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Abstract

This paper introduces a novel geometrical approach to modeling worm prop-
agation in complex networks, specifically focusing on scale-free and small-world
networks. Traditional epidemiological models often fall short in capturing the in-
tricate dynamics of worm spread in these networks due to their unique structural
properties. Our geometrical models utilize path equations and deviation vectors to
represent worm propagation pathways, providing deeper insights into network vul-
nerabilities and effective mitigation strategies. These models enhance the accuracy
of predicting worm spread and identifying critical nodes and connections within the
network.

1 Introduction

The rapid propagation of worms in computer networks presents significant challenges for
network security. Traditional models, primarily based on epidemiological frameworks,
often fail to accurately describe the spread dynamics in complex network structures such
as scale-free and small-world networks. This paper proposes a novel geometrical modeling
approach that leverages the structural properties of these networks to provide a more
accurate understanding of worm propagation dynamics.

2 Geometrical Modeling Framework

2.1 Scale-Free Networks

Scale-free networks are characterized by a power-law distribution of node connectivity,
where a few nodes (hubs) have a high degree of connections, and most nodes have fewer
connections. Worms exploit these hubs to propagate rapidly through the network, making
these networks particularly vulnerable to fast-spreading malware.

Path Equations:
The propagation of worms in a scale-free network can be represented using path

equations that account for the influence of highly connected hubs. The general form of
the path equation in such a network is:
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P(t) =
∑
i

Hi(t) · di(t) (1)

where Hi(t) is the connectivity function of the hub i at time t, and di(t) is the
deviation vector representing the spread of the worm from hub i to other nodes. The
connectivity function Hi(t) can be defined as:

Hi(t) = ki · f(t) (2)

where ki is the degree of the hub, and f(t) is a time-dependent function describing
the spread dynamics.

Deviation Vectors:
Deviation vectors di(t) capture the spread of the worm from the hub to connected

nodes. They account for the network’s topology and the distance from the hub:

di(t) = xi(t)−Hi(t) (3)

where xi(t) is the position of the infected node i at time t. This allows us to model
how quickly and efficiently the worm spreads through the network from the hubs.

2.2 Small-World Networks

Small-world networks exhibit properties of both regular and random networks, character-
ized by short path lengths and high clustering coefficients. These features enable rapid
worm spread through shortcuts and clusters of nodes.

Path Equations:
In small-world networks, the path equation must incorporate the effects of clustering

and the presence of shortcuts. The path equation in such networks is:

P(t) =
∑
i

Si(t) · ci(t) (4)

where Si(t) represents the clustering function of node i at time t, and ci(t) denotes
the clustering coefficient, which reflects the local density of connections around node i.

Deviation Vectors:
Deviation vectors in small-world networks take into account the clustering and short

paths:

ci(t) = xi(t)− Si(t) (5)

where Si(t) includes the influence of shortcuts and local clusters, allowing for a more
nuanced understanding of worm spread dynamics in small-world networks.

3 Stability and Performance Analysis

To ensure the robustness of the proposed geometrical models, we perform stability anal-
ysis using the Lyapunov function and evaluate performance metrics through simulations.
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3.1 Lyapunov Stability

The stability of the geometrical models is analyzed using the Lyapunov function V (t):

V (t) =
1

2

∑
i

d2
i (t) (6)

The function V (t) measures the deviation of the worm spread from the equilibrium
state. If V (t) decreases over time, the model is stable.

3.2 Simulation Results

Simulations are conducted to evaluate the accuracy and performance of the geometrical
models. We compare the models’ predictions with actual worm spread data in scale-free
and small-world networks. Metrics such as infection rate, spread velocity, and critical
node identification are used to assess model performance.

Example:
In a simulated scale-free network with 1000 nodes and a power-law exponent of 2.5,

the geometrical model accurately predicts the rapid spread of a worm originating from a
hub, identifying key nodes that significantly influence the overall infection rate.

4 Conclusion

The geometrical modeling approach provides a novel framework for understanding worm
propagation in complex networks. By leveraging the unique structural properties of
scale-free and small-world networks, these models offer improved predictive accuracy and
valuable insights into effective mitigation strategies. Future research will focus on refining
these models to incorporate additional network complexities, such as temporal dynamics
and multi-layered structures, to further enhance their applicability and effectiveness.
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