationships within the image data. 

Following this, a second dense layer with 256 neurons 

further refines the extracted features, employing the same 

ReLU activation to differentiate pedestrian characteristics 

from background noise and other irrelevant features. This 

layer helps in isolating the most relevant features for 

pedestrian detection, ensuring that the model's focus 

remains on critical attributes. The final output layer uses a 

sigmoid activation function to produce a probability score, 

indicating the likelihood of pedestrian presence within the 

image. Additionally, regression layers integrated into this 

output structure predict the bounding box coordinates for 

detected pedestrians, providing precise localization. These 

regression layers utilize anchor boxes and bounding box 

regression techniques to refine the predictions, ensuring 

accurate spatial delineation of pedestrians. This dual 

output—comprising both classification and localization—

enables the GlowEdgeNet model to deliver comprehensive 

detection results, essential for real-time applications such as 

autonomous driving and surveillance systems, where 

accurate detection and localization are paramount. 

Output: The output layer of the GlowEdgeNet (GEN) 

model is integral to transforming processed feature maps 

into actionable insights for pedestrian detection by 

performing simultaneous classification and regression tasks 

to ensure accurate identification and localization in low-

light images. The classification component uses a sigmoid 
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activation function to output a probability score, 𝑃(𝑦) = 
1

1+𝑒−𝑧 , where 𝑃(𝑦)  indicates the likelihood of pedestrian 

presence and 𝑧  is the input from the preceding fully 

connected layer, effectively compressing the output into a 

range between 0 and 1 . This allows the network to quantify 

detection confidence, where a score near 1 suggests a high 

likelihood of pedestrian presence, facilitating robust 

decision-making in complex scenarios. 

Concurrently, the bounding box regression component 

predicts four parameters (𝑥min, 𝑦min, 𝑥max, 𝑦max)  for each 

potential pedestrian, representing the bounding box's top-

left and bottom-right corners. This is achieved using anchor 

boxes as reference points, refined through bounding box 

regression with the transformations: 𝑡𝑥 =
𝑥pred −𝑥anchor 

𝑤anchor 
, 𝑡𝑦 =

𝑦preci −𝑦anchor 

ℎanchor 
, 𝑡𝑤 =  log (

𝑤pred 

𝑤anchor 
) , and 𝑡ℎ = log (

ℎpred 

ℎanchor 
) , 

where 𝑡𝑥 , 𝑡𝑦, 𝑡𝑤, 𝑡ℎ  are the predicted transformations, and 

𝑥pred , 𝑦pred , 𝑤pred , ℎpred   are the predicted bounding box 

center coordinates, width, and height, with the network 

trained using a loss function like Smooth L1 Loss to 

minimize the discrepancy between predictions and ground 

truth.  

The integration of outputs involves the classification 

scores and bounding box predictions, providing a 

comprehensive detection result that applies Non-Maximum 

Suppression (NMS) to evaluate and retain bounding boxes 

with high overlap and high probability scores, thus filtering 

out redundancies and enhancing system accuracy. For 

instance, when processing an image captured in a dimly lit 

street scene with multiple obscured pedestrians, 

GlowEdgeNet efficiently extracts regions of interest, 

assigns probability scores, and generates bounding boxes, 

accurately predicting a pedestrian partially hidden by a 

vehicle with a high confidence score, demonstrating 

robustness in low-light conditions. The dual approach of 

classification and localization ensures that pedestrians are 

not only detected but accurately localized, making the 

model particularly effective for real-world applications such 

as autonomous driving and surveillance, where precise 

spatial awareness is crucial. This adaptability to varying 

object sizes and aspect ratios further enhances its 

applicability in diverse environmental contexts, 

guaranteeing reliable performance even under challenging 

lighting conditions. 

3.5 NoiseResilientNet (NRN): A Robust Framework for 

Pedestrian Detection in Noisy Low-Light Conditions 

NoiseResilientNet (NRN): NoiseResilientNet (NRN) is 

engineered to mitigate noise interference in low-light 

images while preserving essential details for pedestrian 

detection. Figure 6 incorporates advanced denoising 

techniques and attention mechanisms to focus on relevant 

features, enhancing the model's ability to distinguish 

pedestrians amidst noise. 

 

Figure 6. NoiseResilientNet (NRN) 

The NoiseResilientNet (NRN) model is meticulously 

engineered to mitigate noise interference in low-light 

images while preserving essential details for pedestrian 

detection. This model integrates advanced denoising 

techniques and attention mechanisms to effectively 

distinguish relevant features amidst noise, thereby 

enhancing the network's ability to accurately detect 

pedestrians even under challenging environmental 

conditions. 

Input Image Specifications : NoiseResilientNet accepts 

input images of size 224x224x3 (RGB), where each pixel is 

normalized and resized to ensure consistency across the 

network. This preprocessing step is crucial for standardizing 

the input, allowing the network to effectively handle 

variations in image quality and noise levels typically 

encountered in low-light environments. 

3.5.1 Denoising Layers 

The primary objective of the denoising layers is to suppress 

noise and highlight signal components that are crucial for 

accurate pedestrian detection. This is achieved through a 

series of convolutional layers designed to capture and refine 

noise patterns: 

1. Convolutional Layer 1: The initial convolutional 

layer utilizes a 3x3 kernel, a stride of 1, and 

padding set to "same" to preserve spatial 

dimensions, producing a feature map of 
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224x224x32. This layer employs a ReLU 

activation function to capture initial noise patterns, 

focusing on areas where noise is prominent while 

beginning the process of noise reduction. The 

activation helps to enhance non-linear features that 

differentiate noise from signal, establishing a 

foundation for subsequent processing stages. 

2. Non-Local Means Layer: This layer applies non-

local means filtering, an advanced noise-reduction 

technique that enhances the signal-to-noise ratio by 

considering pixel similarities across the entire 

image, rather than just within a local 

neighborhood. By leveraging global image 

statistics, this layer effectively smooths out noise 

while preserving important edge details, which are 

crucial for maintaining the integrity of pedestrian 

contours. The non-local means approach is 

especially beneficial in scenarios with uniform 

noise distribution, where traditional local filters 

might fail to distinguish between noise and 

significant image features. 

3. Convolutional Layer 2: Following the noise 

suppression step, a second convolutional layer 

with a 3x3 kernel, stride of 1, and "same" padding 

is employed to further refine the noise reduction 

process. The feature map is downsampled to 

112x112x64 through this layer, utilizing a Leaky 

ReLU activation function. The choice of Leaky 

ReLU allows the network to handle potential 

negative signals effectively, ensuring that no 

important features are disregarded. This layer 

focuses on extracting and enhancing relevant 

features indicative of pedestrian presence, ensuring 

that the noise-free image highlights the necessary 

components for accurate detection. 

3.5.2 Detail Preservation Module 

The Detail Preservation Module employs attention 

mechanisms to ensure that significant features are preserved 

during the noise reduction process. This module is critical 

for enhancing the network's capability to identify 

pedestrians, as it emphasizes features that are indicative of 

pedestrian presence while minimizing the impact of noise 

on detection accuracy. 

1. Attention Mechanism: The module implements 

spatial attention, which assigns varying weights to 

different image regions based on their relevance to 

pedestrian detection. This approach allows the 

network to prioritize areas of the image that 

contain important features, effectively highlighting 

and preserving the information crucial for accurate 

pedestrian identification. The spatial attention 

mechanism operates by calculating attention 

scores for each pixel, allowing the network to focus 

on regions that provide the most valuable 

information for detection. 

2. Feature Refinement Layers: Following 

attention-based selection, additional convolutional 

layers are utilized to refine and enhance critical 

features, ensuring that detail preservation is 

prioritized. These layers further process the 

attended regions, enhancing contrast and sharpness 

where necessary, to maintain the fidelity of 

pedestrian features. The refinement layers play a 

pivotal role in ensuring that the processed image 

retains high-quality details that are essential for 

robust pedestrian detection. 

3.5.3 Output Layer 

The output layer of NoiseResilientNet integrates 

classification and bounding box regression tasks to provide 

a comprehensive detection result. The classification 

component employs a sigmoid activation function to 

produce a probability score indicating the likelihood of 

pedestrian presence within the image, while regression 

layers predict the coordinates of bounding boxes around 

detected pedestrians, offering precise spatial localization. 

This dual-task approach ensures that NoiseResilientNet not 

only identifies the presence of pedestrians but also 

accurately localizes them, facilitating effective decision-

making in real-time applications such as surveillance and 

autonomous navigation. 

Application Example 

Consider a scenario where NoiseResilientNet processes 

an image captured in a dimly lit urban environment, where 

noise and shadows obscure pedestrian features. The network 

begins by denoising the image, applying non-local means 

filtering to smooth out noise and preserve edge details. As 

the processed image progresses through the network, the 

Detail Preservation Module highlights pedestrian features 

using spatial attention, ensuring that critical details are 

maintained. Ultimately, the output layer predicts bounding 

boxes with high confidence scores, demonstrating the 

network's robustness in low-light conditions and its ability 

to accurately detect pedestrians amidst noise. 

Efficiency and Robustness 
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The NoiseResilientNet model's architecture, with its 

integration of advanced denoising techniques and attention-

based detail preservation, offers a robust solution for 

pedestrian detection in low-light, noisy environments. Its 

adaptability to varying noise levels and its focus on feature 

preservation make it particularly effective in real-world 

applications, where reliability and precision are paramount. 

By handling both noise suppression and feature 

enhancement, NoiseResilientNet provides a unified 

framework that ensures pedestrians are detected and 

localized accurately, enhancing the safety and efficiency of 

systems deployed in challenging lighting conditions. 

3.6. Data Augmentation 

Contextual Low-Light Augmentation (CLLA): Data 

augmentation is a critical technique for enhancing the 

robustness and generalization capabilities of deep learning 

models, particularly in complex tasks such as pedestrian 

detection in low-light conditions. Contextual Low-Light 

Augmentation (CLLA) is an advanced approach designed 

to synthetically enhance training datasets by introducing 

low-light variations that emulate real-world scenarios. This 

method leverages mathematical transformations to simulate 

diverse lighting conditions, thereby preparing models for a 

wide range of environments. 

Mathematical Implementation Details: CLLA operates by 

manipulating the intensity distribution of images to mimic 

low-light conditions. Let 𝐼(𝑥, 𝑦)  represent the pixel 

intensity at coordinates (𝑥, 𝑦) in an image. CLLA modifies 

𝐼(𝑥, 𝑦)  through intensity scaling and histogram 

equalization: 

𝐼′(𝑥, 𝑦) = 𝛼 ⋅ 𝐼(𝑥, 𝑦) + 𝛽                                      (7) 

where 𝛼 is a scaling factor less than 1 to darken the image, 

and 𝛽 adjusts the brightness. This formula applies a linear 

transformation to reduce overall brightness, creating 

realistic shadows and dark regions. 

In addition to intensity scaling, noise is added to emulate the 

graininess typical of low-light photography. Gaussian noise 

𝑁 ∼ 𝒩(0, 𝜎2) is applied to each pixel: 

𝐼′′(𝑥, 𝑦) = 𝐼′(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)                       (8) 

where 𝜎  is the noise standard deviation, controlling the 

noise level added to the image. The randomness introduced 

by Gaussian noise ensures that each augmented image 

presents unique challenges to the detection model. 

Furthermore, CLLA uses spatial transformations to simulate 

glare and shadows. This involves random adjustments to 

local contrast using methods such as histogram 

equalization: 

𝐻(𝐼) =
(𝐿−1)

𝑀×𝑁
∑  

𝐼(𝑥,𝑦)
𝑖=0 ℎ(𝑖)                              (9) 

where 𝐻(𝐼) is the histogram equalization function, 𝐿 is the 

number of intensity levels, 𝑀  and 𝑁  are the image 

dimensions, and ℎ(𝑖) is the histogram count at intensity 𝑖. 
This transformation enhances contrast non-uniformly, 

mimicking the effects of complex lighting conditions. 

Impact on Model Robustness: By applying these 

augmentations, CLLA significantly enhances the robustness 

of GlowEdgeNet and NoiseResilientNet models. It exposes 

the models to a variety of lighting conditions during 

training, reducing overfitting and improving their ability to 

generalize to unseen data. The models become more adept 

at handling the unpredictable lighting variations they will 

encounter in real-world applications, leading to improved 

accuracy and reliability in pedestrian detection under low-

light conditions. 

3.7 post-processing 

Adaptive Bounding Box Refinement (ABBR): The post-

processing phase is essential for refining detection outputs 

from deep learning models, ensuring that bounding box 

predictions are precise and reliable. Adaptive Bounding Box 

Refinement (ABBR) is a sophisticated technique designed 

to optimize bounding box predictions through mathematical 

adjustments and filtering, enhancing the spatial accuracy of 

detected pedestrians. 

Algorithm and Mathematical Implementation Details: 

ABBR involves a series of mathematical steps aimed at 

refining bounding box coordinates. The initial step is Non-

Maximum Suppression (NMS), which eliminates redundant 

bounding boxes by evaluating their Intersection over Union 

(loU) scores. The lou between two boxes 𝐴  and 𝐵  is 

calculated as: 

IoU(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
                 (10) 

where |𝐴 ∩ 𝐵| is the area of intersection and |𝐴 ∪ 𝐵| is the 

area of the union of the two boxes. NMS retains only those 

boxes with the highest loU scores, ensuring that the 

detection with the highest confidence score is preserved 

while suppressing overlapping boxes. 
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Following the NMS, the algorithm refines the bounding box 

coordinates using regression techniques. Each bounding 

box was adjusted based on the predicted offsets from the 

anchor boxes. 

𝑥new = 𝑥anchor + 𝑡𝑥 ⋅ 𝑤anchor 

𝑦new = 𝑦anchor + 𝑡𝑦 ⋅ ℎanchor 

𝑤new = 𝑤anchor ⋅ exp (𝑡𝑤)

ℎnew = ℎanchor ⋅ exp (𝑡ℎ)

                                    (11) 

where 𝑡𝑥 , 𝑡𝑦, 𝑡𝑤, 𝑡ℎ  are the predicted transformations, and 

𝑥anchor , 𝑦anchor , 𝑤anchor , ℎanchor  are the anchor box 

parameters. This refinement aligns the bounding boxes 

more closely with the true object contours, thereby 

improving detection accuracy. Impact on Detection 

Accuracy: ABBR significantly enhances detection accuracy 

by ensuring that bounding boxes are accurately positioned 

and dimensioned. The adaptive nature of ABBR allows it to 

dynamically adjust to variations in the object scale and 

aspect ratio, making it effective in scenes with diverse 

pedestrian orientations and movements. By refining the 

spatial alignment of detected objects, ABBR reduces false 

positives and increases detection confidence, which is 

crucial for applications such as autonomous vehicles and 

surveillance systems, where precision is paramount. 

4. Experimental Results  

4.1 System Specifications 

An experimental evaluation of the proposed 

DuoLightNet model was conducted using a high-

performance computing system. The system was configured 

with an Intel Core i9-13900K processor running at 3.9 GHz 

with 24 cores supported by 64 GB of DDR4 RAM. Model 

training and evaluation were accelerated using an NVIDIA 

GeForce RTX 4090 GPU with 24 GB of GDDR6X memory. 

The experiments were carried out on an Ubuntu 22.04 LTS 

operating system, utilizing PyTorch 2.0, for deep learning 

implementations and OpenCV 4.8 for image processing 

tasks. The deep learning framework was enhanced by 

CUDA 12.1 and cuDNN 8.9 to fully leverage the 

computational power of the GPU, ensuring efficient and 

timely execution of all experiments. 

4.2 Dataset Used 

The Exclusively Dark (ExDark) dataset[22] was 

selected for rigorous evaluation of the DuoLightNet 

framework. This dataset, comprising over 7,000 images, 

was specifically designed to challenge pedestrian detection 

models under various low-light conditions. The dataset was 

characterized by a diverse range of scene types, including 

urban environments (40%), rural landscapes (25%), indoor 

settings (20%), and mixed scenarios (15%). Furthermore, it 

includes a variety of lighting conditions such as low ambient 

light (35%), shadowed regions (30%), glare and reflections 

(20%), and balanced lighting (15%). Each image in the 

dataset was meticulously annotated with bounding boxes 

and class labels, which provided a robust basis for 

evaluating detection accuracy, precision, recall, and other 

relevant performance metrics of the DuoLightNet model. 

4.3 Model Evaluation: To carefully selected set of 

hyperparameters was employed to ensure a thorough 

evaluation of the DuoLightNet model. The model was 

trained with an initial learning rate of 0.001, which was 

decayed by a factor of 0.1 every 10 epochs to refine the 

learning process. A batch size of 32 was used to balance the 

computational efficiency with model performance. The 

Adam optimizer, known for its adaptive learning rate 

capabilities, was chosen, with β1 set to 0.9, β2 set to 0.999, 

and an epsilon value of 1e-8. The model was trained for 50 

epochs, which is sufficient to achieve convergence without 

overfitting. A rate of 0.5 was applied to the fully connected 

layers to enhance the model’s generalization capabilities. 

Normal initialization was utilized for the weights of the 

convolutional layers to maintain gradient stability, and 

Leaky ReLU activations were used in the convolutional 

layers to avoid the issue of dead neurons.For robust model 

evaluation, K-fold cross-validation was implemented with 

K set to 5. This method involves splitting the dataset into 

five equal folds, with the model trained four times and 

validated on the remaining fold, iterating through all folds. 

This approach provided a comprehensive assessment of the 

model’s performance across different data partitions, 

reducing variance and ensuring that the reported 

performance metrics reflected the model's true 

generalization capability. 
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7(a) Low Light Input Image 

 
7(b) Dynamic Histogram-Intensity 

Balancing (DHIB) 

 
7(c) Tailored Adaptive Local Contrast 

Stretching (TALCS) 

 

 
7(d)Attention-Guided Denoising (AGD) 

with BM3D 

 

 
7( e) Hierarchical Multi-Scale Retinex 

with Guided Restoration (HMRGR) 

 

 
7(f) Structural Detail Augmentation 

(SDA) with Guided Filtering 

Figure.7. Example of night-time(Low Light) image enhancement. (a) Input image. (b)DHIB( Enhances brightness and contrast 

)(c)TALCS(Enhances local contrast). (d)AGD with BM3D(Reduces noise   ( e) HMRGR (Enhances edge details and textures)  

( f) Enhances fine details and textures 

Figure 7 illustrates the process of nighttime (low-light) 

image enhancement, showcasing various techniques applied 

sequentially to improve image quality. Attention guided 

denoising (AGD) with the BM3D technique, depicted in 

Figure 7(d), focuses on reducing noise while preserving 

essential details in the image, which is crucial for accurate 

feature extraction under low-light conditions. Following 

this, the hierarchical multiscale retinex with guided 

restoration (HMRGR) method, shown in Figure 7(e), 

enhances edge details and textures, thereby improving the 

visibility and clarity of critical image features. Finally, 

Structural Detail Augmentation (SDA) with Guided 

Filtering, as illustrated in Figure 7(f), further refines the 

image by enhancing fine details and textures, ensuring that 

even subtle features are preserved, which is vital for 

comprehensive image analysis. 

4.4 Performance Metrics 

The performance of the DuoLightNet model was 

assessed using several key metrics to validate its 

effectiveness under low light conditions. The primary 

metrics were detection accuracy, precision, Recall, F1-

Score, Mean Average precision (mAP), and Processing 

Speed. 

Detection Accuracy (DA) Detection Accuracy was 

calculated as the proportion of correctly detected 

pedestrians (True Positives, TP) relative to the total number 

of ground-truth pedestrians, which included True Positives 

(TP) and False Negatives (FN). It is defined as: 

DA =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                    (12) 

Precision (P) evaluates the model's ability to minimize false 

positives by calculating the ratio of true positive detections 

to the sum of true positives and false positives. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                     (13) 

Recall (R) assessed the model's sensitivity by determining 

the proportion of true positive detections relative to the 

total number of actual pedestrians. 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                (14) 

The F1-Score provides a balanced measure of the model's 

precision and recall, indicating overall detection reliability. 

𝐹 1-Score = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
                                   (15) 

The Mean Average Precision (mAP), Mean Average 

Precision is the standard metric for object detection models 

and measures the average precision across multiple 

Intersection over Union (loU) thresholds. This provided a 

comprehensive view of the performance of the model. The 

mAP is calculated as 

mAP =
1

𝑁
∑  

𝑁

𝑖−1

AP𝑖                                                               (16) 
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where AP𝑖 is the Average Precision at the 𝑖 th threshold, and 

𝑁 is the number of loU thresholds. 

Processing Speed (FPS): Processing Speed is measured in 

frames per second, indicating the number of images the 

model can process per second. This validates the suitability 

of the model for real-time applications, such as UAV 

surveillance and autonomous driving. It is calculated as: 

 FPS =
 Number of frames processed 

 Total time taken (in seconds) 
                              (17) 

These metrics collectively provide a thorough evaluation of 

the performance of the DuoLightNet model under low-light 

conditions, ensuring both accuracy and efficiency in real-

world applications. 

4.5 Detection Accuracy (DA) Results 

The Detection Accuracy (DA) of the proposed 

DuoLightNet model was rigorously evaluated under various 

low-light conditions using the ExDark dataset. The results 

demonstrate the superior performance of the model in 

accurately identifying pedestrians under challenging 

lighting scenarios, particularly under severe lighting 

variations, including low ambient light, shadows, and glare. 

 

Figure 8.  Six example low-illumination image samples 

selected from the ExDark dataset and the pedestrian 

detection using proposed model  

Figure 8 presents six examples of low-illumination images 

selected from the ExDark dataset, showing the process of 

image enhancement followed by pedestrian detection. The 

images demonstrate the progression from the initial low-

light input to the enhanced versions, culminating in the 

application of the proposed model, which identifies 

pedestrians with bounding boxes and assigns probability 

scores to each detection. 

Confusion Matrix Analysis : This section focuses on 

the analysis of the confusion matrix generated for the 

DuoLightNet model's performance across different lighting 

conditions. 

 

Figure 9: Confusion Matrix Heatmap for DuoLightNet 

Model Performance Across Different Lighting Conditions in 

the ExDark Dataset 

Figure 9 presents a confusion matrix heat map illustrating 

the performance of the DuoLightNet model under various 

lighting conditions within the ExDark dataset. The matrix 

highlights the model's high overall accuracy, particularly in 

correctly identifying scenarios under "Balanced Lighting," 

where it achieved a perfect classification rate of 100%. The 

heatmap revealed that the model performed reliably across 

challenging lighting conditions, with correct classifications 

forming a prominent diagonal in the matrix. However, there 

are notable instances of misclassification, particularly 

between "Low Ambient Light" and "Shadowed Regions," as 

well as between "Shadowed Regions" and "Glare and 

Reflections." These misclassifications suggest that, while 

the model is highly effective, there is room for improvement 

in distinguishing between similar lighting conditions. 

Overall, the model demonstrated robust detection 

capabilities, with minor areas for enhancement to further 

refine its accuracy under less distinct lighting scenarios. 
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4.6  Performance Evaluation Across Lighting Conditions 

and Scene Types 

This section presents a detailed analysis of the 

performance of the DuoLightNet model based on both the 

lighting conditions and different scene types within the 

ExDark dataset. 

Case 1: Detection by Lighting Condition 

Table 2: Performance Metrics for DuoLightNet Model 

Across Different Lighting Conditions in the ExDark 

Dataset 

Metric Low 

Ambient 

Light 

Shadowed 

Regions 

Glare and 

Reflections 

Balanced 

Lighting 

Accuracy 88.9% 89.8% 91.2% 93.7% 

Precision 

(P) 

88.5% 89.2% 90.1% 91.5% 

Recall 

(R) 

87.0% 89.5% 91.0% 92.7% 

F1-Score 87.7% 89.3% 90.5% 92.1% 

 

Explanation: 

• Low Ambient Light: The model achieved an 

accuracy of 88.9%, with a precision of 88.5% and 

a recall of 87.0%. The F1-Score was 87.7%, 

indicating the model's challenges under very low-

light conditions. 

• Shadowed Regions: Performance improved 

slightly in shadowed regions, with accuracies of 

89.8%, 89.2%, and 89.5 %, respectively. The F1-

Score was 89.3%, reflecting a balanced 

performance under these conditions. 

• Glare and Reflections: The model showed a strong 

performance with an accuracy of 91.2%, precision 

of 90.1%, and recall of 91.0%. The F1-Score is 

90.5%. 

• Balanced Lighting: Under balanced lighting 

conditions, the model reached its peak 

performance with an accuracy of 93.7%, precision 

of 91.5%, recall of 92.7%, and F1-Score of 92.1%. 

 

Figure 10: Accuracy of DuoLightNet Model Across 

Lighting Conditions 

Figure 10 illustrates the accuracy of the model under various 

lighting conditions in the ExDark dataset. The model 

achieved its highest accuracy under balanced lighting 

conditions (93.7%), demonstrating its optimal performance 

when lighting was favorable. The accuracy decreased 

slightly under challenging conditions such as low ambient 

light (88.9%) and shadowed regions (89.8%). 

Case 2: Detection by Scene Type 

Table 3: Performance Metrics for DuoLightNet Model 

Across Different Scene Types in the ExDark Dataset 

Metric Urban 

Environments 

Rural 

Landscapes 

Indoor 

Settings 

Mixed 

Scenarios 

Accuracy 92.1% 89.5% 91.3% 88.7% 

Precision 

(P) 

91.8% 89.0% 90.5% 87.9% 

Recall 

(R) 

90.7% 88.7% 90.9% 88.2% 

F1-Score 91.2% 88.8% 90.7% 88.0% 

Explanation: 

• Urban Environments: The model performed best 

in urban environments, achieving an accuracy of 

92.1%, with a precision of 91.8% and recall of 

90.7%. The F1-Score was 91.2%, reflecting the 

strength of the model in these complex settings. 

• Rural Landscapes: The accuracy in rural 

landscapes was 89.5%, with a precision of 89.0% 

and a recall of 88.7%. The F1-Score was 88.8%, 

indicating reliable performance despite the 

challenges posed by natural lighting and shadows. 

• Indoor Settings: The model performed well 

indoors, with an accuracy of 91.3%, precision of 

90.5%, recall of 90.9%, and F1-Score of 90.7%, 
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showing consistent performance under controlled 

lighting. 

• Mixed Scenarios: Mixed scenarios, which 

combine elements from various environments, are 

more challenging, resulting in the lowest accuracy 

of 88.7%. The precision was 87.9%, recall was 

88.2%, and F1-Score was 88.0%, indicating the 

complexity of these varied environments. 

These two cases provide a comprehensive overview of the 

performance of the DuoLightNet model under different 

conditions, highlighting its strengths and areas for potential 

improvement. 

 

Figure 11: Accuracy of DuoLightNet Model Across Scene 

Types 

Figure 11 shows the accuracy of the model for different 

scene types. The model performed best in urban 

environments (92.1%) and indoor settings (91.3%), 

indicating its strong capability in structured environments. 

However, the accuracy is lower in mixed scenarios (88.7%) 

and rural landscapes (89.5%), suggesting that these 

environments present more challenges for pedestrian 

detection.  

4.7  Mean Average Precision and Processing Speed 

Analysis Across Lighting Conditions 

This Section focuses on evaluating the performance of 

the DuoLightNet model in terms of both the accuracy 

(mAP) and processing efficiency (FPS) under different 

lighting scenarios. 

Table 4: Performance Metrics of DuoLightNet Model 

Across Different Lighting Conditions in the ExDark 

Dataset 

Metric Low 

Ambient 

Light 

Shadowed 

Regions 

Glare and 

Reflections 

Balanced 

Lighting 

Mean 

Average 

Precision 

(mAP) 

89.0% 90.0% 91.2% 93.0% 

Processing 

Speed 

(FPS) 

30.5 fps 31.2 fps 32.0 fps 33.5 fps 

Result Data Analysis: 

The analysis of the DuoLightNet model's performance 

across different lighting conditions, based on the Mean 

Average Precision (mAP) and Processing Speed (FPS), 

reveals the following insights: 

Mean Average Precision (mAP): The mAP values indicate 

how well the model performs across different detection 

thresholds, providing a comprehensive measure of its 

accuracy. The model achieved its highest mAP of 93.0% 

under balanced lighting conditions, where the environment 

is most favorable for accurate detection. This performance 

slightly decreased under more challenging conditions, with 

an mAP of 91.2% in glare and reflective environments, 

90.0% in shadowed regions, and 89.0% in low ambient 

light. These results suggest that, while the model is robust, 

its precision can be affected by less ideal lighting, with the 

most significant drop occurring under low ambient light 

conditions. 

 

Figure 12. Mean Average Precision (mAP) Across 

Different Lighting Conditions 

Figure 12 illustrates the performance of the system under 

various lighting conditions: Low Ambient Light, Shadowed 

Regions, Glare and Reflections, and Balanced Lighting. The 

Mean Average Precision (mAP) was plotted for each 

condition, showing a clear trend where the mAP increased 

as the lighting conditions improved, peaking at 93.0% under 

Balanced Lighting. This suggests that the system performs 

best in well-lit environments, with a gradual decrease in 

performance as lighting conditions become less favorable, 

such as in low-light or glare scenarios. 
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Processing Speed (FPS): The processing speed of the 

DuoLightNet model, measured in frames per second (FPS), 

reflects its capability for real-time applications. The model 

processes images fastest under balanced lighting conditions, 

reaching 33.5 fps, which is well suited for real-time use 

cases such as UAV surveillance or autonomous driving. The 

speed decreased slightly under more challenging lighting 

conditions, with the lowest speed observed under low 

ambient light at 30.5 fps. This reduction in speed under low 

light could be attributed to the additional computational 

demands for enhancing visibility in darker scenes. However, 

even at its lowest, the model maintained a processing speed 

above 30 fps, ensuring that it remains viable for real-time 

applications across all lighting conditions. 

 

Figure 13. Processing Speed (FPS) Under Different 

Lighting Conditions 

Figure 13 illustrates the performance of the system 

measured in frames per second (FPS) across varying 

lighting environments: Low Ambient Light, Shadowed 

Regions, Glare and Reflections, and Balanced Lighting. The 

graph shows a consistent increase in processing speed, from 

30.5 FPS Light 33.5 FPS. This trend suggests that the 

system's processing efficiency improves as lighting 

conditions become more favorable, likely owing to 

enhanced visibility and reduced computational demands in 

better-lit scenarios. 

Overall, the DuoLightNet model demonstrated strong 

performance in terms of both accuracy and processing 

efficiency, with slight variations depending on the lighting 

conditions. The highest performance was observed in 

balanced lighting, with a slight decline as lighting became 

more challenging. This analysis underscores the suitability 

of the model for a wide range of real-world applications, 

even in environments with less-than-ideal lighting 

conditions. 

 

4.8 Comparative Analysis with Baseline Methods  

The performance of the proposed model was compared with 

several baseline methods using the ExDark dataset, as 

shown in Table 5, with a focus on the Mean Average 

Precision (mAP) for pedestrian detection under low-light 

conditions. The comparative results demonstrate the 

superior performance of our proposed method, which 

achieved an mAP of 89.0%, significantly outperforming the 

other methods. LIME, JED, EnGAN, MIRNet v2, and 

CodeEnhance achieved pedestrian detection accuracies of 

74.68%, 74.23%, 73.16%, 74.72%, and 74.75%, 

respectively. These results highlight the efficacy of our 

approach in enhancing pedestrian detection in low-light 

environments, providing a substantial improvement over the 

existing methods. 

Table 5.Comparative Analysis of Mean Average Precision 

(mAP) on the ExDark Dataset 

Method Dataset Pedestrian 

Detection Accuracy 

(%) 

LIME [23] EXDARK 74.68 

JED [24] EXDARK 74.23 

EnGAN[25] EXDARK 73.16 

MIRNet v2[26 ] EXDARK 74.72 

CodeEnhance[27] EXDARK 74.75 

Our Proposed  EXDARK 89.0 

 

In addition, the ExDARK dataset demonstrated a significant 

improvement in mean average precision (mAP) compared 

to the other methods, with an accuracy rate of 89.0%, 

outperforming all other methods on the dataset. 

4.9 Model Performance Evaluation 

4.9.1 Strengths 

The DuoLightNet model exhibits notable strengths, 

particularly in well-lit and structured environments such as 

urban areas with balanced lighting conditions. The 

capability of the model to maintain real-time processing 

speeds across various scenarios underscores its suitability 

for time-sensitive applications including autonomous 

driving and UAV surveillance. This consistency in 

performance highlights the robustness and efficiency of 

DuoLightNet in environments where prompt and accurate 

pedestrian detection is critical. 

4.9.2 Challenges 

Despite its strengths, the DuoLightNet model 

encounters challenges in low- and mixed-lighting 

environments. In these scenarios, the variability in lighting 

and complexity of the scene can negatively impact the 
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detection accuracy of the model. Such conditions reveal the 

need for further enhancements, particularly in the ability of 

the model to adapt to varying illumination levels and its 

capacity to effectively reduce noise. These areas of 

improvement are critical for increasing the overall 

performance and reliability of the model in more demanding 

settings. 

4.9.3 Real-Time Capabilities 

The DuoLightNet model demonstrated a commendable 

ability to sustain real-time processing speeds across a range 

of conditions, including those that are challenging. This 

consistency is indicative of the potential of the model for 

real-time deployment in critical applications. However, a 

slight reduction in processing speed was observed under low 

ambient light conditions. This suggests the necessity for 

careful balancing between maintaining high accuracy and 

optimizing processing efficiency, especially in 

environments that place higher computational demands on 

the model. 

4.10. Limitations of the Study 

Although the DuoLightNet framework presents 

significant advancements in pedestrian detection under low-

light conditions, several limitations must be acknowledged. 

First, the model’s performance, although generally robust, 

exhibits variability across different lighting conditions, 

particularly under extreme low-light scenarios and in 

environments characterized by complex lighting patterns, 

such as glare or shadows. This variability indicates that the 

model may still face difficulties in handling nuanced 

lighting variations that are challenging to replicate in the 

training datasets. Moreover, the computational demands of 

the DuoLightNet model, although optimized for real-time 

processing, may pose challenges when deployed on devices 

with constrained processing power or energy resources such 

as UAVs during extended operations. Additionally, despite 

its comprehensiveness, the model’s heavy reliance on the 

ExDark dataset may not fully capture the breadth of real-

world low-light scenarios. This reliance can lead to 

overfitting, thereby limiting the generalizability of the 

model to unseen data. 

Finally, the current model does not adequately address 

the detection of partially occluded pedestrians, which is a 

frequent occurrence in urban environments. This limitation 

could diminish the effectiveness of the model in certain 

practical applications where the visibility of pedestrians is 

often compromised by obstacles. 

 

5. Conclusion 

This study introduces and validates the DuoLightNet 

framework, which is a novel approach for enhancing 

pedestrian detection in low-light environments. By 

integrating dual-path networks, specifically GlowEdgeNet 

and NoiseResilientNet, the framework achieved notable 

improvements in both the detection accuracy and processing 

efficiency across a range of challenging lighting conditions. 

DuoLightNet effectively enhances visibility through 

advanced image processing techniques while maintaining 

real-time processing capabilities, making it particularly 

suitable for critical applications, such as autonomous 

driving and UAV surveillance. Experimental results confirm 

that DuoLightNet outperforms existing methods in terms of 

both accuracy and robustness, particularly under low-light 

conditions, contributing significantly to the field of 

pedestrian detection. Despite these advancements, this study 

has identified limitations that warrant further research. 

Specifically, the performance of the model under extreme 

lighting conditions and in scenarios involving partially 

occluded pedestrians requires additional refinement. Future 

research should focus on improving the generalization of the 

model to a wider spectrum of low-light conditions, 

potentially through the expansion of training datasets and 

the use of synthetic data augmentation techniques. 

Moreover, optimizing the model for deployment on low-

power devices is crucial for its application in resource-

constrained environments such as long-duration UAV 

operations. Exploring advanced occlusion-handling 

methods and integrating multimodal approaches can 

enhance detection accuracy in complex environments. 

Finally, incorporating adaptive learning mechanisms that 

enable the model to dynamically adjust to new 

environments and lighting conditions in real time could 

further extend its applicability to diverse and unpredictable 

settings. 
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