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Abstract: In this paper, we define an ideal and prime ideal of hyperlattices (hyper join and hyper meet operation) .We obtain results on ideals of 

lattice in the sense of hyperlattice .We prove some results on prime ideals of hyperlattices. A result analogous to separation theorem is obtained 

for hyperlattices in respect of prime ideals. Further, we extend the classical result of Nachbin for hyperlattices. Also we furnish some 

characterizations of minimal prime ideals of hyperlattices.    
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1. Introduction: 

Hyperstructures were introduced in 1934 by a French mathematician, Marty 1934 at 8
th
 congress of Scandinavian 

mathematics [9] and plays a central role in the theory of algebraic hyperstructures .Since then this theory has enjoined 

a rapid development [9,10,15,14,2,3,4]. In its general aspects, the connections with classical algebraic structures and 

various applications (In geometry, topology, combinatorics, theory of binary relations, theory of fuzzy  and rough sets, 

probability theory ,cryptography and codes theory, automata theory ….and so on) have been investigated  in [12]. In 

particular, hyperlattices were introduced by Mittas and Konstantinidou in [9]. In [5] Rahnamai-Bhargi studied ideal 

and prime ideal by considering join as hyper operation. The main goal of this paper is to study prime ideals and 

minimal prime ideals of hyperlattices and to draw several conclusions and we prove analogue of stone’s theorem for 

hyperlattices and also prove classical Nachbin theorem. In the last section we give characterizations of minimal prime 

ideal and prove the theorem, If L is an ideal of L. Then a prime ideal P containing J is a minimal prime ideal 

containing J if and only if for each x P there is y L\P such that x  y ⊆ J. 

2. Preliminaries: 

We recall here some definitions and propositions on hyperlattices from  [1] and we establish some results which we 

need for the development of this chapter. 

Definition 2.1: Let L be a non-empty set with two binary operations ˄ and ˅. If for all x, y, z ∈ L, the following 

conditions are satisfied: 

  i) x ˄ y=x ,x ˅ y=x 



International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 7                                                    532 – 548 

_______________________________________________________________________________________________ 

533 
IJRITCC | July 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

 ii) x ˄ y =y˄ x, x ˅ y = y ˅ x 

 iii) (x ˄ y) ˄ z = x˄ (y˄ z), (x ˅ y) ˅ z = x ˅(y ˅ z) 

 iv) ( x ˄ y )  ˅ x = x ,  (x ˅ y)˄ x =x then we call (L, ˄,˅ ) is a Lattice. 

Definition 2.2:  Let H be a non empty set.  Let P(H) be the power set of H, P
*
(H)=P(H) - {∅}.The hyper operation “o” 

on H is a map H× H→ P∗ (H) such that for all x, y, z ∈ H for all X,Y,Z ∈ P*( H),  we have that  X o Y ∈ P*(H),             

z o X= 
,x X

z x


 ,  X o z =
x X

x z


 ,  X o Y=
,x X y Y

x y
 

  .  

Following definition of hyperlattice is  from [8] 

Definition 2.3: Let H be a non empty set and   : H × H → P∗ (H) be a hyper  operation, and  P*(H) =  P (H) − {∅} 

and   : H× H → P∗ (H)  be an operation. Then (H,  ,  ) is a hyperlattice. if for all x, y, z ∈ H: 

 i) x∈ x   x, x∈ x   x  ; 

  ii) x   y = y   x, x  y = y  x; 

  iii) (x   y)   z = x   (y   z); (x  y)   z = x   (y   z); 

  iv) x ∈ (x   (x   y)) , x ∈ (x   (x  y)). 

Where for all non empty subsets A and B of L, A   B = U {x  y /x ∈ A, y∈ B}, A   B =  U {x   y / x∈ A, y ∈ B}. 

Following M.Konstantinidou and J.Mittas [9], we define a   hyperlattice as a set H on which a hyperoperation 

  and an operation   are defined which satisfy the following axioms 

1. a  ∈ a   a, a   a=a 

2. a   b=b   a, a  b=b   a 

3. (a   b)  c=a   (b  c) ,(a  b)   c=a   ( b  c). 

4. a  ∈ (a  (a   b)) 
 
(a   (a   b)) 

5. a  ∈ a   a implies that b=a   b. 

Throughout this paper, we refer definition 2.3 for hyperlattice. 

Definition 2.4: A hyperlattice (L,  ,  ) is said to be distributive if for each x, y, z ∈ L:  

x   (y   z) = (x  y)   (x   z). 

Proposition 2.5: Let (L,  ,  ) be a hyperlattice. Then the following holds: 

 (1) A⊆ A  A, A ⊆ A  A 

(2) A1  A2 = A2   A1, A1  A2 = A2  A1 

(3) (A1  A2)   A3 = A1   (A2   A3), (A1  A2)   A3 = A1  (A2  A3); 
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(4) A1⊆ A1  (A1  A2),  A1⊆ A1  (A1  A2). 

Example 2.6:  Let L= {a, b},   and   be two hyperoperations defined on L as  

follows. 

 

 

 

 

 

 It can be verified that   and   satisfy (i) to (iv) of hyperlattice and therefore (L,  ,  ) is a 

hyperlattice. For any element x and any subset S of a hyperlattice L, x   S means the set ⋃ {x   a   a ∈ S} and x   

S  we mean the set   ⋃ {x   a      a ∈ S}. 

Example 2.7: Let L= {x, y}   

 

 

 

 

     (L,  ,  ) is not a hyperlattice since x ∈ x   (x   y) = x   {y} = {y}. 

Example 2.8: Let L= { x1, x2, x3, x4} 

 

 

 

 

 

 

  

 

 

       a b 

a {a,b} {b} 

b {b} {b} 

     a b 

  a     { a,b} {a,b} 

   b      {a,b}   {b} 

    x y 

x  { x} {y} 

y  {x, y} {y} 

    x y 

x {x, y} {y} 

y   {y} {y} 

  x1 x2 x3 x4 

x1 { x1, x2} { x2} { x3,  x4} { x4} 

x2 { x2} { x1, x2} { x4} { x3,  x4} 

x3 { x3,  x4} { x4} { x3,  x4} { x4} 

x4 { x4} { x3,  x4} { x4} { x3,  x4} 
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(H,  ,  ) is a hyperlattice. 

Definition 2.9: Let (𝐿,  ,  ) be a hyperlattice.  A nonempty subset 𝐴 of 𝐿 is called a subhyperlattice of 𝐿 if            

(𝐴,  ,  ) is itself a hyperlattice. 

It is easy to see that a nonempty subset 𝐴 of (𝐿,  ,  ) is a subhyperlattice of 𝐿 if and only if 𝐴 holds: for all 𝑎 , 𝑏 ∈ 

𝐴, 𝑎   𝑏 ⊆ 𝐴, 𝑎   𝑏 ⊆𝐴. That is to say, 𝐴 is a  

Subhyperlattice of (𝐿,  ,  ) if and only if 𝐴   𝐴⊆𝐴, 𝐴  𝐴⊆𝐴. 

Now we consider following example. 

Example 2.10: Let (L,  ,  ) be a lattice .Define the hyperoperations   and  

  on L as follows: 

 

 

 

 

x   y = {x ˄y } , x   y = {x ˅ y }, x ∈ x   (x   y )=  x  {x} = {x} ,  y ∈  y   (x   y)=  y   {x} = {y} (L,  ,   ) 

 forms a Hyperlattice. From the above example every lattice is a hyperlattice. 

Proposition 2.11: Every lattice is Hyperlattice but converse may not be true. 

Proof: Let (L,  ,  ) is a lattice. It is sufficient to prove properties (i) and (iv) of hyperlattice. By property (i) of 

lattice x = x   x , Clearly x  must be element of  x   x and by property (iv) of lattice  x = x   (x   y) that is x   

(x   y) contains element x. Therefore,  x ∈ (x   (x   y)). Similarly we can prove for  .    

But Converse is not true. For this, consider the hyperlattice as shown in following table.   

 

  x1 x2 x3 x4 

x1 { x1} { x1, x2} { x1} { x1} 

x2 { x1}   { x2} { x1} { x1, x2} 

x3 { x1} { x1} { x3} { x3} 

x4 { x1} { x1, x2} { x3} { x3,  x4} 

  x y 

x {x} {y} 

y {y} {y} 

    x  y 

   x    {x} {x} 

    y     {x}  {y} 
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Similarly, associative property can be easily verified. Therefore, (L,  ,  ) which is a hyperlattice.  

x   x ={x, 1}  x. Therefore, Idempotent law is not satisfied.  

Therefore (L,  ,  ) is not a lattice. 

Now from the above example , it is clear that every hyperlattice may not be a lattice. 

3. Ideal of hyperlattice 

Definition 3.1: Let (L, ,  ) be a hyperlattice and let A be a non-empty subset of L 

1. A is called an ideal of L if for all a,b ∈  A and x ∈  L  

i) a   b  A 

ii) a   x  A 

2. A is called a filter of L if for all a, b  A and x  L  

i) a   b  A 

ii) a    x  A 

Obviously, a subhyperlattice A of (𝐿,  ,  ) is a ideal of L if and only if A   L  A.  Similarly a subhyperlattice 

A of (𝐿,  ,  ) is a filter of L if and only if A L  A. 

  0 x y 1 

0 L {x,1} {y,1} { 1} 

x {x,1} {x,1} { 1} { 1} 

y {y,1} { 1} {y,1} { 1} 

1 { 1} { 1} { 1} { 1} 

  0 x y 1 

0 {0} {0} {0} {0} 

x {0} {x} {0} {x} 

y {0} {0} {y} {y} 

1 {0} {x} {y} {1} 
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Proposition 3.2: Let (𝐿,  ,  ) be a hyperlattice and let A be a non empty subset of L. Then the following conditions 

are equivalent. 

1. A is an ideal of (𝐿, , )  

2. a b  A, and  a x  A for all a,b ∈ A and x∈ L 

3. A A  A and A L  A. 

Similarly, the following conditions are equivalent 

1. A is a filter of (𝐿,  ,  )  

2. a b  A, and  a x  A for all a,b ∈ A and x∈ L 

3. A A  A and A L  A. 

Example 3.3: Let (𝐿,  ,  ) be a hyperlattice.  

  0 x1 x2 1 

0 {0} {0} {0} {0} 

x1 {0, x1} {0, x1} {x1} {x1} 

x2 {0} {x1} {0, x2} {x2} 

1 {0} {x1} {x2} {1} 

 

 

 

 

 

 

I= {0, x1, x2,} is an ideal of Hyperlattice L. 

Proposition 3.4: Let A1 and A2 be two ideals of hyperlattice ( L,  ,  ) such that  A1∩ A2      then A1 ∩ A2 is also 

an ideal of hyperlattice. 

  0 x1 x2 1 

0 {0} { x1, x2} { x2} {1} 

x1 { x1, x2,1} { x1} { x2,1} {1} 

x2 { x2,1} { x2,1} { x2} {1} 

1 {1} {1} {1} {1} 
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Proof: Suppose A1 and A2 be ideals of hyperlattice L with A1 ∩ A2  . For all a1, a2∈ A1 ∩ A2, then a1 ∈ A1∩ A2, and  

a2 ∈ A1∩ A2.  This implies a1   a2 ⊆   A1∩ A2. For all a ∈ A1∩ A2   and for all x ∈ L implies a x  ⊆   A1, a x ⊆  A2 

.This gives, a x  ⊆   A1∩ A2. Therefore A1∩ A2  is an ideal of L.       

               

Let us consider the following caylay table for an hyperlattice L = {0, a, b, c,1} 

  0 a b c 1 

0 {0} {0} {0} {0} {0} 

a {0} { a } {0,1} {0} { a } 

b {0} {0,1} {0,b} {0} {0,1} 

c {0} {0} {0} {c} { a } 

1 {0} { a} {0,1} { a } {1} 

 

  0 a b c 1 

0 {0} {1} {1} {1} {1} 

a {1} { a} { a,b,c} {c} { 1} 

b {1} { a,b,c} {b} {c} {1} 

c {1} {c} {c} {c} {1} 

1 {1} { 1} {1} {c} {1} 

 

Then I1 = {0, a,1} and  I2 ={0,b,1} are the ideal of hyperlattice L. I1 ∩ I2 = {0,1} is also an ideal. and  I1  I2 = {0, a,b, 

1} is not an ideal as a   b={a, c}    I1  I2. 

Remark 3.5: Union of two ideals of hyperlattice need not be an ideal. 

Proposition 3.6:  Let (L,  ,   ) be a lattice .Let I be ideal of lattice of L. Then I is ideal of Hyperlattice L. 

Proof:  

 Let L be a lattice and I be an ideal of L (I ⊆ L). Let x1, x2 ∈ I ⇒ x1   x2  ∈ I and x1 ∈ I, x1 ≤ x2 ⇒ x2 ∈ I. But 

every lattice is hyperlattice. 

Therefore L is hyperlattice and I ⊆  L.  By definition of ideal of lattice ,  
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x1, x2 ∈ I ⇒ x1   x2 ∈ I . 

Therefore x1   x2  ⊆ I .  

By property (ii) of ideal of lattice   x ∈ I, a ≤  x and a ∈ L ⇒ a ∈ I. As a ∈ I  and x ∈ I  implies x    a ⊆ I  . 

It is clear that,  I is ideal of hyperlattice L.  

     

Example 3.7: Let (𝐿, ˄, ˅) be a lattice. Define the hyperoperations   and   on 𝐿 as follows: for all 𝑎, 𝑏 ∈ 𝐿, 𝑎   𝑏 

= {𝑎 ˄ 𝑏}, 𝑎   𝑏 = {𝑎 ˅ 𝑏}, then     (𝐿,  ,  ) is a hyperlattice. Every ideal and filter of the lattice (𝐿, ˄, ˅) are ideal 

and filter of the hyperlattice (𝐿,  ,   ), respectively. 

Lemma 3.8 :  Let (L,  ,  ) be a distributive hyperlattice. If p ∈ L, then  

 (p] = {a ∈ L   𝑎 ∈ p   𝑎 }  is an ideal.  

Proof: Let 𝑎, b ∈ (p] , then 𝑎 ∈ p   𝑎 and b ∈ p   b. 𝑎  b ⊆ (p    𝑎)    (p   b) ⇒ 𝑎   b  ⊆ p   ( 𝑎   b) 

.Therefore 𝑎   b ⊆ (p] .To prove second property of ideal,  Let   𝑎 ∈ (p] and  x ∈ L .Then 𝑎    x ⊆ (p   𝑎)    x⇒ 

𝑎    x ⊆ p   (𝑎    x ) ⇒ 𝑎    x ⊆  (p].  Therefore (p] is an ideal.  

   

Dually, we can prove [p) is a filter. 

Lemma 3.9: Let L be a distributive hyperlattice . If P is an ideal of L and a ∈ L, then P   (a] is an ideal of L. 

Proof:  

Let x , y ∈ P   (a]  then x = p1   a  and y= p2  a  , p1  , p2  ∈  P. x   y ⊆ (p1   a )   (p2   a)⇒ x   y ⊆  

(p1    p2)   ( a   a)  ⇒ x   y ⊆  P   b ⊆  P   (a]   for some b ∈ (a]. Now let    x ∈ P   (a] then x = p    a 

and q ∈ L . x   q ⊆ (p    a)   q ⊆ (p   q )   ( a  q ).    As P is an ideal   , p ∈ P and q ∈ L implies p   q ⊆ P 

and P ⊆ P   (a]   and as  a ∈ (a] , q ∈ L by Lemma , 2.3.8  (a] is an ideal .This implies  p   q ⊆ (a] . Proving  x   

q ⊆ P   (a].  

  
Lemma 3.10: (x] ∩ ( y]=( x   y ] 

Proof: let  𝑎  ∈ (x] ∩ ( y] ⇒ 𝑎 ∈ (x] and  𝑎  ∈ (y]⇒ 𝑎  x  𝑎 and 𝑎 ∈ y  𝑎 ⇒ 𝑎   𝑎 ⊆ (x   𝑎)   (y  𝑎 ) ⇒ 𝑎 

  𝑎 ⊆ (x  y)  ( 𝑎   𝑎 ) ⇒ 𝑎   𝑎 ⊆ (x  y] .But by first property of hyperlattice 𝑎 ∈ 𝑎    𝑎 . Therefore 𝑎 ∈ 

(x  y].Conversely, let 𝑎 ∈ (x  y] ⇒ 𝑎 ∈ (x  y)   𝑎 ⇒ 𝑎 ∈ (x  y)   (𝑎   𝑎 ) as 𝑎 ∈ 𝑎  𝑎  always. 𝑎 ∈  (x   

𝑎)   (y   𝑎) ⇒ 𝑎 ∈  (x   𝑎)and 𝑎  ∈  (y  𝑎).This gives 𝑎 ∈ (x] and 𝑎 ∈ (y] ⇒ 𝑎 ∈ (x] ∩ (y].  

 

4   Prime Ideals of Hyperlattices 

We define  the prime ideals of hyperlattice  and definition of prime filter is taken from [9]. 
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Definition 4.1:
 
Let J and F be respectively a proper ideal and a proper filter of a hyperlattice L . 

(i)  J is said to be prime if x , y ∈ L and x  y ⊆ I implies x ∈ I or y ∈ I. 

(ii)  F is said to be prime if x, y ∈ L and (x   y) ∩ F = ∅ implies x ∈ F or y ∈ F. 

Example 4.2:   L={x, y} be a hyperlattice . 

 

 

 

 

 

 

I= {y} be an ideal. x   y=*y+ ⊆ I  and  I is prime ideal as  x   y ⊆ I implies x   I and y ∈ I. 

Definition 4 .3: An ideal M is a maximal ideal in L if it is a maximal element in the set of all ideals of L. 

Following definitions are from [2]. 

Definition 4.4: A hyperlattice  (L,  ,  ) is said to be distributive hyperlattice if a  (b  c) = ( a b)   (a c) 

and a  (b  c)=( a b)   (a c) holds for every  a ,b, c ∈ L. 

Definition 4.5: Let (L,  , ) be a hyperlattice. An element a ∈ L is said to be  an all element of L if a ∈ a   x and x 

∈ a   x for each x ∈ L. The set of all,   all element of L, is denoted by I. 

Definition 4.6: An element b in a hyperlattice (L,  ,  ) is said to be  a zero element of L if x ∈ b   x and b ∈ b   

x  for each x  ∈ L. The set of all zero elements of L is denoted by O. 

Definition 4.7: A hyperlattice (L,  ,   ) is said to complemented if for every   a  ∈ L there exists elements a’ ∈ L,  a 

i ∈ I,  a o ∈ O such that  a i  ∈  a     a ’and   a o ∈ a   a ’. 

Definition 4.8: A hyperlattice (L, ,  ) with O, I is said to be a hyperboolean algebra if L is distributive and 

complimented. 

Lemma 4.9: In distributive hyperlattice, Every maximal ideal is prime. 

Proof: Let L be a distributive hyperlattice .Let a   b ⊆ M and a ∉ M. Then M⊂ M   (a] ⊆ L.M is maximal .This 

implies M   (a] = L.As b ∈ L ⇒ b ∈ M   (a] ⇒ b ∈ ⋃ { mi   a i} .As b ∈ b  b ∈ b   ⋃{ mi  ai }=⋃ (b  (m 

 a))= ⋃ ((b   m)   (b  a)) ∈ M as M is an ideal and m∈ M , b   m ⊆ M. Therefore b ∈ M.  Hence the proof.  

 

            x y 

           x {x,y} {y} 

         y {y} {y} 

  x y 

x {x,y} {x,y} 

y {x,y} {y} 
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Remark 4.10: Converse of the lemma 4.9 is not true.  Following result is by the lemma 4.9. 

Corollary 4.11: In a hyperboolean algebra , Every maximal ideal is prime . 

Lemma 4.12: Let L be a hyperboolean algebra .Then every prime ideal of L is maximal. 

Proof: Let P be a prime ideal of L and Q be any ideal such that P  Q ⊆ L. Since  P   Q there exist x ∈ Q such that x 

∉ P.As L is hyperboolean algebra. L is complemented, There exist ao ∈ L and  ai ∈ L such that ai  ∈ x   y and ao ∈ x 

  y.  Let x    y ⊆ P and x ∉ P .This implies   y ∈ P  Q. x ∈ Q and y ∈ Q ⇒ x   y ⊆ Q. a o ∈ Q. Therefore Q = L .P 

is maximal ideal of L.    

   

Following corollary is by the  corollary 4.11 and lemma 4.12. 

Corollary 4.13: In a Boolean algebra the prime ideals and maximal ideals coincides. 

Following definition is an extension from lattice structure to hyperlattice structure. 

Definition 4.14 : A sequence of ideals in L  , I1 ⊆  I2 ⊆……⊆  In ⊆…… is called an ascending chain of ideals. 

Definition 4.15 : A sequence of ideals in L  , I1  I2 ……   In  …… is called an descending chain of ideals.  

 A chain is said to be stabilize, if there exist N ∈ Ɲ such that IN=IN+K   for all k ∈ Ɲ.  

Proposition 4.16: Let L be a hyperlattice .Then following are Equivalent. 

i) Every ascending chain condition (ACC) in L stabilizes.   

ii) Hyperlattice L  has a maximal element. 

Proof: i) ⇒ ii) 

 If  ii) is false, then there is no maximal element exist in L, So  

 I1 ∈ L,such that 

I1 ⊂ I2; for some I2 ∈ L , 

I1 ⊂ I2⊂ I3: for some I3 ∈ L 

So continuing ……..Hence the contradiction. Therefore L has a maximal element. 

(ii) ⇒ (i) . 

If (ii) holds and I1 ⊆ I2⊆………………⊆ In⊆………… Then { I1 , I2,…..,In,…+ has a maximal element , say Ik,, so for every 

m⊇ k. Therefore Im ⊇  Ik ⊇ Im, 

Hence equality, proving ( i) holds.                                                                             

 

We have the following lemma 4.17 and Theorem 4.19, are extensions of [16] for hyperlattices. 

 

Lemma 4.17: In a bounded hyperlattice L,  

1) L is distributive 

2) For any non-empty subset A ⊆ L the set   

    A
O
 = {b ∈ L   x∈ b   x, b ∈b  x, x ∈ L} is an ideal in L and let 
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     A
I
 = {a ∈ L    x ∈ a   x, x ∈ a  x, x ∈ L } is a filter in L. 

3) Every maximal ideal and maximal filter in L is prime. 

4) ∩ {P    P is a prime ideal in L, a ∈  P} = (a]  

5) For any distinct elements a and b in L , there exist a prime ideal P of L containing one of a and b and not 

containing the other. 

Then (1)   (2)  (3)  (4)  (5) (1). 

Proof:  (1) ⇒ (2) To prove first property , Let a, b ∈ A
O
. Then x ∈ a   x , a ∈ a   x  and            x ∈ b   x  and  b ∈ 

b   x .This implies x   x ⊆ (a   x)   ( b   x) and  a   b  ⊆ (a   x)   ( b   x) ⇒   x ∈ x   x ⊆ (a   b)    

( x   x ) and a   b  ⊆ (a    b)    x ∈(a    b)    x  x. As x   x is also element of L .Therefore by definition 

of A
O
,  a  b ⊆ A

O
. To  prove second property of ideal, let a ∈ A

O
 and y ∈ L, Then x ∈ a   x,  a ∈  a  x and y ∈ L 

implies a  y ∈ (a   x)   y  and x  y ∈ (a   x )   y By distributivity , x   y ∈ (a   y)   (x   y)  and  By 

associativity , and y ∈ y  y  implies  a  y ∈ (a y)   ( x  y) .So for any a ∈ A
O
 and y ∈ L gives a  y ⊆ A

O
. 

Therefore from property  1 and 2 of ideal a   b ⊆ A
O
 and a  y ⊆ A

O
. A

O
 is an ideal. Dually we can prove A

I
 = {a ∈ 

L/x ∈ a   x, x ∈ a  x, x∈ L} is a filter in L. 

(2) ⇒ (3)  Let (2) holds.  There exist a ′ ∈ L, a i ∈ I and ao ∈ A
O 

such that  ai ∈ a   a ′ and ao ∈ a   a ′. Then L is 

complimented lattice. L is complimented lattice, by Lemma 2.4.11, every maximal ideal is prime. Dually maximal 

filter is prime. 

(3) ⇒ (4)  Let (3) holds,  Obviously (a] ⊆ ∩ {P / P is a prime ideal in L, a  ∈  P}. Let if possible there exist b ∈ ∩ {P  

P is a prime ideal in L, a  ∈  P} such that b ∉  (a].By ACC, there exist a maximal filter say M such that b ∈ M, by 

assumption M being a prime filter L\M is a prime ideal. By the choice of b, b ∈ L\ M ,  a contradiction.                      

Hence ∩ {P     P is a prime ideal in L, a  ∈  P} = (a]. 

(4) ⇒ (5)  Let a, b ∈ L, such that a  b .Therefore b ∉ (a] by (4).There exist a prime ideal P containing (a] not 

containing b. Therefore a ∈ P  and b ∉   P. 

(5) ⇒ (1) Let a, b, c  ∈ L and (a   b)   (a   c) ⊆ a   (b  c) .If  a   (b  c) ⊊ (a   b)   (a   c) , then by 

(5),there exist a prime ideal P in L such that (a   b)   (a   c) ⊆ P and a   (b  c) ⊈ P. Then  (a   b)⊆  P and  

(a   c) ⊆ P and a∉ P ⇒  b ∈ P, c ∈ P (Since P is prime ideal and a ∉ P ) and hence b   c  ⊆ P. This leads to a 

contradiction.a   (b  c) = (a   b)   (a   c).          

Following Corollary can be proved by Lemma 3.8 and lemma 4.17 

Corollary 4.18: For any ideal I of a hyperlattice L,  

I = ∩ {P      P is a prime ideal in L, a  ∈  P} 
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Theorem 4.19: In a hyperlattice L 

1) L is complemented 

2) Every prime filter in L is maximal 

3) Complement of a maximal ideal in L is a maximal filter. 

4) Every prime ideal in L is maximal 

5) Complement of a maximal filter in L is a maximal ideal. 

Then (1)  ⇒ (2) ⇒(3) ⇒ (1) and (1)  ⇒ (4) ⇒(5) ⇒(1). 

Proof:  (1) ⇒ (2) Let Q be any prime filter in L (a  b) ∩ Q =  , this implies a ∈ Q or b ∈ Q and  Q  F ⊆ L for 

some filter F in L, x∈ F and x  Q. Since L is Complemented, x’ exist that is   a o   ∈  x    x’ ∈ L. Since zero element  

a o    exist in Q. x   x’ ∈ Q such that x    Q⇒ x’ ∈ Q ⇒ x’ ∈ F. x   x’ ∈ F , a o  ∈ x   x’ ∈ F ⇒ F=L. F contains 

complement for each element. This proves that Q is a maximal. 

(2) ⇒ (3) Let (2) holds. As any maximal ideal is prime (by Lemma 2.4.9) we get L\ M is a maximal filter in L. 

(3) ⇒ (1)  Let L be not complemented. There does not exist a’ ∈ L and ai ∈  I  ,   ao ∈ O  such that  ai ∈ a   a’  , 

ao ∈ a   a’  and O ∩  I = . There exist maximal ideal M containing O disjoint with I. Therefore L\ M is a maximal 

filter as a  L\ M ,  b ∈ L\ M such that  ao ∈ a   b but then  b ∈ O ⊆ M ⇒ b ∈ M, a contradiction. Hence there exist 

number a in L such that I ∩ O =  ,  L is complemented.         

 

Dually we can prove   (1)⇒ (4)⇒ (5) ⇒ (1).     

  

As an immediate consequence of the theorem, we have  

Corollary 4.20: Let L be a distributive hyperlattice . 

1) L is a Boolean algebra 

2) Complement of every maximal filter in L is a maximal ideal. 

3) Complement of every maximal ideal in L is a maximal filter 

4) Every prime filter in L is maximal 

5) Every prime ideal is a maximal ideal. 

Then (1) ⇒  (2) ⇒  (3) ⇒ (4) ⇒ (5). 

Now we have the following Lemma. 
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Lemma 4.21: Let Q be a non empty proper subset of a hyperlattice L. Then Q is a filter if and only if L\ Q is a prime 

ideal. 

Proof: Let Q be filter of hyperlattice L. To prove   L\ Q is an ideal. Let a , b ∈ L\ Q. That is a ,b  ∉ Q .Q is a filter a 

  b ⊈ Q. This implies a   b ⊆ L\ Q. Now let a ∈ L\ Q , x ∈ L and x∉ L\ Q. So x ∈ Q ⊆ L implies a   x ⊆ L and  

a x ⊈ Q .Therefore a    x  ⊆ L\Q. To prove   L\ Q  is a prime ideal. Let x, y  L such that  x   y ⊆  L\ Q. So x  y 

⊈ Q and hence either x ∉ Q or y  ∉ Q as Q  is Filter .This implies,  either  x ∈ L\ Q or y ∈ L\ Q. Therefore L\ Q is a 

prime ideal. Conversely, let L\ Q be a prime ideal and x, y ∈ Q. Clearly x, y∉ L\ Q and hence x  y ⊈  L\ Q as L\Q is 

a prime ideal. Thus x  y ⊆  Q.  Suppose x ∈ Q ⇒ x ∉ L\ Q. Since L\Q is an ideal , we have y ∉ L\Q .Hence y ∈ Q. 

This implies Q is a filter.             

Dually we can prove the following Lemma 2.4.22. 

Lemma 4.22:  Let P be a non empty proper subset of hyperlattice L. Then P is a prime ideal if and only if L\P is a 

prime filter. 

Now we prove Stone’s Separation theorem for hyperlattices. 

Theorem 4.23: Let (L,  ,  ) be a distributive hyperlattice. If I and D are an ideal and filter respectively such that I 

∩ D =  .Then there exists a prime ideal P of L such that I ⊆ P and P ∩ D = . 

Proof: 

 Let F = { A    A is an ideal of L, J ⊆ A, A ∩ F =  }.Clearly F satisfies Ascending chain condition. Therefore 

F has a maximal element M .Now we prove M is prime . Let a b ⊆ M for a , b  L also a and b does not belongs to 

M.As a ∉ M ⇒ M ⊊ M   (a] ∉ F. This implies  M   (a] ∩ F   .There exists     x ∈  M   (a] ∩ F .And as  b ∉ M 

⇒ M   (b] ∩ F   . There exists y ∈  M   (b] ∩ F .Therefore x  y ⊆ (M   (a] ) ∩(M   (b]) ⊆ M   ((a] ∩ 

(b]) ⊆ M   (a b]  (by Lemma 2.3.12)  a   b⊆ M  then x   y ⊆ M. Also, x ∈ F, y  ∈ F  and F is a filter x  y ⊆ F 

. Therefore x   y ⊆ M ∩ F = .A contradiction , Proving a   b⊆ M ⇒ a ∈ M or b ∈ M.    

  

Dually,we have 

Theorem 4.24: Let (L,    ,  ) be a hyperlattice. If J and F are an ideal an filter respectively such that J ∩ F =  

.Then there exists a prime filter Q of L such that F ⊆ Q and J ∩ Q = . 

Corollary 4.25: Let L be a distributive hyperlattice. Let a∉ J, J is an ideal in L. Then there exist a prime ideal 

containing J and not containing a. 

Proof:  

As a ∉ J, we get [a) ∩ J =  . If x ∈ [a ) ∩ J  ⇒ x ∈ [a )  and x ∈ J which implies x ∈ a   x  and x ∈ J ,J is an 

ideal , implies a   x  ⊆ J  if and only if a ∈ J ,   a contradiction. Hence by stone theorem there exist a prime ideal P 

such that J ⊆ P and [a) ∩ P =  . As [a) ∩ J =  ⇒ a ∉ P,  

This proves the theorem.  

 

Following corollary can be proved by theorem 4.24 and corollary 4.25 
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Corollary 4.26: Let L be a distributive hyperlattice. Let a ∉  D, J is an ideal in L. Then there exist a prime filter 

containing F and not containing a. 

Now we prove the following corollary. 

Corollary 4.27: Let a  b in L. where L is a distributive hyperlattice .Then there exist a prime ideal containing 

exactly one of a and b. 

Proof: Let J= (a]  and  F= [b) .Then J ∩ F= . Hence by stone’s theorem there exist a prime ideal P such that (a] ⊆ P 

and P ∩ [ b)= .That is a ∈ P and b    P. Therefore there exist a prime ideal P ⊆ (a] and not containing [b).   

 

Following corollary can be proved by stone’s theorem and corollary 4.26 

Corollary 4.28: Let a  b in L. where L is a distributive hyperlattice .Then there exist a prime filter containing exactly 

one of a  and b. 

The following theorem extends the classical result of Nachbin for hyperlattices. This theorem is proved for 0-1 

distributive lattice by Pawar and Lokhande [17]. 

Theorem 4.29 (Nachbin’s theorem): Let L be a bounded distributive hyperlattice. L is complemented if and only if the 

set of all prime ideals of L is not ordered. 

Proof: If L is complemented , then every prime ideal of L is maximal (by lemma 4.12). Hence the set of all prime 

ideals of L is unordered. Conversely, Let L be not complemented such that A
O
 ∩ A

I
 =  . 

   where ,  A
O
 = { b ∈ L   x ∈ b   x, b ∈ b   x, x ∈ L}  

     A
I
 = {a ∈ L   x ∈ a   x, x ∈ a  x, x ∈ L} . 

As L is distributive, A
I
 is filter  in L (by lemma 4.17) . 

consider the filter F = A
I
   [a) , If A

O
 ⊆ F ,then b ∈ b  a for some b ∈ A

I
 and a ∈ b   a for some a ∈ [a) 

by definition of filter [a) and b ∈ A
I
 ,Therefore  b  A

O
. But then b ∈ A

O
 ∩ A

I
 = , a contradiction. A

O
 ⊈ F and this will 

imply that F is a proper filter of L. As A
O
 ⊆ L , F ⊊ G ⊆ L. F must be contained in some maximal filter say G  of L. 

Now, define P=L\G. Then P is prime ideal of L (by Lemma 4.21).Therefore F ∩ P =  . As a ∈ F we get a∉ P. 

Consider the ideal  Q = P   ( a]. If A
I
  ⊆ Q , then b ∈ b   a , by definition of ideal Q for some b ∈ P and by 

definition of ( a], a ∈ a  b, for some b ∈ P, b ∈A
I
 ⊆ F  and thus  b ∈ F ∩ P = . a contradiction  

Therefore A
I
 ⊈ Q. Q is proper.  Q ⊊  M ⊆ L.L is being distributive hyperlattice; M is prime (by lemma 2.4.9). 

a ∈ M and a∉ P shows that P ⊂ M. This not possible as the set of all prime ideals of L is not ordered .Hence for each 

a ∈ L, (A
O
 ∩ A

I
)  .Hence L is complemented. 

 
Theorem 4.30 : Let J be an ideal of hyperlattice L.A filter M disjoint from J is a maximal filter disjoint from J if and 

only if for all, a ∉ M,    b ∈  M s.t  a   b  J. 

Proof: Let M be a maximal filter such that it is disjoint from J and a   M. Let a   b ⊈ J for all b ∈ M. Consider M1 

={x ∈ L ; x ∈ b  x, b ∈ M}. Clearly M1 is filter by the proof of lemma 2.4.17. For any b ∈ M, b ∈ b  b always, 
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which implies  M ⊆ M1. Also M1 ∩ J=   . If not let, a ∈ M1 ∩ J ⇒ a ∈ J, a ∈ M1,  So a ∈ b  a, and b∈ M ⊆ L and J is 

an ideal b  a ⊆ J, a contradiction. Hence M1 ∩ J =  . Now M⊂ M1 .which is the contradiction to the maximality of 

M. Hence there must exist b ∈ M such that a   b  J. Conversely, if M is not maximal among the filters disjoint from 

J, then there exist a filter  M1   M and disjoint from J. For any , a ∈ M1 \ M ,there exist b  M such that a   b  J. 

Hence a , b ∈ M1, M1 is a filter , this implies a   b  M1,  a contradiction .Hence M must be a maximal filter disjoint 

from A.  

 

5. Minimal prime ideals of hyperlattice: 

Definition 5.1: A prime ideal P of L is said to be minimal prime ideal if there is no prime ideal which is properly 

contained in P. A prime filter G of L is said to be maximal prime filter if there is no prime filter which is properly 

contains the filter G. 

Lemma 5.2: Let F be a non empty subset of a hyperlattice L . F is a maximal filter if and only if L \ F is a minimal 

prime ideal. 

Proof:  

Let  F  be a maximal filter and L\ F is not a minimal prime ideal. Then there exists a prime ideal such that P ⊆  

L\ F which implies that F ⊆  L\ P. which contradicts to the maximality of F. Hence L\ F is minimal prime ideal.  

Conversely, Let L\ F be a minimal prime ideal and F is not a maximal filter .Thus there exist a proper filter Q such 

that F ⊆ Q which implies F is maximal filter.  

 
The following lemma can be proved dually. 

Lemma 5.3: P is a Minimal prime ideal of L if and only if L \ P is a only maximal prime filter. 

Now we have the following result. 

Theorem 5.4: Every prime ideal of hyperlattice contains a minimal prime ideal. 

Proof: Let P be a prime ideal of L. Let F=L\ P. Then F is a prime filter .Then by ACC. There is a maximal prime filter 

G in L.  F⊆ G⇒ L\ G⊆L\ F =P.  Therefore (by lemma 5.3) L-G is a minimal prime ideal contained in P.       

Definition 5.5:  Let L be a hyperlattice. For A ⊆ L ,  

we define 
JA


  = {x ∈  L   x    a ⊆ J  for all a ∈ A }  

Lemma 5.6: 
JA


 = {x  ∈  L       x   a ⊆ J   , for all a ∈ A} is an ideal. 

Proof: The proof is straight forward.            

 

Now we have the following result which is a generalization of   theorem 6 in [11]. 

Theorem 5.7: Let A be a non empty subset of a hyperlattice L. Then 
JA


  is the intersection of all minimal prime 

ideals not containing A. 
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Proof: Let L be a hyperlattice. Let x ∈ 
JA


,  then x    a ⊆ J  for all a ∈A. p ∈ X. since A⊈ P, y ∈ A but  y ∉ P then x 

  y ⊆ J , J is prime . J ⊆ P ⇒ x  ∈ P as P is prime , x  ∈ X.  Conversely, let x ∈ X , if x ∉ 
JA


 ,   x    y ⊈ J, for y ∈ 

A. Let D =[x    y ).   D is filter  disjoint from J. Then by lemma (Filter disjoint from ideal I is contained maximal 

filter disjoint from I). There is a maximal filter M ⊇ D but disjoint from J. Then by duality of lemma 5.3, L \ M is 

minimal prime ideal containing J. Now x∉ L \ M,  x ∈ D ⇒ x ∈ M. Moreover   A ⊈ L\ M as y ∈ A. L\ M is minimal 

prime ideal. y ∈ A ,but x    y⊈ J ,y  L\M .Therefore  A ⊈  L \ M .But  y ∈ M (y ∈ D )⇒ y ∈ L \ M.  

      

Now we have the following result which is a generalization of   theorem 3.1 in [13] 

Theorem 5.8:  Let L be a hyperlattice. Then the following Statements (1) to (4) are equivalent and any one of them 

implies (5) ,(6),(7) 

1) L is distributive hyperlattice 

2) Every maximal filter of L is prime. 

3) If M is a maximal filter of L, L\M is a maximal prime ideal. 

4) Every proper filter of L is disjoint from a minimal prime ideal. 

5) For each non zero element a of L, there is a minimal prime ideal not containing a 

6) For each non zero element a of L, there is a prime ideal not containing a 

7) Prime filter contain each  non zero element of L . 

Proof: (1) ⇒ (2) by lemma 4.17 

(2) ⇒ (3) Suppose (2) holds. Let M be any maximal filter of L. By lemma 5.3 (Duality) ,  

L\ M is a minimal prime ideal. 

(3) ⇒ (4)  Suppose (3) holds .Let A be any proper filter of L.  A ⊆ M for some maximal filter  M. by (3 )  , L \ M is a 

minimal prime ideal. Clearly A ∩  (L \ M) =  . 

(4) ⇒ (1)  Let x, y, z ∈ L such that (x  y)   (x  z) ⊊ x  ( y  z ) .Let ((x  y)   (x  z)] = I and[ (x  (y  

z)) = F. As ((x  y)   (x  z)) ⊂  x  ( y  z ) we get I ∩F= .By (4), there exist a prime ideal P such that P∩ F= . 

and   I ⊆ P ((x  y)   (x z) )=I ⊆ P and (x  (y  z))∩ P =   but then ((x  y)   (x  z)) ⊆ P  and [x  (y  

z))⊈P (Since P∩ F= ). Furthermore, If x ∈ P and y   z is an element of L .Therefore x  (y  z) ⊆ P as P is an 

ideal, a contradiction. Therefore L is distributive. 

(4) ⇒ (5)  Suppose (4) holds. Let a be any non zero element of L and Q be a minimal prime ideal of L , by (4), [a) is 

disjoint from a minimal prime ideal Q.  Therefore  a ∉ Q. 

(5) ⇒ (6) obvious. 

(6)⇒ (7) Suppose (6) holds. Let a  be any non zero element of L. By (6), there is a prime ideal A such that a ∉ A. By 

duality of lemma 4.21, L \ A is a prime filter and clearly a ∈ L \ A .   
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Theorem 5.9: L be an ideal of L. Then a prime ideal P containing J is a minimal prime ideal containing J if and only 

if for each x ∈ P there is y ∈ L\P such that  x  y ⊆ J. 

Proof: Let P be a minimal prime ideal containing J . Let x  ∈ P. Suppose for all  y ∈ L\ P and x  y ⊈ J. Set D = (L \ 

P)   [x). Suppose D ∩ J = .Then by corollary 2.4.26 of stones theorem, There is a prime filter Q such that D ⊆ Q 

and Q ∩ J = . As Q is prime filter. Therefore L \ Q is a prime ideal and J ⊆ L \ Q. Since  L \ P ⊆ D ⊆ Q.  We get L \ 

Q ⊆ P and hence L\ Q =P ⇒ Q=L \ P . So that x ∈ L \ P. This is a contradiction.  Therefore  D ∩ J . Let z ∈ D ∩ J 

implies z ∈ [(L\ P)   [x)] ∩ J ⇒  z ∈ (L \ P)   [x) and z ∈ J. As z ∈ (L\ P)   [x) ⇒ z  ∈y   a where y ∈ L\ P and a 

∈ [x)  . z ∈ y   a, Since [x)  principal filter ⇒  z ∈ y   ( a x) ⇒ z ∈  (y   a )   (y   x) .   Now let us assume 

(y  a )  ⊈ J .If so y ∈  L\ P and  as J ⊆ L\ Q ⊆ P  ,    y  J . 

Moreover a  ∈ [x)  ∈ P .So x ∈ P for some x  ∈ J . Therefore a ∈ J .  A contradiction. So  y   a ⊆ J.  Also z ∈ J , z ∈ 

(y   a )   (y   x) and  y   a ⊆ J implies  y   x ⊆ J. That is for every x  ∈  P there is y ∉ P such that y   x⊆ J. 

Conversely, Let P be a prime ideal of L containing J such that the given condition holds. Let Q be a prime ideal 

containing J such that Q⊆ P. Let x ∈ P. Then there is y ∈ L\P such that x   y ⊆ J,as Q containing J. Since Q is prime  

and  y∉ Q, implies   x ∈ Q. Hence P ⊆ Q. Q = P. Therefore P is a minimal prime ideal containing J.  
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