
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 491

IJRITCC | March 2024, Available @ http://www.ijritcc.org

BDD for Testing Microservices and Distributed

Systems

Sagar Aghera

Independent Researcher, Sr Staff Engineer in Test, Netskope Inc, USA

Email: saghera@netskope.com

Nikhil Yogesh Joshi

Independent Researcher, Manager II, Fiserv, USA

Email: nikhilyogesh.joshi@fiserv.com

Abstract: This research uses Behaviour-Driven Development (BDD) to test microservices and distributed systems for scalability,

fault tolerance, and concurrency. By using natural language specifications, BDD helps stakeholders collaborate and record and

validate system behaviours. Unit testing, integration testing, and end-to-end (E2E) testing are evaluated inside the BDD framework.

Integration testing balances coverage, maintainability, and complexity best. Compared to TDD and ATDD, BDD excels in behaviour

specification and stakeholder alignment, complementing TDD's unit test coverage and ATDD's acceptance criteria validation.

Keywords: BDD, microservices, distributed systems, integration testing, E2E, TDD, ATDD.

I.INTRODUCTION

Microservices and distributed systems are key architectures

for current software applications. Software systems are

becoming more sophisticated and require scalable, flexible,

and maintainable paradigms. Microservices are popular and

useful and used by over 61% of organizations, according to

O'Reilly [1]. Complex systems make testing challenging.

BDD is a popular microservices and distributed system

testing solution. BDD natural language test requirements

promote developer-tester-business stakeholder collaboration

[2]. Distributed system implementation requires better

communication and software behaviour that fits business

needs.

Traditional testing approaches struggle with dynamic,

decentralized microservices and distributed systems.

Multiple services communicating over network protocols

complicate integration, coordination, and failure tolerance in

these systems. In 2018, poor software quality cost the US

$2.84 trillion, mostly due to testing and debugging [3].

Effective testing reduces expenses and ensures software

quality.

BDD connects technical and non-technical stakeholders with

plain-language executable specs and Cucumber, SpecFlow,

and JBehave [4]. This method improves system behaviour

comprehension by creating understandable and maintainable

test scenarios. BDD in microservices can automate and test

agile development methods in CI/CD workflows.

Distributed systems assess system behaviour across nodes

and services using BDD for distributed transactions,

synchronization, and coordination. Probabilistic distributed

systems with network splits and node failures need rigorous

testing to show resilience and dependability. BDD's

behaviour specification provides realistic test scenarios to

cover edge cases and failure types.

Fig 1.1:Different Testing methods used in microservices and

distributed systems

(“https://khorikov.org/images/2020/2020-03-04-test-

pyramid.png”)

II.LITERATURE REVIEW

Microservices and distributed systems architectures are

becoming widely used as a result of the quick growth of

software development methodologies. A microservices

design breaks programs into loosely connected and

http://www.ijritcc.org/
mailto:saghera@netskope.com
mailto:nikhilyogesh.joshi@fiserv.com
https://khorikov.org/images/2020/2020-03-04-test-pyramid.png
https://khorikov.org/images/2020/2020-03-04-test-pyramid.png

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 492

IJRITCC | March 2024, Available @ http://www.ijritcc.org

deployable services, improving scalability, flexibility, and

maintainability. Distributed systems have multiple nodes that

interact and collaborate to achieve goals. Resilience and fault

tolerance improve with this architecture. However, their

complexity, diversity, and ever-changing qualities make

these architectural ideas difficult to test.

Behaviour-driven development (BDD) has helped

stakeholders bridge these gaps by using common language

and executable specifications. BDD encourages developers,

testers, and domain experts to collaborate on TDD. This

cooperation guarantees that the software matches business

requirements [1].

Effective microservice and distributed system testing is

essential. According to a Cloud Native Computing

Foundation survey, 63% of companies had problems testing

microservices. These problems generally involved inter-

service dependencies, state management, and data

consistency [2]. Gartner estimated that 70% of significant

enterprises delay release cycles due to insufficient distributed

system testing [3]. Data shows the necessity for

comprehensive testing methodologies that can handle modern

software designs.

In BDD, user stories and business requirements are used to

create systematic test scenarios. Natural language scenarios

created by Cucumber, SpecFlow, and JBehave can be

automated in CI/CD workflows. This improves test coverage,

tracking, early problem detection, and error resolution costs

[4].

Although BDD has benefits, microservices along with

distributed systems make it challenging to deploy. These

designs require advanced solutions for test orchestration,

inter-service communication, and data synchronization due to

their decentralization. Due to network oscillations and partial

failures, resilient and tolerant test cases are needed [5].

RESEARCH GAP

The decentralized service communication of microservices

and distributed systems makes software design scalable and

resilient [1]. BDD was implemented as these architectures are

challenging to test [2]. BDD enhances testing collaboration

and clarity using natural language constructs, however

quantitative analysis and developing technology integration

are absent

Gaps in research are :

• A restricted quantitative study on BDD's impact on

performance, mistake detection, and testing efficiency.

• Challenges in managing BDD test suites in large

microservices environments.

• Inadequate investigation of distributed component

synchronization behaviour requirements.

• The underutilized combination of BDD, orchestration,

containerization, and service mesh topologies (e.g.,

Kubernetes, Istio)

• Insufficient frameworks for BDD concerns in

distributed systems and microservices.

III.BDD FOR MICROSERVICES AND DISTRIBUTED

SYSTEM

 3.1. Definition and Characteristics of Microservices

Architecture

Microservices architecture breaks apart a huge, integrated

software into independent services. Each standalone service

uses HTTP/REST or messaging protocols. This architecture

supports modularity, autonomous service generation,

deployment, and scalability. Every microservice is a business

function with one responsibility and can be programmed in

many languages and technologies [1]. Decentralized

microservices enable polyglot programming and fault

isolation because one service failure may not affect the

complete system.

The primary attributes of microservices are as follows:

• Decentralization: Independent teams managing and

operating independently.

• Scalability: Each service can be scaled autonomously.

• Resilience: Isolating faults improves the overall stability

of the system.

• Polyglot Persistence: Various services can be provided

by distinct databases.

• Continuous Delivery: Promotes quick development and

implementation [1, 5].

Difficulties in Testing Microservices

Testing microservices entails intricacies such as:

• Inter-service Communication: Maintaining accuracy

and asynchronous communication.

• Service Dependencies: Mocking and service

virtualization are needed for isolated testing.

• Deployment Environments: Setting up tests is more

difficult in dynamic containerized environments.

• Data Consistency: Ensuring uniformity among dispersed

services.

• Integration Testing: Testing service interactions

thoroughly might be difficult [6].

According to a survey conducted by O'Reilly, 86% of firms

encounter substantial difficulties when it comes to testing

microservices [7].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 493

IJRITCC | March 2024, Available @ http://www.ijritcc.org

Fig 3.1: Microservice using BDD Framework

(“https://imgopt.infoq.com/fit-

in/3000x4000/filters:quality(85)/filters:no_upscale()/articles/

microservices-bdd-interface-

oriented/en/resources/1microservices-bdd-interface-

oriented-2-1548446601454.jpg”)

Application of (BDD) in Microservices

Behaviour-Driven Development (BDD) improves testing by

encouraging open communication and collaboration. BDD

scenarios are written in a simple language, making test cases

easy to access and update.

3.2. Definition and Characteristics of Distributed Systems

Distributed systems have many separate computing nodes

that network and synchronize. These nodes work together to

achieve a goal, usually appearing as a single system to end-

users.

The essential attributes of distributed systems encompass:

• Scalability: Effectively manage larger workloads by

including more nodes.

• Fault Tolerance: Maintain operations despite node

failure via redundancy.

• Concurrency: Enable simultaneous execution across

several nodes.

• Transparency: Conceal the intricacy of the distributed

infrastructure from users.

• Heterogeneity: Combine several software and hardware

elements [8].

Distributed systems enable excellent availability and

performance in cloud computing, big data processing, and

huge enterprise applications.

Difficulties in Testing Distributed Systems

Testing distributed systems presents numerous substantial

challenges:

• Network Partitioning and Latency: Network partitions

and variability complicate behaviour prediction.[11]

• Concurrency Issues: The simultaneous execution of

many tasks generates race situations and deadlocks.

• State Management: Ensuring a uniform state across

nodes is a complicated task.

• Fault Injection and Recovery: Simulating faults and

testing recovery requires complex methods.

• Scalability Testing: Effective scaling with more nodes

requires extensive load testing [9].

According to an IEEE survey, 72% of distributed system

developers struggle to verify state management and fault

tolerance [10].

Fig 3.2: Distributed Systems using BDD Framework (“https://media.geeksforgeeks.org/wp-

content/uploads/20220525155747/distributedsystem1.jpg”)

Application of (BDD) in Distributed Systems

Behaviour-Driven Development (BDD) standardises

distributed system testing and encourages developer, tester,

and stakeholder communication. Behaviour-driven

development (BDD) uses language to create test scenarios to

ensure that everyone understands the system's expected

behaviour.

http://www.ijritcc.org/
https://imgopt.infoq.com/fit-in/3000x4000/filters:quality(85)/filters:no_upscale()/articles/microservices-bdd-interface-oriented/en/resources/1microservices-bdd-interface-oriented-2-1548446601454.jpg
https://imgopt.infoq.com/fit-in/3000x4000/filters:quality(85)/filters:no_upscale()/articles/microservices-bdd-interface-oriented/en/resources/1microservices-bdd-interface-oriented-2-1548446601454.jpg
https://imgopt.infoq.com/fit-in/3000x4000/filters:quality(85)/filters:no_upscale()/articles/microservices-bdd-interface-oriented/en/resources/1microservices-bdd-interface-oriented-2-1548446601454.jpg
https://imgopt.infoq.com/fit-in/3000x4000/filters:quality(85)/filters:no_upscale()/articles/microservices-bdd-interface-oriented/en/resources/1microservices-bdd-interface-oriented-2-1548446601454.jpg
https://imgopt.infoq.com/fit-in/3000x4000/filters:quality(85)/filters:no_upscale()/articles/microservices-bdd-interface-oriented/en/resources/1microservices-bdd-interface-oriented-2-1548446601454.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20220525155747/distributedsystem1.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20220525155747/distributedsystem1.jpg

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 494

IJRITCC | March 2024, Available @ http://www.ijritcc.org

IV.DIFFERENT TECHNIQUES AND ALGORITHMS USED

IN MICROSERVICES AND DISTIBUTED SYSTEMS

Unit testing, integration testing, and end-to-end testing are

types of testing procedures used in distributed systems and

microservices. Each technique focuses on distinct facets of

system functionality, guaranteeing the system's overall

dependability and performance.

4.1. Unit Testing

Unit testing examines individual pieces or actions for

functionality. In microservices, this means testing functions

and methods separately from other services and

dependencies.

Algorithm:

• Identify Unit: Choose the unit (function/method) that has

to be tested.

• Establish Test Environment: Arrange the essential

components for the test environment, such as mocks and

stubs.

• Define Test Cases: Create test cases that encompass a

range of input circumstances.

• Execute Tests: Execute the test cases.

• Verify Results: Verify the results by comparing them to

the anticipated outcomes.

• Report: Document the outcomes of the exam.

Mathematical Model:

Consider the function 𝑓 ∶ 𝑋 → 𝑌 that is being tested, where

𝑋 represents the set of all possible inputs and 𝑌 represents the

set of all possible outputs. The unit test can be defined as:

∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑌 such that f(𝑥) = 𝑦

where y is the expected output for input x.

Applications:

• Microservices require unit testing before integration for

consistency. It helps identify flaws quickly and minimizes

development costs [12].

Fig 4.1: Unit Testing Architecture (“https://media.licdn.com/dms/image/D5612AQGiGg2RnS9pKg/article-inline_image-

shrink_1000_1488/0/1693913625883?e=1724889600&v=beta&t=rStHibLzc7fZ70N7yByqU_MEF0i_vy3L96ATLKFgpDw”)

4.2. Integration Testing

Integration testing examines the connection between system

components and services to guarantee appropriate operation.

Microservices ensure expected service communication and

collaboration.

Algorithm:

• Interface Identification: Identify service interfaces and

interactions.

• Setup Environment: Set up the test environment by

configuring all essential services.

• Define Test Cases: Create test cases that encompass

interaction possibilities.

• Execute Tests: Carry out the integration tests.

• Verify Results: Verify the proper interaction of the

services and ensure that they generate the anticipated

results.

• Report: Record the examination outcomes.

Mathematical Model:

Let 𝑆1, 𝑆2, , . . . , 𝑆𝑛 be the services and 𝐼𝑖𝑗 be the interaction

between service 𝑆𝑖 and service 𝑆𝑗. The integration test can be

represented by the following mathematical expression:

∀𝑖, 𝑗 ∈ {1,2, … , 𝑛}, 𝐼𝑖𝑗(𝑆𝑖, 𝑆𝑗) produces expected results

Applications:

• Microservices and distributed systems need integration

testing to ensure service integration. It identifies service

communication, data exchange, and interdependencies

issues [13].

http://www.ijritcc.org/
https://media.licdn.com/dms/image/D5612AQGiGg2RnS9pKg/article-inline_image-shrink_1000_1488/0/1693913625883?e=1724889600&v=beta&t=rStHibLzc7fZ70N7yByqU_MEF0i_vy3L96ATLKFgpDw
https://media.licdn.com/dms/image/D5612AQGiGg2RnS9pKg/article-inline_image-shrink_1000_1488/0/1693913625883?e=1724889600&v=beta&t=rStHibLzc7fZ70N7yByqU_MEF0i_vy3L96ATLKFgpDw

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 495

IJRITCC | March 2024, Available @ http://www.ijritcc.org

Fig 4.2: Integration Testing Framework (“https://media.springernature.com/lw685/springer-

static/image/chp%3A10.1007%2F978-981-99-3091-3_14/MediaObjects/539848_1_En_14_Fig5_HTML.png”)

4.3. End-to-End Testing

End-to-end (E2E) testing evaluates the entire system

workflow to ensure that all components and services work

together to offer the desired functionality.

Algorithm:

• Identify User Scenarios: Specify user scenarios that

encompass whole workflows.

• Establish Environment: Create a test environment that

matches production.

• Define Test Cases: Generate test cases for every user

scenario.

• Execute Tests: Execute the end-to-end tests.

• Verify Results: Verify the system's functionality in all

scenarios.

• Report: Document the outcomes and any challenges

encountered.

Mathematical Model:

Let W be the collection of workflows, denoted as

{𝑤1 , 𝑤2 , . . . , 𝑤𝑚 }, where each workflow 𝑤𝑖 involves a

sequence of interactions𝐼𝑖𝑗. The E2E test can be represented

by the universal quantifier ∀, where 𝑤𝑖 belongs to 𝑊.

∀𝑤𝑖 ∈ 𝑊, 𝑤𝑖

executes successfully and produces expected outcomes

Applications:

• End-to-end testing ensures that all microservices and

distributed components work together to provide the

desired functionality. It helps discover system-wide issues

[5].

Fig 4.3: End-to-end (E2E) Testing Framework (“https://microservices.io/i/posts/testable-in-isolation.png”)

http://www.ijritcc.org/
https://media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-981-99-3091-3_14/MediaObjects/539848_1_En_14_Fig5_HTML.png
https://media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-981-99-3091-3_14/MediaObjects/539848_1_En_14_Fig5_HTML.png
https://microservices.io/i/posts/testable-in-isolation.png

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 496

IJRITCC | March 2024, Available @ http://www.ijritcc.org

V.COMPARATIVE ANALYSIS OF VARIOUS

TECHNIQUES AND ALGORITHMS FOR TESTING

MICROSERVICES AND DISTRIBUTED SYSTEMS

Key Performance Metrics

Based on the following critical performance indicators, unit

testing, integration testing, and end-to-end testing are

compared:

• Test Coverage: Indicates how much testing has been

done on the source code.

• Execution Time: The amount of time needed to run the

test cases.

• Fault Detection Rate: The ability to find flaws.

• Maintenance Effort: The test cases need to be

maintained.

• Scalability: The capacity to manage a growing system

size and test count.

• Complexity: The difficulty of creating and carrying out

test cases.

Unit Testing, Integration Testing, and End-to-End Testing

techniques are compared in table 5.1 based on performance

criteria.

Metric Unit Testing Integration Testing End-to-End Testing

Test Coverage High (90-100%) Medium (60-80%) Low (30-50%)

Execution Time Low (milliseconds) Medium (seconds) High (minutes)

Fault Detection Rate Medium (component-

level bugs)

High (interaction-level

bugs)

Very High (system-level

bugs)

Maintenance Effort Low (isolated tests) Medium (dependent on

interactions)

High (entire workflow

tests)

Scalability High (easily scales with

components)

Medium (scales with

interaction complexity)

Low (scales with entire

system)

Complexity Low (simple, isolated

tests)

Medium (involves

multiple components)

High (involves full

workflows)

Table 5.1: Comparison of Different Techniques and Algorithms for Testing Microservices and Distributed Systems

Integration testing works better for microservices and

distributed systems. Test coverage, execution time, error

detection, maintenance, and complexity are balanced. For

component evaluation, unit testing is essential, whereas end-

to-end testing verifies the workflow. Integration testing

ensures reliable and effective service interactions and

communication. The BDD framework and three

methodologies create a complete testing plan.

Comparison of BDD with Other Testing Methods

Behaviour-Driven Development (BDD) testing emphasizes

stakeholder engagement utilizing natural language

requirements. It is comparable to TDD and ATDD but has a

different focus and approach.[15]

Test-Driven Development (TDD):

• TDD is a development strategy where developers write

tests before producing code. It uses a "red-green-refactor"

cycle to write failing tests (red), implement code (green),

and improve code quality.

Acceptance Test-Driven Development (ATDD):

• ATDD expands TDD by helping stakeholders specify

acceptance criteria early in development. Based on these

criteria, acceptance tests influence development. The

table 5.2 below compares different Testing Methodology

with BDD.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 497

IJRITCC | March 2024, Available @ http://www.ijritcc.org

Approach Coverage Maintainability Readability Integration

Complexity

BDD Focus on behaviour Aligns tests with

business

Natural language Moderate, focuses

on interactions

TDD Unit level coverage Modular code Concise, specific Low, isolates units

of code

ATDD Acceptance criteria Business-driven

tests

Business domain

language

Higher, ensures

user requirements

Table 5.2: Comparison of Different Testing Methodology

TDD, ATDD, and BDD have various benefits due to their

focus and technique. BDD aligns corporate goals and

improves maintainability with natural language standards.

ATDD enhances integration with higher-level acceptance

criteria validation, whereas TDD improves unit test coverage

and modular code. The best strategy relies on project needs,

stakeholder input, and testing granularity. These strategies

increase software quality and satisfy customers.

VI.DISSCUSSION

This paper emphasizes BDD testing methods and

methodologies for microservices and distributed applications.

Microservices and distributed systems need testing for

stability and performance due to their scalability, fault

tolerance, and concurrency. These systems require

considerable testing for network latency, state management,

and fault recovery. BDD organizes system testing using

natural language components and stakeholder

communication.

In microservices, BDD leverages Cucumber and SpecFlow to

construct executable tests from Given-When-Then user

stories and scenarios. This systematic approach enables unit,

integration, and E2E testing. Unit testing evaluates parts

before integration. Microservices must communicate

seamlessly, requiring integration testing. E2E testing ensures

workflows offer intended functionality.

Comparisons of these testing approaches utilizing key

performance measures provide insights. Unit testing finds

component issues early due to its great test coverage and low

execution time. Scalable and easy to maintain, it's crucial for

microservices testing. Unfortunately, it cannot detect

interaction- and system-level faults. Integration testing

balances test coverage, speed, and error detection. Correctly

connecting with services solves a major microservices and

distributed system challenge. Interface complexity limits

scalability, although complexity and maintenance are

medium. E2E testing finds system-level errors to verify

workflows. Its size makes it less scalable and takes the

longest to execute, maintain, and understand.[14]

The focus and technique of TDD, ATDD, and BDD offer

several benefits. BDD excels at plain language requirements

for business alignment and maintainability. TDD improves

unit test coverage and modular code, while ATDD improves

integration with higher-level acceptance criteria validation.

Best technique depends on project needs, stakeholder

involvement, and testing granularity. These methods improve

software quality and customer satisfaction.

BDD works well with CI/CD workflows. By providing

ongoing feedback and early issue discovery, CI/CD pipelines

with automated test execution increase software quality.

Studies show that BDD improves microservice and

distributed system test coverage and reduces failures.

VII.CONCLUSION AND FUTURE SCOPE

This research examined Behaviour-Driven Development

(BDD) for testing microservices and distributed systems,

including testing methods, algorithms, and comparisons. The

introduction stressed the necessity of testing in assuring

complex systems' reliability, scalability, and fault tolerance.

BDD addresses microservices and distributed system testing

difficulties by using natural language specifications to

improve stakeholder participation.

Through BDD testing, unit, integration, and end-to-end (E2E)

testing were examined to determine their roles and efficacy.

Unit testing ensures great coverage and early bug detection

by validating individual components. Integration testing

checks service interactions, essential for microservices

system stability. Complete workflows are tested in E2E to

ensure end-user satisfaction. Comparing these methods

showed that integrated testing balanced coverage,

maintainability, and complexity well.

BDD's strengths stood out when compared to TDD and

ATDD. BDD's behaviour specification and stakeholder

participation improve maintainability and business goals.

TDD thrives in unit test coverage and modular code

architecture, while ATDD rigorously validates acceptance

criteria to satisfy user expectations.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 January 2024 Revised: 12 February 2024 Accepted: 30 March 2024

__

 498

IJRITCC | March 2024, Available @ http://www.ijritcc.org

Future scope

The outcomes of this study provide numerous opportunities

for further investigation:

• Advanced Fault Injection: Explore advanced fault

injection methods to simulate failures and strengthen

systems.

• AI and Machine Learning: Create automated test

scenarios and forecast defects with AI/ML.

• Scalability Improvements: Parallel execution and

resource management scale E2E testing.

• BDD Framework Enhancements: Develop microservice

and distributed system BDD tools that focus on service

interactions.

• Performance Testing: Add latency and throughput to

BDD.

• Security Testing: Use BDD security testing to find and fix

system vulnerabilities.

By addressing these issues, testing approaches for distributed

systems and microservices will improve, utilizing BDD's

advantages to satisfy contemporary software requirements.

REFERENCES

[1] Newman, S., 2015. Building Microservices: designing

fine-grained system. Oâ€™ Reilly Media, Inc.,

California, p.2.

[2] North, D., 2018. Introducing BDD, 2006. Verfügbar

unter: http://dannorth. net/introducingbdd.

[3] Krasner, H., 2021. The cost of poor software quality in

the US: A 2020 report. Proc. Consortium Inf. Softw.

QualityTM (CISQTM), 2.

[4] Bruschi, S., Xiao, L. and Kavatkar, M., 2019. Behavior

driven development (BDD): a case study in healthtech.

In Pacific NW Software Quality Conference.

[5] Lewis, J. and Fowler, M., 2014. Microservices: a

definition of this new architectural term. MartinFowler.

com, 25(14-26), p.12.

[6] Zimmermann, O., 2017. Microservices tenets: Agile

approach to service development and

deployment. Computer Science-Research and

Development, 32, pp.301-310.

[7] O'Reilly Media. (2018). Microservices Adoption in

2018. O'Reilly Media.

[8] Coulouris, G.F., Dollimore, J. and Kindberg, T.,

2005. Distributed systems: concepts and design.

pearson education.

[9] Van Steen, M., 2002. Distributed systems principles and

paradigms. Network, 2(28), p.1.

[10] Lahami, M. and Krichen, M., 2021. A survey on runtime

testing of dynamically adaptable and distributed

systems. Software Quality Journal, 29(2), pp.555-593.

[11] Binamungu, L.P., Embury, S.M. and Konstantinou, N.,

2018, March. Maintaining behaviour driven

development specifications: Challenges and

opportunities. In 2018 IEEE 25th International

Conference on Software Analysis, Evolution and

Reengineering (SANER) (pp. 175-184). IEEE.

[12] Meszaros, G., 2007. xUnit test patterns: Refactoring test

code. Pearson Education.

[13] Beizer, B. (1990) Software Testing Techniques. 2nd

Edition, Van Nostrand Reinhold, New York.

[14] Luo, L., 2001. Software testing techniques. Institute for

software research international Carnegie mellon

university Pittsburgh, PA, 15232(1-19), p.19.

[15] Dehghanpour, K., Wang, Z., Wang, J., Yuan, Y. and Bu,

F., 2018. A survey on state estimation techniques and

challenges in smart distribution systems. IEEE

Transactions on Smart Grid, 10(2), pp.2312-2322.

http://www.ijritcc.org/

