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Abstract—Precision in medical image segmentation is vital for accurate diagnosis and treatment planning in the contemporary healthcare 

system. Deep learning techniques, such as Convolutional Neural Networks (CNNs), U-Net architectures (UNETs), and Transformers, have 

revolutionized this field by automating laborious manual segmentation processes that were previously performed manually. Nevertheless, 

challenges such as intricate structures and indistinct features persist, leading to accuracy concerns. Scientists are diligently striving to address 

these challenges to fully harness the promise of medical image segmentation in the healthcare revolution. The objective of our study is to 
introduce an improved version of the U-Net model that is specifically tailored for the segmentation of brain cancer MRI images. The primary 

aim of this enhancement is to boost the precision of the segmentation process. Our plan consists of three main components. Initially, our main 

focus is on enhancing features by employing techniques such as Contrast Limited Adaptive Histogram Equalisation (CLAHE) during the image 

preprocessing stage. Furthermore, we enhance the architecture of the U-Net model by prioritizing a tailored layered design to enhance the quality 
of segmentation results. Ultimately, we employ a Convolutional Neural Network (CNN) model for post-processing to enhance segmentation 

results by utilizing additional convolutional layers. Our model was tested, validated, and trained using a total of 3,064 brain MRI images, with 

612 images used for testing, 612 images used for validation, and 1,840 images used for training. We achieved outstanding results in terms of 

recall (93.66%), accuracy (97.79%), F-score (93.15%), and precision (92.66%). The Dice coefficient's training and validation curves exhibited 
minimal variability, with training achieving approximately 93% and validation reaching 84%, indicating a strong capacity for generalization. 

The high accuracy of the segmentation findings was confirmed through visual assessment, however rare errors such as false positives were 

observed. 
Keywords-Medical Image Segmentation; UNet; MRI Images;Health care; Deep Learning 

 

I.  INTRODUCTION  

Brain tumors provide a significant health risk and are 

potentially fatal at any point of discovery (Nehra, 2021). Brain 

cancer affects people of all ages and genders, with over 100 

different types of brain tumours diagnosed and classed as 

primary or metastatic (Zhang A. S.-S., 2017). Primary brain 

tumors can be malignant or non-cancerous, and they can 

develop within or around brain structures. Secondary 

(metastatic) tumors, on the other hand, are typically malignant 

and originate in other parts of the body before spreading to the 

brain. Survival rates for primary brain tumors are determined 

by several factors, including age, location, ethnicity, tumor 

type, and molecular characteristics (Kiran, 2024). 

 

Because of its radiation-free nature, MRI (Magnetic 

Resonance Imaging) (Abdelatty, 2024) is now the gold 

standard for evaluating a wide spectrum of cerebral 

pathological disorders. MRI is more effective than CT for 

detecting acute ischemic lesions (Mahajan, 2024). However, 

the usefulness of MRI in emergencies is limited due to its 

relatively long acquisition time, making timely and correct 

diagnosis critical (Altmann, 2024). Brain MRI segmentation is 

a critical medical imaging method that divides the brain's MRI 

into separate sections of structure (Kumar P. R., 2024). This 

method is crucial for the diagnosis, treatment planning, and 

monitoring of neurological illnesses such as multiple sclerosis, 

brain tumors, Alzheimer's disease, and other abnormalities of 

the brain (Grgec, 2024; Desale, 2024). Similarly, MRI is 

essential for quantitative brain volumetry assessments in 

prenatal diagnosis and studying early human brain 

development (Ciceri, 2024). 

One of the most pressing issues in clinical research approaches 

is segmenting MRI pictures of the human brain. In many 

image analysis applications, segmenting medical images is 

critical (Yellu, 2024). In medical picture analysis, automated 

segmentation algorithms outperform hand segmentation. 

Automated brain tissue segmentation based on clinically 

obtained MRI data is a significant phase in quantitative brain 

analysis. It allows for more accurate quantitative assessments 

of the brain, which aids in disease identification, diagnosis, 

and classification. Thus, the success of the segmentation 

technique is critical for disease identification and treatment 

planning (Kumar, 2024). The segmentation process seeks to 
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distinguish and define a variety of anatomical structures, 

including white matter (WM), grey matter (GM), 

cerebrospinal fluid (CSF), and diseased regions. Automated 

segmentation of perinatal brain  

MRI remains difficult due to significant changes in the brain's 

global structure and high variations in image intensity, 

reflecting the rapid tissue maturation that occurs around birth.  

Accurate and automated brain segmentation is crucial for 

several brain analysis activities, particularly those involving 

brain tumors, such as high-resolution reconstruction and 

cortical surface analysis. Although AI systems for medical 

picture segmentation can achieve superhuman accuracy on 

average, many radiologists are skeptical (Fidon, 2024).  

This skepticism stems in part from the possibility that AI 

algorithms would malfunction and produce errors that 

contradict human knowledge about the segmentation task, 

particularly when applied across many imaging protocols and 

anatomical diseases (Cai, 2024). Traditional diagnostic 

methods are time-demanding and error-prone (Solanki, 2023). 

The demand for effective medical image segmentation 

algorithms has increased as the specialized area requires more 

experienced personnel. Traditional image segmentation 

approaches, such as thresholding (Sharif, 2024), edge-based 

(Al Garea, 2024), and region-based methods (Reddy, 2024), 

are challenged by limitations in medical image capture, 

pathology kinds, and biological variability (Soppari, 2024). 

Brain MRI segmentation is extremely difficult because of 

image procurement limitations, the nature of brain pathology, 

and biological variability. Another problem in MRI 

segmentation is dealing with opacity in pixel values, which 

intuitionistic-based clustering algorithms try to overcome 

(Arora, 2024). 

Our study uses U-Net for brain MRI segmentation because it 

has numerous advantages over traditional deep learning (DL), 

machine learning (ML), and clustering methods. U-Net's 

encoder-decoder design handles the complicated structures of 

medical pictures, allowing for exact feature location and 

segmentation. Unlike traditional machine learning and 

clustering techniques, which rely on handmade features and 

extensive manual tuning, U-Net automatically learns relevant 

features via its convolutional layers. The skip connections in 

U-Net are especially useful for preserving spatial information, 

resulting in more accurate segmentation results, particularly in 

complex and varied anatomical structures. This makes U-Net 

especially useful for brain MRI and fetal brain segmentation, 

which present significant hurdles due to motion artifacts and 

substantial anatomical variability.  

II. LITERATURE REVIEW 

Shahzad and colleagues (Shahzad, 2022) made advancements 

in medical picture segmentation using neural networks by 

suggesting a modified U-Net architecture for use with the 

Intel/Movidius Neural Compute Stick 2 (NCS-2). The 

rationale for using U-Net is its proven effectiveness in medical 

picture segmentation tasks, particularly when dealing with 

small dataset sizes. Their modified U-Net variation achieved a 

substantial reduction in the number of parameters, decreasing 

it from 30 million in the original U-Net to 0.49 million. The 

goal was to enhance resource utilization while maintaining 

performance. Encouraging outcomes were achieved through 

experimental assessments carried out on three distinct medical 

imaging datasets: Ziehl-Neelsen sputum smear microscopy 

(ZNSDB), heart MRI, and brain MRI (BraTs). The suggested 

approach achieved maximum dice scores of 0.96, 0.94, and 

0.74 for the BraTs, heart MRI, and ZNSDB datasets, 

respectively. These results demonstrate good performance and 

enable effective inference on the NCS-2 platform. 

 

Akter et al. (Akter, 2024) introduced a new deep 

Convolutional Neural Network (CNN) architecture for 

automatically categorizing brain images into four distinct 

classes. They also utilized a U-Net-based segmentation model 

to compare the impact of segmentation on tumor classification 

in brain MRI images. The researchers conducted 

comprehensive evaluations using six established datasets. Two 

classification techniques were evaluated using accuracy, 

recall, precision, and AUC parameters, and they outperformed 

pre-trained alternatives with remarkable performance on all 

datasets. More precisely, their classification model achieved 

an accuracy of 98.7% in a dataset that was combined, and 

98.8% when it was integrated with segmentation. The highest 

classification accuracy reached an impressive 97.7% across all 

four separate datasets, highlighting the effectiveness of their 

strategy in improving brain tumor classification and 

segmentation using deep learning techniques. 

 

Shiny et al. (Shiny, 2024) proposed an optimization-based 

method for classifying brain tumors using MRI data. The 

methodology entailed the utilization of filtering techniques and 

Region of Interest (RoI) extraction to preprocess pre-operative 

and post-operative MRI images. Tumour segments were 

generated from the preprocessed data by segmenting it using 

an adapted U-Net model. Afterward, histogram characteristics 

were obtained, and tumor classification was carried out using a 

U-Net model trained with the proposed Poor Bird Swarm 

Optimisation algorithm (PRBSA), which is a combination of 

the Poor and prosperous optimization (PRO) algorithm and 

Bird Swarm Algorithm (BSA). Ultimately, the process of 

detecting changes in pixels utilized the speeded-up robust 

features (SURF) algorithm on the classed output. The U-Net 

model, based on the pseudorandom binary Sequence 

Algorithm (PRBSA), demonstrated outstanding performance 

in tumor classification tasks. It achieved a remarkable 

accuracy of 94%, sensitivity of 93.7%, and specificity of 94%. 

These results highlight the model's robustness in optimizing 

the diagnosis of brain tumors using MRI data. 

 

Rutoh et al. (Rutoh, 2024) proposed a new approach called 

GAIR-U-Net, which is a 3D Guided Attention-based deep 

Inception Residual U-Net. This method was intended to tackle 

the difficulties in segmenting tumors from multimodal MRI 

data. The GAIR-U-Net utilized attention mechanisms, an 

inception module, and residual blocks with dilated convolution 

to enhance feature representation and spatial context 
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comprehension. The U-Net design was developed by 

incorporating inception and residual connections to effectively 

capture intricate patterns and hierarchical features. 

Additionally, the model was able to expand its width in three-

dimensional space without a substantial increase in computing 

complexity. Dilated convolutions not only facilitated the 

acquisition of both local and global information but also 

improved segmentation accuracy and adaptability by giving 

priority to significant regions and suppressing irrelevant 

features. The experimental assessments conducted on the 

BraTS 2020 dataset, which consisted of T1-weighted, T1-ce, 

T2-weighted, and FLAIR sequences, demonstrated 

encouraging results. The GAIR-U-Net achieved dice scores of 

0.8796, 0.8634, and 0.8441 for the total tumor (WT), tumor 

core (TC), and improving tumor (ET) on the BraTS 2020 

validation dataset. 

 

Chen et al. (Chen, 2024) proposed the Adaptive Cascaded 

Transformer U-Net (ACTransU-Net), a distinctive framework 

designed for the segmentation of brain tumors in MRI images. 

ACTransU-Net integrates a Transformer and dynamic 

convolution into a cascaded U-Net architecture to accurately 

capture both overall characteristics and specific features of 

brain tumors. The architecture implemented a two-stage 

approach, involving the sequential use of two 3D U-Nets for 

coarse-to-fine segmentation. Subsequently, the second-stage 

shallow encoder and decoder were enhanced by using omni-

dimensional dynamic convolution modules. This integration 

aimed to enhance the representation of local details by 

dynamically adjusting the parameters of the convolution 

kernels. In addition, the second-stage deep encoder and 

decoder incorporate 3D Swin-Transformer modules to 

effectively capture long-range dependencies in the images. 

This improves the overall depiction of brain tumors at a global 

level. The efficacy of ACTransU-Net was demonstrated by 

experimental outcomes on the BraTS 2020 and BraTS 2021 

datasets. The model achieved average Dice Similarity 

Coefficient (DSC) scores of 84.96% and 91.37% respectively, 

along with 95th percentile Hausdorff Distance (HD95) values 

of 10.81 mm and 7.31 mm. 

III. PROPOSED METHODOLOGY 

This research introduces a novel approach for dividing brain 

MRI data into segments using a tailored U-Net model. This 

model employs extensive experimentation to optimize the 

arrangement of layers, resulting in exceptional segmentation 

outcomes. The subsequent sections offer a comprehensive 

elucidation of our pioneering methodology. Figure 1 illustrates 

the comprehensive technique employed in our investigation. 
 

 
Figure 1: The architecture diagram for the proposed model 
 
 
 

Dataset Description 
 
The Kaggle dataset titled "Brain MRI Segmentation" has 

3,064 brain MRI pictures, each meticulously paired with a 
corresponding mask that precisely identifies the location of any 
existing tumors. The extensive dataset is invaluable to medical 
imaging researchers and practitioners as it provides a robust 
foundation for developing, improving, and validating advanced 
machine-learning models for tumor recognition, segmentation, 
and analysis. Due to its comprehensive annotations, this dataset 
has significant potential to improve diagnostic accuracy and 
broaden the capabilities of automated medical imaging 
systems. Figure 2 displays a representation of the dataset 
sample. 

 

 
Figure 2: Sample of the dataset 

 
Figure 2 (left) illustrates the original brain MRI image, 

while Figure 2 (right) displays the corresponding mask that 
delineates the tumor location within the same image. 
 
Data Preprocessing 

The pre-processing procedures for the dataset include resizing, 

filtering, normalization, and histogram equalization. A 

comprehensive explanation of each step is given below. Pre-

processing is performed to enhance the data and render it more 

suitable for the following steps. 

 

Resizing refers to the process of altering the dimensions of 

each photograph in the collection to a predetermined size. To 

ensure compatibility with the neural network, it is necessary to 

modify the dataset so that all photos have identical 

dimensions. Upon completion of the resizing process, the 

image's dimensions are 160 × 160 × 1. Figure 3 (a) displays an 

input image, while Figure 3 (b) displays the image that has 

been scaled. 

 

 
   Figure 3: Dataset Resizing (First column: Input Image, 

Second column: Resized Image) 
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A Gaussian filter is used to apply a low-pass filter to a picture 

to reduce noise, which refers to high-frequency components, 

and to blur specific portions of the image. The weights within 

the kernel, which are utilized to calculate the weighted mean 

of the nearest points (pixels) in a picture, follow a Gaussian 

distribution, as implied by the function's name. Figure 4 (a) 

displays a randomly chosen input image, while Figure 4 (b) 

shows the filtered image. 

 
Figure 4: The filtered image is shown in Figures, (a) input 

image and (b) after filtering the input image. 

Furthermore, before additional analysis or processing, 

preprocessing with CLAHE, MHE, and MBOBHE includes 

utilizing these image enhancement techniques to increase an 

input image's contrast and visibility. Every technique has 

advantages and qualities of its own. 

 

Multi-Purpose Beta Optimized Bi-HE (MBOBHE):Despite 

its fame, the standard Histogram Equalisation (HE) approach 

struggles to achieve a uniformly distributed boost. MBOBHE 

aims to tackle this challenge by considering three essential 

attributes: brightness preservation, detail preservation, and 

contrast improvement. After segmenting the original 

histogram using an appropriate separating point, two sub-

histograms are subjected to independent histogram 

optimization using MBOBHE. This optimization method is 

guided by a weighted-sum aggregated objective function 

(AOF) that takes into account the three performance criteria. 

According to Hum (2014), MBOBHEO offers a more 

comprehensive and performance-enhancing approach 

compared to existing bi-HE methods. The effectiveness of 

MBOBH is supported by both quantitative and qualitative 

data, demonstrating that it provides a comprehensive view and 

effectively maintains a balance between contrast, brightness, 

and feature preservation in the enhanced images. This novel 

technique represents a significant advancement in the domain 

of image contrast augmentation.  

 

Multipeak Histogram Equalization (MHE):Using this 

image enhancement technique, photographs having many 

prominent intensity peaks in their histogram can have better 

contrast and clarity (Shi, 2004). With pixel coordinates (x, y) 

and intensity values I(x, y) ranging from 0 to L-1, let's say we 

have an input image I. L is the number of intensity levels 

(usually 256 for 8-bit images). 

Determine the input image's histogram: 

X(i), i = 0,1,…..L-1 

The number of pixels in the image with an intensity value of i 

is denoted by X(i). 

Determine the histogram's peaks: 

 
Prominent intensity levels in the image are represented by 

peaks. To ascertain the locations of peaks, we can employ a 

variety of techniques, such as locating local maxima. 

 

Divide the histogram into areas, often known as peaks: 

 

Divide the histogram into various regions or sub-histograms 

based on the peaks that have been detected. Every sub-

histogram depicts a local peak and the intensity levels around 

it. 

 

For every sub-histogram, carry out histogram equalization: 

 

Use the histogram equalization procedure for each sub-

histogram to adjust the intensity values and enhance contrast. 

The following represents the classic histogram equalization 

function: 

 

A(x)=round ((L-1)*∑ (H(y) /N) for j = 0 to x) 

 

N is the total number of pixels in the sub-histogram (sum of 

H(y) for each j in the sub-histogram), and A(x) is the new 

intensity value for the input intensity x. 

 

The final improved image is formed by combining the 

equalized sub-histograms obtained from the individual sub-

histogram equalization based on the segmentation.  

 

CLAHE stands for contrast-limited adaptive histogram 

equalization:  CLAHE, a variation of Adaptive Histogram 

Equalization (AHE), includes a height parameter to control 

local contrast and limit noise amplification (Reza, 2004). The 

steps involved are: 

I. The image is divided into M × N non-overlapping 

sub-regions, with the size dependent on the desired 

local enhancement strength. 

II. A grayscale histogram H(i) is calculated for each sub-

region. 

CNN image post-processing: 

 

 The suggested CNN-based architecture for MRI segmentation 

in the second phase of the model makes use of the segmented 

images from the first phase of the fusion model. The 

segmented image from the earlier stage is provided as input to 

increase the segmentation accuracy of the suggested CNN 

model. An image without segmentation will display all 

background elements, such as borders and textures. This 

results in the removal of unwanted features from low-priority 

regions.The convolution and maxpooling layers of the 

suggested CNN model, each of which employs a different CB, 
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are laid out as follows. For this activity, the regular stride 

length is used and no cushioning is used. 

 

The first CB consists of one MP layer and one convolution 

layer. The MP layer is 2-by-2, and the first convolution layer 

has 32 3-by-3 filters. The second CB consists of one MP layer 

and two convolution layers. While the MP layer has 32 filters 

in a (2 * 2) configuration, the two convolution layers each 

contain 16 filters in a (3 * 3) configuration. The third CB 

consists of one MP layer and two convolution layers once 

more. The filters in the MP layer are of size (2 * 2). whereas 

there are a total of 16 filters in the third convolution layer, 

each with a size of (3 * 3). Following the third CB, the 

flattening layer is applied. It "flattens" the features by 

condensing the feature space into a single feature vector. 

 

Segmentation Using Proposed U‐Net Model 

 

Deep learning has significantly influenced many fields, 

especially in the examination of enormous visual, auditory, 

textual, video, and tabular data. A primary impediment that 

impeded the progress of convolutional neural networks 

(CNNs) in medical image segmentation was the necessity for 

an ample amount of medical pictures to effectively train deep 

learning models. The U-Net architecture was developed 

specifically to address the challenge of segmenting medical 

images with limited datasets. The U-Net technique generates a 

pixel-level annotated image that emphasizes the segmented 

region of interest. Unlike standard CNNs commonly used for 

image classification, U-Net retains both content and position 

information, ensuring that critical spatial information required 

for segmentation tasks is not lost. The U-Net architecture is 

named after its U-shaped structure, which is composed solely 

of convolutional layers and lacks any dense layers. Being an 

end-to-end fully convolutional network (FCN), it can 

effectively process images of any size.   

 

This study describes the creation of a U-Net model to 

automatically segment the stomach, large intestine, and small 

bowel in the gastrointestinal (GI) tract. Through rigorous 

investigation, the optimal number and arrangement of layers 

were established to yield the best successful segmentation 

results. The U-Net model consists of a combination of 

convolutional and max-pooling layers. The model has a U-

shaped structure, as illustrated in Figure 5, comprising of an 

encoder on the left and a decoder on the right, following the 

typical U-Net design. Significantly, this model exclusively 

comprises convolution, max-pooling, and transpose 

convolution layers, without the incorporation of any dense 

layers.  

 

 
 

Figure 5: Graphical Representation of U-Net Architecture 

 

The architecture is accessed in two ways. The context of the 

image is extracted utilizing the first path, also referred to as 

the contraction path or encoder. The encoder is a conventional 

stack of max pooling and convolutional layers. The second 

path is the decoder, which is the symmetric extending path 

used to obtain exact localization by transposed convolutions 

This is where the encoder does downsampling, and the 

decoder does upsampling. Precise segmentation tasks require 

the architecture to collect high-resolution features and the 

context of the input image.  

 

Encoder (Contracting Path) 

 

          The encoder path comprises repeated application of two 

3x3 convolutions, individually followed by a ReLU activation 

and a 2×2 max pooling operation with stride 2 for 

downsampling. At every downsampling step, the number of 

feature channels is doubled. 

Let y be the input image, and l be the layer index in the 

encoder: 

 

ml  =  ReLU (Conv2D (m l-1, f = 3 , t = 1, q = ‘same’)) 

ml  =  ReLU (Conv2D (m l, f = 3 , t = 1, q = ‘same’)) 

ml+1 =  MaxPool  (m l, f = 2 , t = 2) 

Here,  

• Conv2D (ml, f, t, q) denotes a 2D convolutional layer 

involved in feature map ml with kernel size f, stride t, 

and padding q. 

• ReLU(y) describes the ReLU activation function 

applied to y. 

• MaxPool (y, f, t) represents the max pooling operation 

with kernel size f and stride t. 

 

Bottleneck 

         The bottleneck is the deepest portion of the network, 

with the greatest number of feature channels but the smallest 

spatial dimensions.  

It includes two convolutional layers with ReLU activation: 

 

 

b  =ReLU (Conv2D (mL, f = 3 , t = 1, q = ‘same’)) 
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b  =ReLU (Conv2D (b, f = 3 , t = 1, q = ‘same’)) 

 

 

Decoder (Expansive Path) 

         After upsampling the feature map, the decoder path 

consists of two 3×3 convolutions with ReLU activation. After 

every upsampling step, the corresponding feature map from 

the encoder path is concatenated (skip connections).  

Let, vl be the upsampled feature map, dl be the concatenated 

feature map, and m be the decoder's layer index:  

 

vl= UpConv2D (b, f = 2, t = 2) 

dl = concat (vl, mL-l-1) 

dl= ReLU (Conv2D (dl, f = 3 , t = 1, q = ‘same’)) 

dl= ReLU (Conv2D (dl, f = 3 , t = 1, q = ‘same’)) 

 

Here: 

 

• UpConv2D (y, f, t) denotes a 2D transposed 

convolution used to y with kernel size f and stride t. 

• Concat (a,b)  defines the concatenation of feature 

maps a  and b along the channel dimension. 

 

Output Layer 

         The final output layer involves a 1×1 convolution to map 

each 64-component feature vector to the expected number of 

classes (generally 1 for binary segmentation), followed by a 

sigmoid activation to make the final segmentation map. 

 

z = sigmoid (Conv2D(d0, f = 1 , t = 1, q = ‘same’ )) 

 

Here,  

• Conv2D (y, f, t, q) describes a 2D convolutional layer 

with kernel size f, stride t, and padding q. 

• Sigmoid (y) denotes the sigmoid activation function 

applied to y. 

 

Upsampling: Enhancing 2D The Upsampling2D layer 

increases the dimension of the layer output by duplicating the 

row values.The contracting path and upsampling2D are 

combined to create the expanding path. In a manner akin to the 

presence of maxpooling in the encoder section, the upsampling 

layer is positioned after two conv2D layers in the decoder 

half.A skip connection, also known as a residual link, is a 

connection that allows information to bypass certain layers in 

a neural network. After each of the two Conv2D layers in the 

encoder, there is a Skip Connection (Residual connection), 

also referred to as identity mapping. This connection links to 

the corresponding layer with the same dimensions in the 

decoder portion. The copy and crop operations in the 

architecture above are responsible for handling the residual 

connection task. The Concatenate layer is responsible for 

merging the two levels. Even in the most unfavorable scenario, 

this skip connection does not have a detrimental effect on the 

model; instead, it has a beneficial effect on the model's 

output.The decoder part is concluded by the output 

segmentation map, which is marked by filter 2. Again, this 

layer undergoes filtering using filter 1 and a Conv2D with 

Relu activation. The output classifies each pixel based on the 

presence or absence of a tumor. 

 

Hyperparameter Tunning 

 

Twenty epochs were used to train the models with a batch size 

of 32. While the epochs parameter specifies the number of 

runs over the entire training data, the batch size 

hyperparameter specifies the number of samples to proceed 

before changing the model's internal parameters.  

 

The learning rate, which regulates the model's pace of 

learning, is the essential hyper-parameter. It must not be 

unnecessarily high or low. The network may overshoot the 

low-loss regions if the learning rate is set too high, or it may 

take an excessive amount of time to reach the minimal loss if 

it is set too low. In this work, the learning rate is set at 0.0001. 

The Adam (Zhang, 2018) optimization method was applied for 

model compilation. In addition, the ReLU (Agarap, 2018) 

activation function has been used to activate all convolutional 

layers. Table 1 shows the parameters of the proposed model. 

Table 1: Parameters of the proposed model 

Parameter Value/Explanation 

Model 
‘unet((H, W, 3))’ - A U-Net model 

with input shape (Height, Width, 3 

channels) 
 

Loss Function 
‘dice_loss’ 

 

Optimizer ‘Adam(lr)’ 

Metrics ‘dice_coef’,’ accuracy’ 

Callbacks Various callbacks used during training 

ModelCheckpoint Saves the best model only 

(‘save_best_only=True’); verbose 

output enabled (‘verbose=1’) 

ReduceLROnPlateau Reduces learning rate by a factor of 

0.1 if no improvement in validation 

loss for 5 epochs (‘patience=5’); 

minimum learning rate set to ‘1e-7’; 

verbose output enabled (‘verbose=1’) 

CSVLogger Logs training data to CSV file 

specified by ‘csv_path’ 

EarlyStopping Stops training if no improvement in 

validation loss for 20 epochs 

(‘patience=20’); does not restore best 

weights 

(‘restore_best_weights=False’) 

Training Data ‘train_dataset’ 

Epochs ‘num_epochs’ 

Validation Data ‘valid_dataset’ 

Verbose ‘0’ (silent mode for training output) 

 

IV. EXPERIMENTAL ANALYSIS & RESULTS 

The experimental setup for detecting and segmenting brain 

tumors utilizes a variety of powerful tools and libraries. To 

carry out and evaluate machine learning models, which 
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involve extracting features from data, preprocessing the data, 

and measuring the performance of the models, we make use of 

Scikit-learn, also referred to as sklearn. Matplotlib is utilised 

to visually represent the MRI images, masks, and 

segmentation results, facilitating comprehension and 

presentation of the findings. 

In addition to facilitating smooth code execution and sharing, 

Google Colab offers a scalable and collaborative computing 

environment that makes advantage of high-performance 

computing resources required for training sophisticated 

models on huge datasets. The integration of this design 

enhances the dependability and accuracy of our experimental 

findings by ensuring an efficient, cooperative, and replicable 

research procedure. In order to ensure accurate and reliable 

assessment of our model's performance and its ability to apply 

learned knowledge to new data, we have partitioned the 

dataset into distinct subsets for training, validation, and testing 

purposes in our experimental configuration. The dataset is 

partitioned into three subsets: 612 images and corresponding 

masks in the validation set, 612 images and corresponding 

masks in the test set, and 1,840 images and corresponding 

masks in the training set. This stratified split enhances the 

effectiveness of training, tuning, and testing our machine 

learning models. Additionally, it guarantees accurate 

performance evaluation and optimisation. The model was 

evaluated using a set of evaluation metrics. In order to 

evaluate the effectiveness of our models for tumour detection 

and segmentation, we employ the following assessment 

metrics: 

• Precision:  Precision measures the proportion of true 

positive predictions among all positive predictions. It 

indicates how many of the predicted positive cases 

are positive. 

Precision = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 

• Recall (Sensitivity):Recall measures the proportion 

of true positive predictions among all actual positive 

cases. It indicates how well the model identifies 

positive cases. 

 

Recall = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

• F-score:The F1-Score is the harmonic mean of 

precision and recall, providing a single metric that 

balances both aspects. It is particularly useful when 

the class distribution is imbalanced. 

 

F1-score = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

• Accuracy:Accuracy measures the proportion of true 

positive and true negative predictions among all 

predictions. It indicates the overall correctness of the 

model. 

 

Accuracy = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑢𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

     Analysis of Dice Coefficient: 

The dice coefficient is a widely used statistic for measuring 

the similarity between two samples, such as the predicted and 

ground truth masks of brain tumours in MRI scans. The 

computation involves dividing the sum of the regions of both 

masks by twice the intersection of the ground truth and 

predicted masks. A higher Dice coefficient indicates a greater 

degree of overlap and agreement between the estimated and 

actual tumour locations. 

 

 
 

Figure 6: Dice Coefficient of the proposed model 

The curve is displayed in Figure 6. In the case of our model, 

we find that the validation Dice coefficient is approximately 

84% and the training Dice coefficient is approaching 93%, 

indicating that the model performs reasonably well in 

generalizing to unknown data but with a minor decline in 

performance from the training set. Since both curves have a 

similar tendency, the consistency and small divergence 

between the training and validation curves suggest that the 

model is not appreciably overfitting.The model successfully 

learns the patterns and features required to precisely forecast 

tumor locations from the training data, as shown by the 

training curve's high Dice coefficient. However, the 

marginally lower validation Dice value raises the possibility 

that the distribution of data between the training and validation 

sets differs in some way. This may be the result of variables 

the model encounters during validation, such as variances in 

image quality, anatomical variability, or other features found 

in real-world data. 

 

Overall, the validation set yielded a Dice coefficient of about 

84%, which is a good result and shows that the model can 

correctly identify and segment tumors in unseen MRI images. 

The model's capacity for generalization appears to be strong 

based on the consistency of its performance across training 

and validation sets; nonetheless, changes and additional 

research should be directed toward minimizing any disparity 

in these performance metrics. 
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Generalization analysis of the proposed model: 

This study focuses on assessing a critical element of model 

generalisation in the context of identifying and segmenting 

brain tumours using MRI images. Generalisation refers to the 

ability of a model to apply the patterns and characteristics it 

has learned to real-world situations by using its expertise to 

analyse data that it has not been specifically trained on. The 

figures 7 and 8 display the training and validation accuracy, as 

well as the training and validation loss. 

 

The graph 8 demonstrates that our model exhibits robust 

generalisation capabilities in the job of recognising and 

segmenting brain tumours from MRI data. Generalisation 

refers to the capacity of a model to apply its acquired 

knowledge to new and unseen data in real-world scenarios, by 

extrapolating learned patterns and characteristics from the 

training set. 

 
             Figure 7: Training and validation accuracy  

 

 
Figure 8: Training And validation loss 

 

The model's capacity to precisely classify tumour and non-

tumor regions in the training set of MRI images is evidenced 

by its training accuracy of approximately 99.65%. This high 

accuracy demonstrates the effectiveness of the robust learning 

process, which enables the model to accurately capture 

intricate features and distinct patterns specific to the dataset. 

Concurrently, the validation accuracy of around 99.32% 

indicates that the model remains effective when applied to 

unseen data. The validation accuracy is crucial as it 

demonstrates the model's ability to generalise effectively by 

applying the knowledge it has acquired to new cases that were 

not part of the training data, although being slightly lower than 

the training accuracy. The training and validation losses 

remained consistently small throughout the training method. 

The model's training inaccuracy was quantified using the 

training loss, which decreased gradually over time from an 

initial value of 0.880 in the first epoch to 0.092 in the final 

epoch. Similarly, over that period, the validation loss 

decreased from 0.979 to 0.196. The low loss values indicate 

that the model effectively minimises errors and discrepancies 

between the expected and actual outputs for both the training 

and validation datasets. The model's ability to generalise well 

is reinforced by its consistent reduction in loss, indicating that 

the model learns to make accurate predictions while also 

avoiding overfitting or underfitting. The model's reliable and 

consistent performance on several datasets is evidenced by the 

little disparity between training and validation accuracies, as 

well as the convergence of training and validation losses 

towards the end of the training period. This convergence 

indicates that the model has effectively learned the significant 

features of brain tumour images without including any 

unnecessary information or background noise from the 

training data. To summarise, our proposed U-Net model 

demonstrates strong generalisation abilities in the critical task 

of brain tumour identification and segmentation, as evidenced 

by the comprehensive analysis of training and validation 

metrics derived from pictures. The findings are essential for 

enhancing the accuracy and dependability of tumour 

identification in medical environments, where it is imperative 

to enhance patient outcomes and treatment strategies. 

 

Performance of the proposed model:  

 

Finally, we have employed test accuracy, F-score, precision, 

and recall to evaluate the performance of our model. The 

efficacy of the suggested U-Net model is demonstrated in 

Table 2. The precision, which measures the accuracy of the 

positive projections, was recorded at 92.66%. The model 

achieves a high level of accuracy by minimising the 

occurrence of false positives, which refers to regions that are 

incorrectly identified as tumours. Additionally, it demonstrates 

a high level of effectiveness in accurately recognising genuine 

positive cases of brain tumours. The recall metric, which 

evaluates the model's ability to accurately identify all relevant 

instances of brain tumours, achieved a score of 93.65%. This 

demonstrates the model's high sensitivity in accurately 

identifying the majority of true positive cases, resulting in 

little instances of missed tumours. A high recall rate is crucial 

in medical diagnostics, as failing to detect a tumour could have 

severe consequences for patient outcomes. The F-score, which 

is the harmonic mean of recall and precision, is 93.15%. This 

indicator provides a comprehensive measure of the model's 

effectiveness by considering its performance in accurately 

recognising true positives and its capability to minimise false 

positives. The model has strong performance in both domains, 
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effectively balancing precision and recall, as evidenced by its 

high F-score. In addition, the model has an impressive overall 

accuracy of 97.79% on the test set. Accuracy refers to the 

proportion of correct results (true positives and true negatives) 

out of all occurrences examined. The model's high accuracy 

rate displays its reliable performance across diverse settings, 

highlighting its robust capability to effectively classify both 

tumour and non-tumor regions. 

 

Table 2: Performance of the proposed U-Net model 

Evaluation Metrics Performance 

Precision 93.66 % 

Recall 94.65 % 

F-score 94.15% 

Accuracy 97.79 

 

Performance Comparison with Trending Method 

The U-Net models we presented showed exceptional 

performance in segmenting brain tumor MRI images, 

surpassing standard approaches as evidenced by the 

comparison with studies by Zhang Y. (2024), Huang (2020), 

and Ishfaq (2023) in Table 3. The model developed by Huang 

(2020) utilized lightweight feature extraction modules and 

attention methods to enhance performance, enabling precise 

diagnosis and effective treatment planning. (Ishfaq, 2023) 

utilized segmentation, clustering, and multi-class support 

vector machines (SVM) to identify distinctive characteristics 

and categorize cancers. Nevertheless, the multi-class SVM 

technique requires improvement in effectively distinguishing 

complex datasets, leading to reduced performance. In addition, 

both Huang (2020) and Ishfaq (2023) encountered difficulties 

in comprehending the meaning of intricate data, which further 

impeded their performance. 

 

Table 3: Compare our proposed model with the existing 

method 

Reference Accuracy 

(Zhang Y. a., 2024) 0.806 

(Huang, 2020) 0.816 

(Ishfaq, 2023) 0.846 

Proposed U-net 0. 97 

 

In contrast, our U-NET models prioritized feature 

advancement during image preprocessing by employing 

techniques like CLAHE to enhance the visibility of 

complicated structures and indistinct features in medical 

images. We also tailored the U-Net architecture with a 

personalized layered design explicitly optimized for the 

challenges of brain tumor segmentation. This holistic approach 

addresses the complexities of medical image segmentation, 

resulting in excellent outcomes. Our proposed U-Net method 

performed an accuracy of 0.97, greatly exceeding traditional 

methods, which achieved accuracies of 0.806 (Huang, 2020), 

0.816 (Ishfaq, 2023), and 0.846 (Zhang Y. a., 2024). This 

combination of innovative strategies highlighted the efficacy 

of our models in increasing the field of healthcare through 

enhanced medical image segmentation. 

 

Visual analysis of the segmentation  

 

In the results section of our brain MRI segmentation analysis, 

we have showcased the performance of our model using a 

collection of photographs. These photos demonstrate both 

precise and imprecise segmentations. The visualization is 

depicted in Figure 9. In the first two figures, the true part of 

the mask image is overlaid on top of the MRI images. The 

model's ability to precisely detect and separate the tumor 

regions is shown in these figures. The model has effectively 

learned to distinguish tumour tissues from the surrounding 

brain structures by accurately comparing the segmented areas 

in these images with the ground truth masks. Precise 

segmentation is crucial for proper diagnosis and therapy 

planning as it ensures accurate identification of tumour zones 

while excluding non-tumor areas. Regrettably, the final image 

is afflicted by a segmentation fault. The model accurately 

segments the core tumour site, but erroneously identifies an 

additional area as a tumour. This erroneous segment 

demonstrates a spurious detection in the model's predictions 

due to its proximity to the accurate segment region. Although 

less frequent, these errors are significant as they might lead to 

misinterpretation of MRI imaging or unnecessary treatment 

interventions. The complexity and unpredictability of brain 

tumor manifestations in MRI scans, the quality of the training 

data, and the potential overemphasis on specific characteristics 

within the training set contribute to this lack of accuracy. To 

rectify these imperfections, the model necessitates 

enhancement through the implementation of tactics such as 

augmenting the dataset with a wider range of examples, using 

advanced regularisation techniques, and fine-tuning the 

model's hyperparameters to enhance its ability to generalize. 

Future research can prioritize mistake-reduction measures. 

 

 
Figure 9: Visual analysis of segmented images 

V. CONCLUSION 

This paper introduces a novel method for tackling the 

difficulties associated with segmenting brain tumor MRI 
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images in the context of contemporary healthcare. Our 

technique leverages the capabilities of deep learning 

algorithms. We provide an optimized U-Net model 

specifically designed for the segmentation of brain cancer 

MRI images, to enhance precision. Our strategy involves 

enhancing features through the use of methods such as 

CLAHE, MHE, and MBOBHE during the picture 

preprocessing phase. Next, we boost the segmentation 

outcomes by customizing the layered design of the U-Net 

model's architecture. Ultimately, we employ a CNN model for 

post-processing to further enhance segmentation results by 

incorporating additional convolutional layers. The recall rate 

achieved was an impressive 93.66%, with an accuracy rate of 

97.79%, an F-score of 93.15%, and a precision rate of 92.66%. 

The Dice coefficient's training and validation curves exhibited 

marginal deviation, with the training achieving approximately 

93% and the validation reaching 84%, showing a strong 

capacity for generalization. There are alternative avenues for 

conducting further investigation. This research established the 

groundwork for more accurate and efficient procedures in 

medical picture segmentation, which could have a substantial 

influence on healthcare by assisting radiologists in making 

precise diagnoses and planning treatments. 
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