
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1334
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Optimizing Resource Allocation in Fair Scheduler: A

Simulation-Based Approach

Author1: Mrs. Bareen Shaikh Kayyum,

 Research Scholar, Department of Computer Science & Application,

 Dr. A. P. J Abdul Kalam University, Indore Madhya Pradesh-452016

 Email-Id: shaikh.bareen24banno@gmail.com

Author2: Dr. Ajay Jain,

 Dr. A. P. J Abdul Kalam University, Indore Madhya Pradesh-452016

Email-id: ajayjainnv@gmail.com

Abstract: The effective deployment of computational resources is essential for data processing in the big data era. By ensuring

equitable resource distribution, fair scheduling is essential in striking this state of balance. In the context of large data processing,

this essay examines the mathematical foundations and practical application of fair scheduling. We explore the intricate details of

choosing tools, creating strategy, and addressing practical difficulties. We illustrate the actual impact of fair scheduling and highlight

its significance in improving efficiency and resource utilisation in big data processing systems through empirical evaluation and

real-world use cases. Our primary focus revolves around the practical implementation of fair scheduling within a big data

framework. We go into much detail about the choice of suitable tools and technologies, examine the architectural details of the

selected framework, and go over the creation and use of fair scheduling principles and algorithms. Throughout the paper, we offer

valuable insights into the challenges faced during implementation and the innovative solutions devised to overcome them.

1. INTRODUCTION:

The administration and processing of big data have become

crucial for organisations across industries in the modern

landscape of data-driven decision-making [1]. Strong

computational frameworks are required to extract important

insights from the influx of data, which is characterised by its

volume, pace, and variety, and to drive informed actions.

However, in this dynamic environment, the effective

distribution of computational resources poses a tremendous

task, giving rise to the crucial idea of fair scheduling [2]. In

distributed computing systems, fair scheduling is a key tenet

that focuses on distributing resources fairly among a variety

of data processing activities. Its main goal is to make sure that

computational resources are widely distributed, balancing the

demands of competing activities while reducing contention-

induced delays [3]. The optimisation of massive data

processing frameworks must carefully strike this balance

between justice and effectiveness [4].

Understanding the fundamentals and effectively

implementing fair scheduling become more and more

important as the volume and complexity of big data continue

to rise. Solutions must be flexible enough to adjust to altering

workloads and shifting resource needs due to the dynamic

nature of large data processing settings [5]. This study begins

a thorough investigation of fair scheduling that is specially

designed for large data processing to overcome these issues.

• Fair Scheduling's theoretical foundations:

Understanding the mathematical foundations of fair

scheduling is crucial to understanding its significance in the

context of big data. The concepts of fairness, queuing theory,

and task scheduling algorithms are all part of a robust body

of distributed computing theory that is drawn upon by fair

scheduling principles [6]. With a goal of reducing resource

conflicts and dispute-induced inefficiencies in large-scale

data processing clusters, these principles guide the equitable

distribution of resources [7].

• Practical Application in Big Data: The focus is on the

effective application of fair scheduling within the complex

environment of big data processing. A careful selection of

tools and technologies that can easily interact with current big

data frameworks, such Hadoop or Apache Spark etc.

Additionally, a strong foundation is crucial for the fair

scheduling system, which is provided by architectural

considerations [8]. In-depth research is done on the creation

and application of fair scheduling policies and algorithms,

which calls for creative solutions to address the difficulties

presented by real-world big data processing scenarios [9].

• Empirical Impact and Use Cases: In this section, we

conduct an empirical analysis of the effects of fair scheduling

on resource allocation and performance in the context of big

data processing. We want to prove that fair scheduling has

genuine advantages for the field of big data processing by

http://www.ijritcc.org/
mailto:shaikh.bareen24banno@gmail
mailto:ajayjainnv@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1335
IJRITCC | December 2023, Available @ http://www.ijritcc.org

showing realistic results that are backed up by pertinent

measurements and practical examples. To further demonstrate

the adaptability and practicality of our fair scheduling

approach, real-world use scenarios are looked at [10].

In this paper we will investigate, implement, and gain insight

into the challenges of fair scheduling for big data processing.

We hope that the practical value of fair scheduling in boosting

productivity and resource utilization within big data

processing will become clear by this research paper.

2. FAIR SCHEDULER:

A fundamental idea, fair scheduling builds on the theories of

distributed computing, queuing theory, and task scheduling

algorithms. In large-scale data processing clusters, these

foundations are the key to enabling fair resource allocation

and reducing contention-induced delays [11][12][13].

Following are the key component in study of fair scheduler as

follows:

1. Distributed Computing:

The basic ideas and workings of efficient resource

management across many devices are covered by distributed

computing theory. This theory heavily incorporates ideas like

fault tolerance, task scheduling, and parallel processing [14].

Distributed computing theory guides the creation of fair

scheduling algorithms in the context of massive data

processing, which distribute work across a cluster of

machines while reducing bottlenecks and resource contention

[15].

2. Queues:

Mathematicians that specialise in queueing theory model and

analyse waiting lines, or queues. It offers mathematical

formulas for forecasting system behaviour, including

utilisation, throughput, and response time measurements [16].

Queuing theory principles are frequently included into fair

scheduling algorithms to improve resource allocation and

shorten queue wait times. Fairness and efficiency are

balanced by these models [17].

3. Algorithms for Job Scheduling

The foundation of equitable scheduling methods are job

scheduling algorithms. These algorithms decide how tasks or

jobs are distributed among the available resources,

accounting for elements like job priority, resource

accessibility, and fairness standards [18]. To ensure fair

resource distribution, a variety of job scheduling methods,

including fair-share scheduling, capacity scheduling, and

deadline-based scheduling, are adapted to large data

processing frameworks [19]

4. Metrics for Resource Fairness

In order to quantify the level of resource fairness attained,

metrics like the Gini coefficient, Jain's fairness index, and

Max-min fairness are frequently employed in fair scheduling

[20]. These measures offer a solid theoretical foundation for

assessing how fairly resources are distributed in large data

situations.

5. Scalability and Load Balancing: When creating fair

scheduling algorithms for massive data, theoretical principles

of scalability and load balancing are essential. While load

balancing distributes jobs equally across the available

resources, scalability guarantees that the system can handle

increasing workloads [21][22]. The theoretical foundation of

fair scheduling is influenced by research on load balancing

methods like weighted fair queuing and dynamic resource

allocation.

6. Fault Tolerance: To ensure that fair scheduling is resilient

in the face of hardware failures or unanticipated occurrences,

theoretical models for fault tolerance, including redundancy

and error recovery methods, are crucial [23]. To ensure data

integrity and job execution continuity, big data systems rely

on theoretical fault tolerance assumptions. Theoretical

foundations for fair scheduling in big data processing draw

on ideas from multiple disciplines, including distributed

computing, queuing theory, job scheduling algorithms,

resource fairness measures, scalability, load balancing, and

fault tolerance. The framework for developing equitable

scheduling techniques that balance the goals of fairness and

efficiency in the allocation of computational resources inside

large data processing clusters is provided by these theoretical

underpinnings.

3. IMPLEMENTING FAIR SCHEDULING FOR BIG

DATA PROCESSING IN A REALISTIC ENVIRONMENT

This section describes the steps involved in practical

implementation, emphasising the use of simulation

techniques and machine learning algorithms to achieve

equitable resource allocation. Practical Implementation of

Fair Scheduling in Big Data Fair scheduling implementation

in the complex landscape of big data processing which

requires a well-structured approach. In this simplified

example, we will utilize a fundamental scikit-learn decision

tree classifier to show how machine learning may be used for

equitable scheduling in a huge data setting. First we will

explore the what should we considered before

implementation which is as follows:

1. Selection of Tools and Technology:

Choose appropriate tools and technologies that operate well

with well-known big data frameworks like Apache Hadoop or

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1336
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Apache Spark [2][24] to start the implementation. These

frameworks enable interoperability with various scheduling

techniques and the infrastructure for distributed data

processing.

2. Architectural Factors:

The fair scheduling system's architectural layout is crucial.

Specify the elements and procedures that will control how

resources are distributed throughout the large data cluster [3].

To make sure the system can handle heavy workloads and

recover gracefully from faults, consider scalability and fault

tolerance.

3. Fair Scheduling Policies and Algorithms:

Create and put into use equitable scheduling policies and

algorithms that are suited to the unique needs of the big data

environment. Considerations should be made for things like

job priority, resource availability, and fairness standards

[4][25]. Based on workload patterns and historical data,

machine learning algorithms can dynamically change

scheduling policies [26].

In this research paper implementation coding will be

performed using machine learning algorithm decision tree

classifier for implementation.

4. Simulation Techniques:

Simulation tools like CloudSim or Apache Hadoop

MapReduce Simulator can be used to simulate the big data

processing environment [27][28]. Simulations allow testing

and fine-tuning of fair scheduling policies in a controlled and

repeatable manner, without having an impact on the actual

production system. For this research paper Python ‘SimPy’

library will be incorporated for basic simulation.

5.Data gathering and evaluation:

To help with the design and parameterization of fair

scheduling algorithms, gather real-world data from the big

data processing cluster [29]. Analyse the data to find trends in

resource usage, patterns, and places where fairness can be

improved.

6. Evaluation and experimentation:

To evaluate the fair scheduling system's performance, run

thorough tests with both simulated and actual workloads [30].

Analyse fairness metrics, resource usage, job completion

times, and the overall effect on the effectiveness of big data

processing.

7. Optimisation and fine-tuning:

Using the knowledge obtained from experimentation,

improve the fair scheduling strategies and machine learning

models [31]. To improve the system, use strategies like

hyperparameter tweaking and reinforcement learning

training.

8. Continuous Improvement:

Maintain a continuous improvement cycle by monitoring

system performance, gathering feedback, and incorporating

updates and enhancements [32]. Machine learning models

can evolve over time to adapt to changing workload patterns.

4. IMPLEMENTATION DETAILS:

Here while coding, simulated a basic big data processing

environment with two jobs and a fair scheduling policy.

Python script contains:

Each job is represented by a job class, which has been given

a random execution duration and unique ID.

class Job:

 def __init__(self, job_id, execution_time):

 self.job_id = job_id

 self.execution_time = execution_time

With random execution timings, job1 and job2 are two new

jobs that are generated as follows:

job1 = Job(1, random.randint(1, 10))

job2 = Job(2, random.randint(1, 10))

The scheduler then compares the two jobs' execution times

and orders them according to the fair scheduling principle,

placing the work with the lower execution time first.

Simulate fair scheduling

if job1.execution_time < job2.execution_time:

 print("Job 1 is scheduled first.")

 print("Job 2 is scheduled next.")

else:

 print("Job 2 is scheduled first.")

 print("Job 1 is scheduled next.")

Now for above code basic decision tree classifier from scikit-

learn to demonstrate how machine learning can be applied to

fair scheduling in a big data environment.

Pseudocode representation of the code that simulates job

scheduling in a big data processing environment using SimPy

and a machine learning classifier:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1337
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Pseudocode: Big Data Job Scheduling Simulation

Step1. Input

- job_arrival_rate: Rate of job arrivals per unit time

- simulation_time: Total simulation time

Step2. Output

- Scheduling history showing which jobs were scheduled and

in what order

Step3. Initialization

Define Job class with attributes: job_id and execution_time

jobs_generated = empty list

jobs_processed = 0

scheduling_history = empty list

Step4. Training the Machine Learning Model

• Create a decision tree classifier

• Prepare historical_data, a dataset with job_id and

execution_time

• Assign labels to historical_data to indicate which job was

scheduled next

• Train the decision tree classifier using historical_data and

labels

Step5. Define SimPy Processes

5.1 Define job_arrival process

 while True:

 Generate a random job with a unique job_id and

execution_time

 Append the job to the jobs_generated list

 Schedule the job for execution using the job_execution

process

 Wait for a random time interval based on job_arrival_rate

5.2 Define job_execution process

 Simulate the preparation of current_job_data, including

job_id and execution_time

 Use the machine learning classifier to predict which job to

schedule next

 Update the scheduling_history with the job_id and

scheduling decision

 Simulate job execution time based on the job's

execution_time

 Increment the jobs_processed counter

Step6. Simulation

• Initialize a SimPy environment

• Start the job_arrival process in the SimPy environment

• Run the simulation until the specified simulation_time

Step7. Output and Display

Print the scheduling history, showing which jobs were

scheduled and in what order

Step8. End of Pseudocode

Explanation of above Pseudocode steps after

implementation in python as follow:

Initialization: In this step, we define a class called "Job" that

represents each job within the simulation. The Job class has

two attributes: "job_id" and "execution_time," which will be

used to store information about each job.

Initialize Variables: We initialize several variables as

jobs_generated: An empty list to store generated jobs.

jobs_processed: A counter to keep track of the number of jobs

processed.

scheduling_history: An empty list to record scheduling

decisions made during the simulation.

Training the Machine Learning Model:

i. Create Classifier: We create a decision tree classifier.

This classifier will be used to make scheduling decisions

based on job characteristics.

ii. Prepare Historical Data: We prepare a dataset called

historical_data that contains historical job data. Each entry in

this dataset includes the job's job_id and execution_time.

iii. Assign Labels: We assign labels to the historical_data to

indicate which job was scheduled next based on historical

information. These labels serve as training data for the

machine learning classifier.

iv. Train Classifier: We train the decision tree classifier

using the historical_data and associated labels. This step

allows the classifier to learn patterns and make predictions

based on historical job data.

Define SimPy Processes: Define job_arrival Process:

In this section, we define a SimPy process called job_arrival.

This process simulates the arrival of jobs in the simulation.

Within this process, we have a

while True loop to continuously generate new jobs:

• Random jobs are generated with unique job_id and

random execution_time.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1338
IJRITCC | December 2023, Available @ http://www.ijritcc.org

• Each newly generated job is added to the jobs_generated

list.

• The job is scheduled for execution using the

job_execution process.

• We introduce a random time delay based on the

job_arrival_rate to simulate job arrivals over time.

Define job_execution Process:

The job_execution process is responsible for simulating the

execution of jobs. Within this process

• We simulate the preparation of current_job_data,

including job_id and execution_time.

• The machine learning classifier is used to predict which

job should be scheduled next based on the current job data.

• We update the scheduling_history to record the job_id and

the scheduling decision.

• We simulate job execution time based on the job's

execution_time.

• The jobs_processed counter is incremented to keep track

of processed jobs.

Simulation:

i. Initialize Simulation Environment:SimPy environment to

manage the simulation.

ii. Start job_arrival Process: The job_arrival process within

the SimPy environment to initiate the simulation of job

arrivals.

iii. Run Simulation: The simulation runs until the specified

simulation_time is reached.

iv. Output and Display: Print Scheduling History at the end

of the simulation, which provides a record of which jobs were

scheduled and in what order.

Empirical Impact and Use Cases:

After executing above code total 245 jobs were created and

scheduled. Then for simulation using simulation parameters

for 100 number of jobs and setting simulation duration for

100 seconds in simulation environment the above jobs were

executed. Its histogram representation is as follows:

The histogram provides a visual representation of the

distribution of job completion times in the simulated big data

processing environment. Here is what the different elements

of the histogram represent:

X-Axis (Time): The horizontal axis of the histogram

represents time. It's divided into intervals, or bins, that group

job completion times into ranges. Each bin represents a

specific range of job completion times.

Y-Axis (Count): The vertical axis of the histogram represents

the count of jobs that fall into each bin. It shows how many

jobs completed within each specified time range.

Interpreting the Histogram:

Job Completion Time Distribution: The shape and

distribution of the histogram reveal how job completion times

are spread out across different time intervals. A typical

histogram might have a bell-shaped or skewed distribution.

Peak(s): Peaks in the histogram represent time intervals

where a significant number of jobs completed. In a well-

balanced system, you might see a single prominent peak

around a certain completion time.

Spread: The width of the histogram bins indicates the spread

or range of job completion times. Narrow bins indicate a

relatively narrow spread, while wider bins suggest a broader

range of completion times.

Outliers: Any bars that extend significantly higher or lower

than the main peak(s) may indicate outliers—jobs that

completed exceptionally quickly or slowly compared to the

majority.

Fairness and Efficiency: The shape of the histogram can

provide insights into fairness and efficiency. A balanced

distribution with most jobs completing around the same time

suggests fairness. However, if there is a wide spread, it may

indicate resource contention or inefficient scheduling.

Optimization Opportunities: Analysing the histogram can

help identify areas for optimization. For example, if there is a

long tail of jobs with extended completion times, it may

suggest the need for improved scheduling policies or resource

allocation.

The histogram interpretation depends on the data gathered

and the scheduling strategy used in simulation. In a real-world

situation, consider goals and the fairness standards when

analysing the histogram. For instance, if a single significant

peak appears in the histogram at a respectable completion

time, it may mean that the fair scheduling approach is

successfully allocating resources and that jobs are finishing

in a balanced way. The presence of many peaks or a large

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1339
IJRITCC | December 2023, Available @ http://www.ijritcc.org

spread, however, may indicate inefficiencies or resource

contention that call for additional analysis and optimisation.

In the end, the histogram of job completion times is a useful

tool for evaluating the effectiveness and fairness data

processing environment. It can also be useful for changes to

scheduling procedures and resource allocation.

Also, a line plot is used, to represent job completion times

over time. Line plotting will show how job completion times

evolve during the simulation. This can provide insights into

how job processing progresses over time.

Line plot to visualize job count over time: This line plot

helps us understand how the number of jobs in the system

changes as the simulation progresses.

Line Plot: Job Count Over Time

The line plot represents the job count on the y-axis and time

on the x-axis. It provides a dynamic view of how the number

of jobs in the simulated big data processing system evolves

over time.

X-Axis (Time): The horizontal axis represents time, typically

measured in simulation units (e.g., time steps or seconds). It

indicates the progression of time during the simulation.

Y-Axis (Job Count): The vertical axis represents the number

of jobs in the system at a given point in time. It shows how

the job count varies over the course of the simulation.

Line Plot: The line in the plot connects data points

representing the job count at specific time intervals. It

provides a visual representation of how the job count changes

continuously.

Data Points: Each point on the line corresponds to a specific

time and job count. These data points are recorded at regular

intervals during the simulation.

Interpreting the Line Plot:

Job Arrival: At the beginning of the simulation, you may see

an initial increase in the job count. This represents the arrival

of jobs into the system as they are generated.

Job Processing: As time progresses, jobs are processed by

the system, leading to fluctuations in the job count. When jobs

are being executed, the job count decreases, and when new

jobs arrive, it increases.

Steady State: In a stable and well-balanced system, you may

observe a relatively constant job count once the system

reaches a steady state. This indicates that jobs are arriving and

being processed at a balanced rate.

Resource Saturation: If the job count continually increases

without significant decreases, it could indicate that the system

is becoming saturated with jobs, potentially leading to

resource contention and increased job waiting times.

Simulation Dynamics: The line plot provides insights into

how the scheduling policy and resource allocation affect the

flow of jobs in the system. It can help assess system

efficiency, fairness, and the impact of different scheduling

strategies.

Performance Metrics: Analysing the line plot can help

calculate performance metrics such as average job waiting

time, system utilization, and throughput, which are crucial for

evaluating the effectiveness of the big data processing

environment.

Visualisation technique for comprehending the dynamics of a

simulated data processing system is the line plot of job count

over time. It aids in the discovery of trends, patterns, and

potential problems in relation to resource allocation and task

scheduling.

CONCLUSION:

This research paper makes the use of machine learning

methods and visualisation techniques to construct a fair

scheduler in a massive data processing environment. We went

over a variety of topics related to this procedure, emphasising

the importance of each stage. Here are the main conclusions:

Job Scheduling in Big Data: Effectively managing big data

processing activities requires careful scheduling. To

maximise performance and resource utilisation, fair

scheduling seeks to distribute resources in a way that assures

equal access for all jobs.

Machine Learning for Scheduling: Based on historical data,

job characteristics, and fairness standards, machine learning

can be used to generate intelligent scheduling decisions. To

forecast job scheduling order, ML methods such as decision

tree classifiers can be employed.

Simulation for Evaluation: Testing and assessing

scheduling policies in a controlled setting requires the use of

simulations. They aid in evaluating the effects of various

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1340
IJRITCC | December 2023, Available @ http://www.ijritcc.org

scheduling techniques on turnaround times, resource use, and

fairness.

Analytics and visualisation: Histograms and line plots are

useful visualisation techniques for displaying simulation

results. While histograms illustrate the distribution of work

completion times and can be used to evaluate performance

and fairness, line graphs demonstrate how job counts change

over time and offer insights into the dynamics of the system.

Results interpretation: Depending on the precise aims and

objectives of the big data processing environment, simulation

results and visualisations can be interpreted in many ways.

Peak job counts, task count trends, and histogram shapes can

all provide insight into the efficiency, fairness, and resource

contention of a system.

Opportunities for Optimisation: Through the analysis of

simulation results, organisations can pinpoint potential areas

for improvement, refine scheduling procedures, and improve

resource management to improve fairness and efficiency in

their big data processing systems. Using machine learning,

simulation, and visualisation approaches in the context of

large data processing is necessary to develop a fair scheduler.

To achieve their performance and fairness objectives,

organisations can use these tools to establish, assess, and

constantly improve their scheduling rules. A well-designed

scheduler improves system performance while

simultaneously ensuring equitable resource access, which

helps large data processing initiatives succeed in the long run.

REFERENCES:

[1] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs,

R., Roxburgh, C., & Byers, A. H. (2011). Big data: The

next frontier for innovation, competition, and

productivity. McKinsey Global Institute.

[2] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker,

S., & Stoica, I. (2010). Spark: Cluster computing with

working sets. HotCloud, 10(10-10), 95.

[3] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H.,

& Stoica, I. (2008). Improving MapReduce performance

in heterogeneous environments. OSDI, 8(8), 29-42.

[4] Ghodsi, A., Zaharia, M., Shenker, S., & Stoica, I. (2011).

Choosy: Max-min fair sharing for datacenter jobs with

constraints. Proceedings of the 2nd USENIX conference

on Hot topics in cloud computing, 4(4), 7.

[5] Zaharia, M., Das, T., Li, H., Shenker, S., & Stoica, I.

(2012). Discretized streams: Fault-tolerant streaming

computation at scale. Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles,

423-438.

[6] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., &

Stoica, I. (2003). Wide-area cooperative storage with

CFS. ACM SIGOPS Operating Systems Review, 37(SI),

202-215.

[7] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., ... & Stoica, I. (2012). Resilient

distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. Proceedings of the 9th

USENIX conference on Networked Systems Design and

Implementation, 2(2), 2-2.

[8] Borthakur, D. (2011). The Hadoop distributed file

system: Architecture and design. Hadoop Project

Website.

[9] Matei Zaharia, Abhishek Kulkarni, Ali Ghodsi, et al.

(2016). "Apache Spark: A Unified Analytics Engine for

Big Data Processing," Communications of the ACM,

59(11), 56-65.

[10] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal,

S., Konar, M., Evans, R., ... & Rashid, U. (2013).

Apache Hadoop YARN: Yet another resource

negotiator. Proceedings of the 4th annual Symposium on

Cloud Computing, 5(5), 5-5.

[11] Tanenbaum, A. S., & Van Steen, M. (2007). Distributed

Systems: Principles and Paradigms. Pearson.

[12] Kleinberg, J., & Tardos, É. (2005). Algorithm Design.

Addison-Wesley.

[13] S. Boyd and L. Vandenberghe. (2004). Convex

Optimization. Cambridge University Press.

[14] Lynch, N. A. (1996). Distributed Algorithms. Morgan

Kaufmann.

[15] Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The

Google file system. ACM SIGOPS Operating Systems

Review, 37(5), 29-43.

[16] Gross, D., & Harris, C. M. (1985). Fundamentals of

Queueing Theory (Wiley Series in Probability and

Mathematical Statistics). Wiley.

[17] Kleinrock, L. (1975). Queueing Systems: Volume I -

Theory. Wiley.

[18] Baker, M., Shah, M., & Jayasumana, A. (1999). A

comparative study of scheduling algorithms in the

context of real-time multimedia applications. ACM

SIGMETRICS Performance Evaluation Review, 27(1),

41-52.

[19] Pinedo, M. L. (2016). Scheduling: Theory, Algorithms,

and Systems. Springer.

[20] Jain, R. (1984). A quantitative measure of fairness and

discrimination for resource allocation in shared

computer systems. Eastern Research Laboratory, Digital

Equipment Corporation, Technical Report TR-301.

[21] Anderson, T. E., & Dahlin, M. (1997). A general

approach to network protocol stack implementation.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1341
IJRITCC | December 2023, Available @ http://www.ijritcc.org

ACM SIGCOMM Computer Communication Review,

27(3), 289-300.

[22] Zhang, H., & Cohen, I. (1993). A study of load

balancing in distributed systems. ACM SIGOPS

Operating Systems Review, 27(5), 63-74.

[23] Tanenbaum, A. S., & Van Steen, M. (2007). Distributed

Systems: Principles and Paradigms. Pearson.

[24] White, T. (2015). Hadoop: The Definitive Guide.

O'Reilly Media.

[25] Hindman, B., et al. (2011). Mesos: A platform for fine-

grained resource sharing in the data center. NSDI,

11(11), 22.

[26] Zhang, X., et al. (2019). A Survey of Deep Learning for

Big Data Processing. ACM Computing Surveys

(CSUR), 52(5), 1-39.

[27] Chen, D., et al. (2012). Big data: a survey. Mobile

Networks and Applications, 17(2), 171-209.

[28] Calheiros, R. N., et al. (2011). CloudSim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms. Software: Practice and Experience, 41(1),

23-50.

[29] Yin, H., et al. (2013). A systematic survey of the

research on cloud computing in education. Computers

& Education, 59(2), 1337-1354.

[30] Vavilapalli, V. K., et al. (2013). Apache Hadoop YARN:

Yet another resource negotiator. Proceedings of the 4th

annual Symposium on Cloud Computing, 5(5), 5-5.

[31] Sutton, R. S., & Barto, A. G. (2018). Reinforcement

Learning: An Introduction. MIT Press.

[32] Zhang, Q., et al. (2010). Cloud computing: state-of-the-

art and research challenges. Journal of Internet Services

and Applications, 1(1), 7-18.

http://www.ijritcc.org/

