
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023

__

 499

IJRITCC | April 2023, Available @ http://www.ijritcc.org

A Systematic Approach for Categorizing Different

Roles in Software Engineering Process Models

Md Asghar Ali1 and Dr. Ajay Jain2

Research Scholar1 , Research Guide2
1,2Department of Computer Science & Engineering,

1,2Dr.A.P.J. Abdul Kalam University, Indore (MP) , India

Abstract—Program frameworks come and go through a arrangement of entries that account for their beginning,introductory

advancement, beneficial operation, upkeep, and retirement from one era toanother. This article categorizes and analyses a number

of strategies for depicting or modellinghow program frameworks are created. It starts with foundation and definitions of

conventionalcomputer program life cycle models that overwhelm most course reading talks and current computer

programimprovement hones. This is often taken after by a more comprehensive survey of the electivemodels of program

advancement that are of current utilize as the premise for organizing programdesigning ventures and advances.In differentiate to

program life cycle models, computer program handle models frequently speak to a organizedgrouping of exercises, objects,

changes, and occasions that encapsulate procedures forfinishing computer program advancement. Such models can be utilized to

create more exact andformalized portrayals of program life cycle exercises. Their control develops from theirutilization of an

adequately wealthy documentation, language structure, or semantics, frequently reasonable for computationalpreparing. In this

work, a process model was processed so as to obtain a generalized model.

Index Terms—Frameworks, Models, Elective, Encapsulate, Generalized

I. INTRODUCTION

Traditional software development models have been with us

since the early days of software. In this section, we identify

four. The classic software life cycle (or "waterfall

diagram")and step-by-step improvement models are widely

represented in almost allmodern programming practices and

software engineering books. The incremental release model

is closely related to theindustry practices where it is most

commonly found. Models based on military standardshave

also transformed some forms of the classic life cycle model

into practices required by governmentsubcontractors. All

four of these models use coarse-grained or macroscopic

characteristicsto describe software. The incremental stages

of software development are often described asphases such

as post definition, initial design and implementation; they

usually havelittle or no properties other than the list of

properties that the product of such astep should have.

In addition, these models are independent of the

development settings of the organization, choice of

programming language, domain of software, etc. In

short,traditional models are context-free and not context-

sensitive. But since all these life cycle modelshave been

around for some time, we call them traditional models

andcharacterize each one in turn.Software packages are

knowledge-intensive artifacts thatare built incrementally and

iteratively by software. Such efforts can be modelled

usingsoftware life cycle models. These product development

models represent an evolutionary version of traditional

software life cycle models.

The changes were due to the availability ofnew software

development techniques such as software

prototypinglanguages and environments, reusable software,

application generators, and documentationsupport

environments. The goal of all these technologies is to enable

the creation of executablesoftware implementations either

early in software development or faster.Therefore,software

development patterns in this regard may be implicit in the

use oftechnology rather than explicitly stated. This is

possible because such models are becomingincreasingly

intuitive for developers whose favourable experience with

these technologiessupports their use. Thus, a detailed review

of these models is most appropriate when suchtechnologies

are available for use or testing.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

__

 500

IJRITCC | September 2023, Available @ http://www.ijritcc.org

II. LITERATURE REVIEW

Subbarayudu et. al. states that no one can deny the

importance of computer in our life, especially during the

present time. In fact, computer has become indispensable in

today's life as it is used in many fields of life such as

industry, medicine, commerce, education and even

agriculture. It has become an important element in the

industry and technology of advanced as well as developing

countries. Now a day, organizations become more

dependent on computer in their works as a result of

computer technology. Computer is considered a time-

saving device and its progress helps in executing complex,

long, repeated processes in a very short time with a high

speed. In addition to using computer for work, people use it

for fun and entertainment. Noticeably, the number of

companies that produce software programs for the purpose

of facilitating works of offices, administrations, banks, etc,

has increased recently which results in the difficulty of

enumerating such companies. During the previous four

decades, software has been developed from a tool used for

analysing information or solving a problem to a product in

itself. However, the early programming stages have created

a number of problems turning software an obstacle to

software development particularly those relying on

computers. Software consists of documents and programs

that contain a collection that has been established to be a

part of software engineering procedures. Moreover, the aim

of software engineering is to create a suitable work that

constructs programs of high quality. [1]

Valmohammadi et. al. states that the primary objective of

this research is to propose a green process model for

software development. The study employed a mixed-method

approach, incorporating the interpretive paradigm in the

initial stage and the positivist paradigm in the subsequent

stage. The research methodology encompassed a systematic

literature review, qualitative content analysis, and interviews

with academic and industry experts. A conceptual model

was proposed, and corresponding hypotheses were derived.

The hypotheses were subsequently tested using the

structural equation modelling (SEM) technique, aided by

SmartPLS software. The dataset consisted of responses from

200 participants who completed the designed questionnaire.

Qualitative data analysis was conducted using Maxqda2020

software. The collected data underwent both exploratory

factor analysis (EFA) and confirmatory factor analysis

(CFA) for analysis purposes. The findings revealed that five

key factors, namely "Green readiness," "infrastructure,"

"methods," "tools," and "emerging trends," Exhibited a

noteworthy and favourable impact on green software

processes. Furthermore, the variables "tools,"

"infrastructure," and "emerging trends" were identified as

partial mediating factors. Additionally, the dimensions of

green readiness, which encompassed "governance,"

"strategy," "policies," "monitoring," and "stakeholders,"

were validated and recognized. The findings of this study

provide valuable insights to organizations involved in

software development, offering a holistic understanding of

the importance and interrelationships among the main

dimensions of green process modelling. By considering

these findings, organizations can enhance their approaches

to developing environmentally sustainable software. This

study’s main contribution is in the context of the software

industry.

[2] Hou et. al. states that Large Language Models (LLMs)

have significantly impacted numerous domains, including

Software Engineering(SE). Many recent publications have

explored LLMs applied to various SE tasks. Nevertheless,

acomprehensive understanding of the application, effects,

and possible limitations of LLMs on SE is still in itsearly

stages. To bridge this gap, we conducted a systematic

literature review (SLR) on LLM4SE, with a particularfocus

on understanding how LLMs can be exploited to optimize

processes and outcomes. We select andanalyse 395 research

papers from January 2017 to January 2024 to answer four

key research questions (RQs).In RQ1, we categorize

different LLMs that have been employed in SE tasks,

characterizing their distinctivefeatures and uses. In RQ2, we

analyse the methods used in data collection, preprocessing,

and application,highlighting the role of well-curated datasets

for successful LLM for SE implementation. RQ3

investigatesthe strategies employed to optimize and evaluate

the performance of LLMs in SE. Finally, RQ4 examines

thespecific SE tasks where LLMs have shown success to

date, illustrating their practical contributions to thefield.

From the answers to these RQs, we discuss the current state-

of-the-art and trends, identifying gapsin existing research,

and flagging promising areas for future study [3] Neogi et.

al. states that Agility is the keyword if one needs to survive

inthis rapidly changing world, keeping pace and at the

sametime not losing balance or control which could result in

lossof quality of performance. No wonder agile methods

haveemerged in the field of software development as well,

andthey are gaining popularity in academics also. The

bunchesof agile methods evolved so far are not only able to

deliversoftware products quickly and easily but also make

the agileteam to think quickly and in an intelligent way.

Agilemethods are people centric or people driven

softwareprocess. The objective of this study is to survey

groups ofstudents and gather an opinion regarding their

programdevelopment techniques, their preferences in

choosingprogramming partners, their views about what

affectsquality of a product. The ultimate aim is to identify

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

__

 501

IJRITCC | September 2023, Available @ http://www.ijritcc.org

apattern which we claim is agile like, although most

studentsare unaware of the existence of agile process

models. [4]

III. PROGRAM EVOLUTION MODELS

Unlike the previous four prescriptive product development

models is to develop a descriptive model of software

product development. They are:

• Continuous change: a large software system is constantly

changing or gradually becoming less useful

• Increasing complexity: As a software system evolves, its

complexity increases unless efforts are made to maintain

or reduce it

• Basic Law of Program Development: Program

development, the programming process, and global

measures of project and system attributes. are statistically

self-regulating with definable trends and invariants

• Invariant workload: the rate of global work in a large

software program is statisticallyinvariant

• Growth limit: over a large active life cycle, the number of

changes made to successive releases of program is

statistically invariant. However, it is important to note that

these are global properties of large software systems, not

the causal mechanisms of software.

IV. THE ROLE OF SOFTWARE PROCESS MODELS IN

SOFTWARE DEVELOPMENT

Process models play a key role in ensuring the smoothness

of software projects. They provide a common language and

understanding for all team members, which promotes

effective collaboration and communication.Imagine a

software development team without a process model. Each

team member may have their own way of approaching a

project, leading to confusion and inefficiency.When a

process model is used, everyone is on the same page with

standardized procedures and guidelines.Process models also

help mitigate risk by identifying potential pitfalls early in

the development phase.Teams can identify potential

bottlenecks, dependencies, and risks by breaking down the

software development process into manageable steps. This

allows them to address these issues proactively, minimizing

the likelihood of project delays or failures.Software process

models also facilitate project planning and resource

allocation.By clearly defining the functions and tasks of

each stage of the development process, teams can more

accurately estimate the time and resources needed. This

helps establish realistic project schedules and budgets.

V. KEY COMPONENTS OF SOFTWARE PROCESS

MODELS

Software process models contain several key components

that are essential for successful software development.

These parts include:

• Requirements gathering and analysis

Requirements gathering and analysis is the first step in the

software development process. This involves understanding

the customer's needs and translating them into clear and

concise requirements. This step lays the foundation for the

entire project and ensures that the software meets the client's

expectations.

• Design and architecture

Design and architecture focus on creating software. This

includes designing the overall structure, defining modules

and components, and creating their relationships. This phase

lays the groundwork for the coding and implementation

phase.

• Coding and implementation

The real development happens in coding and

implementation. Developers write code based on design

specifications, bringing software to life. This step requires

attention to detail and adherence to coding standards to

ensure a high-quality end product.

• Testing and quality assurance

Testing and quality assurance are crucial to ensure that

software meets desired quality standards. Thisphase

involves various testing techniques such as unit testing,

integration testing and system testing to identify and fix

possible errors or problems.

• Implementation and maintenance

Development and maintenance include releasing software to

end users and providing ongoing support. This phase

includes activities such as installation, configuration and

user training. Maintenance, such as bug fixes, updates, and

improvements, is performed to keep the software functional

and up-to-date. By following these key components,

software development process models provide a structured

approach to software development and ensure that all

necessary steps are taken to deliver a successful product.

VII. DIFFERENT TYPES OF SOFTWARE PROCESS

MODELS

Several different process models can be used in software.

Each model suits different project requirements and teams

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

__

 502

IJRITCC | September 2023, Available @ http://www.ijritcc.org

and offers unique advantages and disadvantages. Let's look

at some popular software process models:

• Waterfall Model

The Waterfall Model is a linear, sequential approach that is

strictly top-down. It follows a structured flow where each

stage of the development cycle must be completed before

moving on to the next. This model is ideal for projects with

well-defined and stable requirements. One of the main

advantages of the waterfall model is its simplicity. The

linearity of the process makes it easy to understand and

implement. Clear documentation and well-defined

milestones make it easy to manage and track progress. But

the waterfall model has its limitations. Because it follows a

strict order, accepting changes to requirements can be

difficult. Lack of flexibility can cause delays and increase

costs when changes are needed later in the development

cycle.

• Agile Model

Agile design, on the other hand, emphasizes flexibility and

adaptive design. It encourages iterative development,

allowing teams to deliver working software, often in short

iterations. This model is suitable for projects where

requirements change and customer feedback must be

responded to quickly. One of the main principles of the

Agile model is collaboration. The development team works

closely with stakeholders, constantly seeking feedback and

incorporating it into the development process. This iterative

approach enables continuous improvement and ensures that

the final product meets the customer's expectations. But the

agile model also has its challenges. An emphasis on

flexibility and repeated iterations can sometimes lead to

scope where a project expands beyond its original

boundaries. In addition, the lack of a rigorous plan can make

it difficult to accurately estimate project schedules and costs.

• Iterative model

The iterative model focuses on incremental development

where each iteration produces working software. This

approach enables early prototyping and testing, enabling

feedback-based improvements during development. One of

the main advantages of an iterative model is its ability to

handle changing requirements. The team can adapt to

changes and take feedback at each stage by breaking the

development process into smaller iterations. This flexibility

ensures that the final product meets the changing needs of

the customer. However, the iterative model also has its

drawbacks. The need for constant feedback and

improvements can sometimes lead to a longer development

cycle. Managing multiple iterations simultaneously can be

challenging, requiring effective communication and

coordination among team members.

VII. CONCLUSION

Understanding programming process models is essential to

successful software development. These models provide a

structured approach that enables teams to efficiently deliver

quality software.By choosing the right model, teams can

ensure the smooth progress of their projects through

effective risk management and quality assurance practices.

So, the next time you start a software development project,

consider the right software development process model to

help you succeed.Whether an IT professional or new to

technology, the Data Institute's software development

program is designed to give you hands-on experience in

programming, web, and user interface development.

REFERENCES

[1] B Subbarayudu, Srija Harshika D, E. Amareswar, R

Gangadhar Reddy, Kishor Kumar Reddy C, “ REVIEW

AND COMPARISON ON SOFTWARE PROCESS

MODELS”, International Journal of Mechanical

Engineering and Technology (IJMET) Volume 8, Issue

8, August 2017, pp. 967–980

[2] Changiz Valmohammadi, Farkhondeh Mortaz Hejri,

“Designing a conceptual green process model in

software development: A mixed method approach”,

International Journal of Information Management Data

Insights, 2023 Published by Elsevier Ltd

[3] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong

Wang, Li Li,, Xiapu Luo, David Lo, Haoyu Wang,

“Large Language Models for Software Engineering: A

Systematic Literature Review”, ACM Trans. Softw. Eng.

Methodol., Vol. X, No. Y, Article 1. Publication date:

December 2024.

[4] Madhumita Neogi , Vandana Bhattacherjee, Rupa

Mahanti, “A Process Model for Software Development

Amongst Students”, International Journal of Recent

Trends in Engineering Vol. 1, No. 2, May 2009.

[5] Mayank Agarwal, Yikang Shen, Bailin Wang, Yoon

Kim, and Jie Chen. 2024. Structured Code

Representations EnableData-Efficient Adaptation of

Code Language Models. arXiv preprint

arXiv:2401.10716 (2024).

[6] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, Michele Lanza, and

David CShepherd. 2020. Software documentation: the

practitioners’ perspective. In Proceedings of the

ACM/IEEE 42ndInternational Conference on Software

Engineering. 590–601.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

__

 503

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[7] Lakshya Agrawal, Aditya Kanade, Navin Goyal,

Shuvendu K Lahiri, and Sriram Rajamani. 2023.

Monitor-GuidedDecoding of Code LMs with Static

Analysis of Repository Context. In Thirty-seventh

Conference on Neural InformationProcessing Systems.

[8] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh

Karri, and Hammond Pearce. 2023. Fixing Hardware

SecurityBugs with Large Language Models. arXiv

preprint arXiv:2302.01215 (2023).

[9] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,

and Kai-Wei Chang. 2021. Unified pre-training for

programunderstanding and generation. arXiv preprint

arXiv:2103.06333 (2021).

[10] Toufique Ahmed, Kunal Suresh Pai, Premkumar

Devanbu, and Earl T Barr. 2023. Improving Few-Shot

Prompts withRelevant Static Analysis Products. arXiv

preprint arXiv:2304.06815 (2023).

[11] Ajmain I Alam, Palash R Roy, Farouq Al-Omari,

Chanchal K Roy, Banani Roy, and Kevin A Schneider.

2023. GPTCloneBench:A comprehensive benchmark of

semantic clones and cross-language clones using GPT-3

model andSemanticCloneBench. In 2023 IEEE

International Conference on Software Maintenance and

Evolution (ICSME). IEEE,1–13.

http://www.ijritcc.org/

