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Abstract - Infinite-dimensional systems are often employed to model various phenomena, including propagation and transport 

processes, as well as population dynamics such as reproduction, development, and extinction. In economic systems, delays are 

inherent due to the time lapse between decisions and their impacts. Similarly, in communication networks, data transmission 

involves a non-zero time interval between initiation and delivery. Sometimes, these delays arise from simplifications in the model. 

These systems are characterized by their energetics, which can be described using difference equations that incorporate historical 

data of the system. Numerous numerical methods exist to represent such systems. 
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1.  THE STABILITY ANALYSIS OF LINEAR 

DYNAMICAL SYSTEMS WITH TIME-DELAYS 

1.1 Motivation and Historical Overview 

The presence of time-delay components in a system can lead 

to oscillations, instability, and reduced performance. In 

some cases, even a small delay can destabilize the system, 

while in others, a large delay can have the same effect. As 

the delay in a linear time-delay system increases, the system 

may undergo multiple transitions between stability and 

instability. If the delay is governed by a nonlinear function, 

the delayed output of a chaotic system might be stabilized. 

This makes the stability analysis of time-delayed dynamical 

systems a crucial area of research for both theorists and 

practitioners. 

1.2 A Dissipative Dynamical Systems Approach to the 

Stability Analysis of Time-Delay Systems 

To achieve asymptotic stability, concepts of dissipative and 

exponential dissipative systems are employed. The 

relationship between a linear dynamical system and a time 

generator with an effectively infinite lag time is explored. 

Time delay operators exhibit both quadratic supply rates and 

a retention function with an integral component similar to 

the Lyapunov-Krasovskii integral term. A well-known 

necessary condition for linear dynamical systems is derived 

from this relationship to replicate the original time delay 

system. The dissipativity properties of time delay operators 

are used to develop an approach for constructing Lyapunov-

Krasovskii functionals. Similar results are observed in 

discrete-time systems. 

1.3 Main Concepts 

Engineers in fields such as electronics and mechanics must 

be adept at using nonlinear analytical techniques to analyze 

and design nonlinear dynamical systems. Although these 

techniques have advanced significantly since the mid-1990s, 

nonlinear control remains challenging. This section provides 

fundamental findings for nonlinear system analysis, 

highlighting the differences from linear systems. It explains 

the most important nonlinear feedback control techniques, 

offering an overview of the primary methods available. The 

discussion also aims to contextualize the use of each 

technique. 

REVIEW OF LITERATURE 

Jerzy Klamka et al. [1] investigated discrete nonlinear finite-

dimensional 1D and 2D control systems with constant 

coefficients to address issues related to local restricted 

controllability. Using mapping theorems from nonlinear 

functional analysis and linear approximation methods, they 

developed and established the necessary conditions for 

restricted controllability. These controllability requirements, 

initially applicable to unconstrained discrete systems with 

restricted controls, were extended to both 1D and 2D 

discrete systems under restricted controls. 

Arash Hassibi et al. [2] discussed dynamical systems driven 

by asynchronously occurring events. Despite the time period 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 3 

Article Received: 25 December 2023 Revised: 12 January 2023 Accepted: 20 February 2023 

__________________________________________________________________________________________________________________ 

 
    479 
IJRITCC | March 2023, Available @ http://www.ijritcc.org 

\( T \) being infinite, the event rates were considered to be 

limited. The importance of these systems is growing in the 

control sector due to advancements in digital and 

communication systems, including asynchronous control 

systems, distributed control systems, and parallelized 

numerical methods. The research presented an advanced 

Lyapunov-based theory for controlling dynamical systems 

by solving bilinear matrix inequality (BMI) or linear matrix 

inequality (LMI) problems. The effectiveness of this method 

was demonstrated through various examples. 

 

3 STEERING CONTROL OF SEMI-LINEAR DISCRETE 

DYNAMICAL SYSTEMS 

3.1 Introduction 

Krabs investigated a general discrete dynamical system of 

the form \( x(t+1) = f(x(t), u(t)) \). They also developed a 

linear control mechanism that directs the system from a 

given initial condition to a desired final state. In this chapter, 

we examine a semi-linear difference equation system of this 

type. 

𝑥(𝑡 + 1) = 𝐴(𝑡)𝑥(𝑖) + 𝐵(𝑡)𝑢(𝑡) + 𝑓(𝑡, 𝑥(𝑡)), 𝑥(0) = 𝑥0, 𝑡

∈ 𝑁0           (3.1.1) 

and its linear system: 

𝑥(𝑡 + 1) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡), 𝑥(0) = 𝑥0, 𝑡

∈ 𝑁0                     (3.1.2) 

Here, (𝐴(𝑡))𝑡∈𝑁0
 and (𝐵(𝑡))𝑡∈𝑁0

are series of series 𝑛 × 𝑛 

and 𝑛 × 𝑚 matrices, correspondingly, and (𝑥(𝑡))𝑡∈𝑁0
  and 

(𝑢(𝑡))𝑡∈𝑁00 are series of control vectors in 𝑅𝑚, and state 

vectors in  correspondingly, 𝑓(. , . ): 𝑁0 × 𝑅𝑛 → 𝑅𝑛 with 

regard to the second input, a nonlinear function that satisfies 

the Lipschitz 

It is shown that under specific conditions, we can 

steer any beginning state  x_0  of system (3.1.1) to the 

preferred outcome desired x_1 in N∈N_0 time steps. 

3.2 Steering Control for Semi-Linear System 

Theorem 3.2.1   

The nonlinear system described in (3.1.1) can be steered 

from its initial state \( x_0 \) to the desired final state within 

\( N \) steps. 

Proof:  

According to Theorem 2.7.2, our linear system (3.1.2) can 

be controlled if \( \det W_r (0, N) \neq 0 \). Thus, an 

alternative control approach can be employed in place of 

(3.1.5) to achieve the desired state transition. 

𝑥(𝑡) = Φ(𝑡, 0)𝑥0 + ∑ Φ(𝑡, 𝑗 + 1)𝐵(𝑗)𝑢(𝑗)

𝑡−1

𝑗=0

+ ∑ Φ(𝑡, 𝑗 + 1)𝑓(𝑗, 𝑥(𝑗))

𝑡−1

𝑗=0

 

We get, 

       𝑥(𝑡)

= Φ(𝑡, 0)𝑥0

+ ∑ Φ(𝑡, 𝑗 + 1)𝐵(𝑗)𝐵(𝑗)∗

𝑡−1

𝑗=0

Φ(𝑁, 𝑗 + 1)∗𝑊𝑟(0, 𝑁)−1 {𝑥1

− Φ(𝑡, 0)𝑥0 − ∑ Φ(𝑁, 𝑗 + 1)𝑓(𝑗, 𝑥(𝑗))

𝑡−1

𝑗=0

}

+ ∑ Φ(𝑡, 𝑗 + 1)𝑓(𝑗, 𝑥(𝑗))

𝑡−1

𝑗=0

                                            (3.2.1) 

t = 0. x(0) = x0 and at t = N, x(N) = x1. With respect to (3), 

x0 is used as a starting point for the nonlinear system. 

 

4 CONTROLLABILITY OF LINEAR VOLTERRA 

SYSTEMS 

4.1 Controllability Using Controllability Gramian 

We establish the controllability of a linear Volterra system 

using the controllability Gramian. 

Theorem 4.1 

Consider {𝐴(𝑡)}𝑡∈𝑁0{A(t)}t∈N0

 and {𝐵(𝑡)}𝑡∈𝑁0{B(t)}t∈N0 as real-

time 𝑛×𝑛n×n and 𝑛×𝑚n×m matrix sequences, respectively. 

Let 𝐿L be the operator defined as follows (4-1). 

The following statements are equivalent: 

1. A non-autonomous Volterra system can be controlled 

over the interval [0,][0,N]. 

2. The range of 𝐿L is 𝑅𝑛Rn. 

3. The range of 𝐿𝐿∗LL∗ is 𝑅𝑛Rn. 

4. The determinant of the controllability 

Gramian (0,𝑁)≠0W(0,N) =0 (4-1.8). 

Proof. There is a solution to the system (4.1) by 

𝑥(𝑡) = 𝑄𝑡𝑥0 + ∑ 𝑄𝑖𝐵(𝑡 − 𝑖 − 1)

𝑡−1

𝑖=0

𝑢(𝑡 − 𝑖 − 1) 
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5 STABILITY USING (SP) MATRIX 

5.1 Importance of the (SP) Matrix 

In this paper, we explore the exponential stability of null 

solutions to nonlinear non-autonomous discrete dynamical 

systems. The general form of such a system is given by: 

x(t+1) = g(t, x(t)), \quad t \in \mathbb{N}_0 \tag 

{5.1} 

where 𝑔:𝑁0×Ω→Ωg:N0×Ω→Ω, with Ω⊆𝑅𝑛Ω⊆Rn. The 

(SP) matrix, introduced by Xue and Guo [63], provides a 

framework for defining a continuous nonlinear function that 

satisfies (𝑡,0)=0g(t,0)=0 for all 𝑡∈𝑁0t∈N0. 

Consider the specific form: 

𝑔(𝑡,𝑥(𝑡))=𝐴𝑥(𝑡)+𝑓(𝑡,𝑥(𝑡))g(t,x(t))=Ax(t)+f(t,x(t)) 

where 𝑥(𝑡)∈Ωx(t)∈Ω, and 𝐴∈𝑆A∈S, with 𝑆S defined as: 

𝑆={𝐴=(𝑎𝑖𝑗)𝑛×𝑛:𝑎𝑖𝑗≥0,∑𝑗=1𝑛𝑎𝑖𝑗≤1,∀𝑖=1,2,…,𝑛}S={A=(aij

)n×n:aij≥0,∑j=1naij≤1,∀i=1,2,…,n} 

This is the (SP) matrix, and the function 𝑓:𝑁0×Ω→Ωf:N0

×Ω→Ω satisfies the inequality: 

∥𝑓(𝑡,𝑥(𝑡))∥≤𝑎(𝑡)∥𝑥(𝑡)∥,𝑡∈𝑁0∥f(t,x(t))∥≤a(t)∥x(t)∥,t∈N0 

where ∑𝑎(𝑡)∑a(t) is a convergent sequence of positive 

integers. 

5.2 Exponential Stability of Null Solution of Semi-Linear 

System 

To establish the exponential stability of the system's null 

solution, we use the well-known fact that the zero solution is 

exponentially stable if the Jacobian 𝐷(0)Dg(0) of system 

(5.1) has a spectral radius strictly less than 1. This can be 

verified by computing the eigenvalues of the Jacobian. 

A practical approach to determine whether a matrix is an 

(SP) matrix involves verifying the conditions outlined in the 

definition of the (SP) matrix. This method does not require 

evaluating the eigenvalues of the Jacobian, making it 

efficient for numerical calculations. 

Asymptotic Stability and the (SP) Matrix 

As reported by Xue and Guo [63], the null solution of the 

linear system: 

x(t+1) = Ax(t), \quad t \in \mathbb{N}_0 \tag{5.2} 

is asymptotically stable if and only if 𝐴A is an (SP) matrix. 

This result is elaborated in Section 2.6.3 and Theorem 2.6.6. 

When considering the perturbed system: 

x(t+1) = g(t, x(t)) = Ax(t) + f(t, x(t)), \quad t \in 

\mathbb{N}_0 \tag{5.1} 

under appropriate restrictions on the nonlinear function 𝑓f, it 

is possible to show that the perturbed system's null solution 

is exponentially stable. This significant conclusion 

emphasizes the importance of the (SP) matrix in ensuring 

the stability of nonlinear non-autonomous discrete 

dynamical systems. 

To demonstrate a key theorem regarding the exponential 

stability of the zero solution in semi-linear systems, we 

proceed with the following statement: 

Theorem on Exponential Stability of Null Solution 

Consider the linear system: \[ x(t+1) = A x(t), \quad t \in 

\mathbb{N}_0 \tag{1} \] 

where \( A \) is an \( n \times n \) matrix belonging to \( S \), 

a class of matrices defined as \( S = \{ A = (a_{ij})_{n 

\times n} : a_{ij} \geq 0, \sum_{j=1}^n a_{ij} \leq 1 \ \forall 

i = 1, 2, \ldots, n \} \). \( A \) is termed as an (SP) matrix 

within this context. 

Theorem 5.2.1 

Statement:  

If \( A \in S \) is an (SP) matrix, then the zero solution of the 

system (1) is not only asymptotically stable but also 

exponentially stable. 

Proof Outline: 

1. Asymptotic Stability:   

   By the properties of (SP) matrices (as defined in the 

literature), the eigenvalues of \( A \) satisfy \( |\lambda_i| 

\leq 1 \) for all eigenvalues \( \lambda_i \). This property 

ensures that the zero solution of the system (1) is 

asymptotically stable. That is, for any \( \epsilon > 0 \), there 

exists \( \delta > 0 \) such that if \( \| x(0) \| < \delta \), then \( 

\| x(t) \| < \epsilon \) for all \( t \geq 0 \). 

2. Exponential Stability: 

   To prove exponential stability, we establish that there exist 

constants \( \beta > 0 \) and \( \eta \in (0, 1) \) such that \( \| 

\Phi(t, 0) \| \leq \beta \eta^t \), where \( \Phi(t, 0) \) denotes 

the transition matrix of the system (1). 

   This follows from the fact that the norm of \( \Phi(t, 0) \) is 

bounded by \( \beta \eta^t \) due to the spectral properties of 

\( A \) as an (SP) matrix. Specifically, \( \eta \) relates to the 

spectral radius of \( A \) and \( \beta \) accounts for the 

initial conditions and the properties of \( A \). 

Therefore, the theorem concludes that the zero solution of 

the linear system (1) with \( A \) being an (SP) matrix is 

exponentially stable. This result underscores the significance 
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of (SP) matrices in ensuring both asymptotic and 

exponential stability of linear systems. 

6 OPTIMAL CONTROL OF DISCRETE VOLTERRA 

SYSTEM - A CLASSICAL APPROACH 

In this chapter, we explore the optimal control problem for 

discrete-time linear Volterra systems using the classical 

approach of Lagrange multipliers for minimization 

6.1 Introduction 

Many researchers have addressed optimal control problems 

in discrete Volterra systems. Gaishun and Dymkov 

employed operator techniques to analyze response control in 

linear discrete Volterra systems, while Belbas and Schmidt 

studied optimal management of Volterra integral equations 

with impulse components. This chapter focuses on 

optimizing control of linear Volterra systems using 

Lagrangian multipliers, a standard minimization technique. 

𝑥(𝑡 + 1) = ∑ 𝐴

𝑡

𝑖=0

(𝑖)𝑥(𝑡 − 𝑖) + 𝐵𝑢(𝑡), 𝑡 ∈ 𝑁0 

Where A(i) is a n x n nonsingular matrix with I = 0,1...t and 

B is a n x m matrix. For the fixed time procedure (0 t N), we 

use a quadratic performance index. 

𝐽 =
1

2
𝑥∗(𝑁)𝑆𝑥(𝑁) +

1

2
∑[𝑥∗(𝑡)𝑄𝑥(𝑡) + 𝑢∗(𝑡)𝑅𝑢(𝑡)]

𝑁−1

𝑡=0

 

Both S and Q are Hermitian matrices that have an nxn 

number of positive or positive semi-definite (or existent 

symmetric matrices). mxm A positive and definite hermitian 

or real-symmetric matrix A matrix of the Hermitian type A 

controller described by R Equation minimises J when 

applied to the constraint equation (and what time starting 

conditions on the state vector are as follows: 

𝑥(0) = 𝑐. 

6.2 Solution by the Classical Minimization Method Using 

Lagrange Multipliers 

As a result, we reduce J definite by 

𝐽 =
1

2
𝑥∗(𝑁)𝑆𝑥(𝑁) +

1

2
∑[𝑥∗(𝑡)𝑄𝑥(𝑡) + 𝑢∗(𝑡)𝑅𝑢(𝑡)]

𝑁−1

𝑡=0

 

Assuming the control equation is true 

𝑥(𝑡 + 1) = ∑ 𝐴𝑖𝑥

𝑡

𝑖=0

(𝑡 − 𝑖) + 𝐵𝑢(𝑡), 𝑡 ∈ 𝑁0  

Here's how to represent the starting condition on the state 

vector: where t = 0, 1, 2,..., N - 1, and 

𝑥(0) = 𝑐 

λ(1),λ(2),…λ(N),λ(i)^' s∈R^n, for i = 1,2,..., N,  

When we take into account a set of Lagrange multipliers we 

arrive at L, which is a new performance index. 

𝐿 =
1

2
𝑥∗(𝑁)𝑆𝑥(𝑁)

+
1

2
∑ {[𝑥∗(𝑡)𝑄𝑥(𝑡) + 𝑢∗(𝑡)𝑅𝑢(𝑡)]

𝑁−1

𝑡=0

+ 𝜆∗(𝑡 + 1) [∑ 𝐴𝑖𝑥

𝑡

𝑖=0

(𝑡 − 𝑖) + 𝐵𝑢(𝑡)

− 𝑥(𝑡 + 1)]

+ [∑ 𝐴𝑖𝑥

𝑡

𝑖=0

(𝑡 − 𝑖) + 𝐵𝑢(𝑡)

− 𝑥(𝑡 + 1)]

∗

𝜆(𝑡 + 1)} 

Evidently L = L*. 

Then, we set the results equal to 0 by dividing L by every 

part of x(t), u(t), or A(t). i.e. To minimize the functional L, 

𝜕𝐿

𝜕𝑥(𝑡)
= 0, 𝑡 = 1,2, … , 𝑁 

𝜕𝐿

𝜕𝑥(𝑡)
= 0, 𝑡 = 0,1,2, … , 𝑁 − 1 

𝜕𝐿

𝜕𝜆(𝑡)
= 0, 𝑡 = 1,2, … , 𝑁 

As an example, consider the subsequent (submit Ogata, page 

670), 

𝜕𝐿

𝜕𝑥
𝑥∗𝐴𝑥 = 2𝐴𝑥, 𝑖𝑓 𝐴 = 𝐴∗, 

And 

𝜕𝐿

𝜕𝑥
𝑥∗𝐴𝑦 = 𝐴𝑦 

There are a number of partial derivatives that 

𝜕𝐿

𝜕𝑥(𝑡)
= 0 

In other words, 

𝑄𝑥(𝑡) + ∑ 𝐴∗

𝑁−𝑡−1

𝑖=0

(𝑖)𝜆(𝑡 + 𝑖 + 1) − 𝜆(𝑡) = 0, 𝑡

= 1,2, … , 𝑁 − 1 

Now 
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𝜕𝐿

𝜕𝑥(𝑁)
= 0 

Implies 

𝑆𝑥(𝑁) − 𝜆(𝑁) = 0 

Similarly 

𝜕𝐿

𝜕𝑥(𝑡)
= 0 

𝑅𝑢(𝑡) + 𝐵∗ 𝜆(𝑡 + 1) = 0 

𝜕𝐿

𝜕𝜆(𝑡)
= 0 

∑ 𝐴(𝑖)

𝑡−1

𝑖=0

𝑥(𝑡 − 𝑖 − 1) + 𝐵𝑢(𝑡 − 1) − 𝑥(𝑡) = 0 

System equation calculates the Lagrange multiplier. In the 

next step, we will simplify the equations that we have just. 

As a result of Equation, 

𝜆(𝑡) = 𝑄𝑥(𝑡) + ∑ 𝐴∗

𝑁−𝑡−1

𝑖=0

(𝑖)𝜆(𝑡 + 𝑖 + 1), 𝑡 = 1,2, … , 𝑁 − 1 

λ(N)=Sx(N) is the final condition  

Solving for u(t) and noting that f?-1 occurs in (6.2.4) gives 

us 

𝑢(𝑡) = −𝑅−1𝐵∗ 𝜆(𝑡 + 1), 𝑡 = 0,1, … , 𝑁 − 1 

It is possible to rewrite equation as 

𝑥(𝑡 + 1) = ∑ 𝐴

𝑡

𝑖=0

(𝑖)𝑥(𝑡 + 𝑖) + 𝐵𝑢(𝑡), 𝑡 = 0,1, … , 𝑁 − 1 

What we have here is a state equation. The effect of 

replacing  

𝑥(𝑡 + 1) = ∑ 𝐴

𝑡

𝑖=0

(𝑖)𝑥(𝑡 + 𝑖) − 𝐵𝑅−1𝐵∗𝜆(𝑡 + 1), 𝑡

= 0,1, … , 𝑁 − 1 

With the first situation x(0) = c. 

We must solve concurrently in order to find the answer to 

the minimization issue. Note that the system specifies the 

first state x(0), whereas the Lagrange multiplier equation 

specifies the ending condition X(N).Thus, 

𝑢(𝑡) = −𝑅−1𝐵∗𝜆(𝑡 + 1), 𝑡 = 0,1, … , 𝑁 − 1 

6.3 Summary 

The design of controllers for discrete-time linear Volterra 

systems was investigated using the classical Lagrange 

multiplier approach. 
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