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Abstract : This paper explores advancements in common fixed point theorems within the context of e-chainable fuzzy metric
spaces, specifically utilizing absorbing maps. We extend the theoretical framework by introducing new conditions and
methodologies that leverage the properties of absorbing maps to establish common fixed points. Our research builds on and
enhances the foundational work in fuzzy metric space theory, providing a comprehensive analysis of e-chainable spaces. The
results demonstrate the effectiveness of these new approaches in identifying common fixed points, thereby offering significant
contributions to the field. The developed theorems not only reinforce existing knowledge but also pave the way for future studies
and applications in mathematical and computational disciplines where fuzzy metrics and chainability are essential.
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1 INTRODUCTION

In this paper, we establish several common fixed point theorems for both set-valued and single-valued mappings in fuzzy metric
spaces and fuzzy 2-metric spaces. We introduce the concept of fuzzy metric spaces in various forms, focusing on different types
and their properties. Many of our results pertain to either commuting mappings or mappings that exhibit weak commutativity as
introduced by Seesa. In 1986, Jungck introduced the notion of compatible maps, which has since been extensively used to prove
existence theorems in common fixed point theory. Additionally, Pant and Pant explored common fixed points of pairs of non-
compatible maps and the property E.A in fuzzy metric spaces. Our results generalize numerous significant fixed point theorems
and broaden the scope for studying common fixed points under contractive-type conditions. Despite these advancements, fixed
point theorems in fuzzy metric spaces remain an area with substantial potential for further exploration.

2 PRELIMINARIES

Definition 2.1 [15] Let X be a non- empty set.Then a function A with domain X and value in
[0,1] is said to be a fuzzy set in X.
Definition 2.2 A t — norm or more precisely triangular norm = is a binary operation defined on [0,1] such that for all a, b, c,d €
[0,1] following conditions are satisfied:

l.ax1=1

2.axb=bx*a

3.axb<cxdwhenevera<candb <d

4. ax(bxc)=(a*b)xc
Definition 2.3 [3] The 3-tuple (X, M,x) is called a fuzzy metric space if X is an arbitrary non empty set * is continuo t — norm
and M is a fuzzy set in X? x (0, o) satisfying the following conditions; for all x,y,z € X and s,t > 0.

1. M(x,y,0) =0.
M(x,y,t) =1Vt>0&x=y.
M(x,y,t) = M(y,x,t)
M(x,y,t) * M(y,z,5) < M(x,z,s +t) = M(y,x,t) where t € [0,1]
M(x,y,.):[0,] — [0,1] is left continuous.

a M
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Definition 2.4 [14] A sequence {x,} in a fuzzy metric space (X, M,*) is called cauchy if for every ¢ > 0 and t > 0 there exists an
integer n, € N such that M (x,,, x,,, t) = 1 — €, Vn,m = ny.A fuzzy metric space (X, M,*) is said to be completer if every cauchy
sequence in X converges to point in X. A sequence {x,} in X is convergent to x € X if lim,_, M (x,, X, t) > 1 — € for each t >
0,there exist ny € N

Definition 2.6 [6] A pair (4, B) of self maps of fuzzy metric space (X, M,*) is said to be reciprocal continuous if lim,,_,,ABx, =
Ax and lim,,_,.,BAx,, = Bx whenever there exists a sequence x,, € X such that lim,,_,,,Ax, = Bx, = x for some x € X.

If A and B are continuous then they are obviously reciprocally continuous but not converse need not to be true.

Definition 2.7 [14]Let (X, M,*) be a fuzzy metric space and € > 0. A finite sequence x = xg, x4, X, ..., X, = y is called € chain
fromx to yif(x,x;_M,t)>1—cforallt >0andi=1,2,3,..n.

A fuzzy metric space (X, M,*) is called e- chain fromx to y.

Definition 2.8 [13]Let P and Q be two self maps on a fuzzy metric space (X, M,) then P is called Q — absorbing if there exists a

positive integer R > 0 such that M(Qx, QPx,t) = M(Qx, QPx, %) for al x € X. Similarly Q is called P — absorbing if there exists
a positive integer R > 0, such that M (Px, PQx, t) = M(Px, Qx, é) forall x € X.

Proposition 2.9 [14]Let P and Q be two self maps on a fuzzy metric space (X, M,). Assume that (P, Q) is reciprocal continuous
then (P, Q) is semi compatible if and only if (P, Q) is compatible.

Lemma 2.10 Let (X, M,*) be fuzzy metric space then for all x,y € X, (M, X, .) is non decreasing.

Lemma 2.11 Let (X, M,*) be fuzzy metric space if there exists R € (0,1) such that M(x, y, kt) = M(x, y,t) for all x,y € X, and
t>0thenx =y.

Lemma 2.12 [8]A sequence {x,} in a fuzzy metric space (X, M,*) converges to a point x € X if and only if M(x,,x,t) =1V t >
0.

Example 2.13[6] Let X = [0,1] be a metric space we define P, Q: X — X by

(1): Z: iziande:{lfor X E€EX

Then the maps P and Q — absorbing for any R > 1 but the pair of maps (P, Q) do not commute at their coincidence point x = 0.
Lemma 2.14[6] Ifforallx,y e Xt >0and0 < k <1 M(x,y, kt) = M(x,y,t) thenx =y
Proof. Suppose that there exists 0 < k < 1 such that M(x,y, kt) = M(x,y,t) for all x,y € X and t > 0. Then M(x,y,t) =

M(x,y, %) and so M(x,y,t) = M(x,y, kin) for positive integer n taking limit as M;;,,,..,(x, y, t) = 1 and hence x = y.

Pr =

Following theorem is proved by Syed Shahnawaz Ali and Jainendra Jain[14]
Theorem 2.17 Let A, B, S, T, P and Q be self mappings of a complete € — chainable fuzzy metric space (X, M,*) with continuous
t — norm satisfying the conditions:
(@ P(X) € ST(X) and Q(X) € AB(X)
(b) Q is ST absorbing
(c) AB =BA,ST =TS,PB = BP and QT = TQ
(d) 3 k € (0,1) such that
M(Px, Qy, kt) = min{M (ABx, STy, t), M(Px, ABy, t),

M (ABx,Qx,t)+M(Px,STy,t)
3 »M(STy, Qy, t)}

for every x,y € X and t > 0. If (P, AB) is reciprocally continuous semi compatible maps. Then 4, B,S,T,P and Q have unique
common fixed point in X.

3 Main result
Theorem 3.1 Let 4,B,S,T,L and M be self mappings of a complete € — chainable fuzzy metric space (X, M,*) with continuous
t — norm defined by a * b = min{a, b} with satisfying:

1. L(X) € ST(X) and M(X) € AB(X)

2. M is ST absorbing

3. ST=TS,LB=BL MT=TM

4. 3 k € (0,1) such that for some ¢ € ® every x,y € X and t > 0 where a,b = 0 with a and b can not be simultaneously 0.

M(ABx,Lx,t) + M(Lx,STy,t)

d{M (Lx, My, kt), >

,M(STy, ABx, t),
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aM(ABy,My,t) + bM(ABy, STy, t)
aM(STy,My,t) + b

M(STy, My, kt), }1=0 ..(iv)

If {L, AB} is reciprocally continuous semi compatible maps, then 4, B, S, T, L and M have a unique fixed point X.

Proof. Let x, € X be any arbitrary be any point from (i) there exists x;,x, € X such that Lx, = STx; = y, and Mx, = ABx,

V1
Inductively we can construct sequence {x,} and {y,,} in X.

such that Lxy, = STXp41 = Yon aNd MXyp41 = ABXonys = Voneq forn=0,1,2 ...
Taking x = x5, ¥ = Xap44 TOr t > 0in (iv)

M(ABxy,,Lxy,,t) + M(Lx,,,STx ,t
¢{M(Lx2n, Mx2n+1,kt), ( 2n 2n ) > ( 2n 2n+1 )’
,M(STx2n+1,ABx2n,t),M(STx2n+1,Mx2n+1,kt),

aM(ABXyn41, MXop41,t) + DM(ST X341, ABXgp44,t) 4
aM (STxzn+1, MXop41,t) + b .

0

M Yan-1, Yarr £) + M (Yo, Yon )
¢{M(y2n'y2n+1,kt)’ 2n—-172n : 2n Y2n ’

aM (Yon, Yons1, t) + DM (Y2n, Yan, t)
M(Y2n, Yan-1,t) M(Y2n, Yans1, kt), :lM(r;; = +r}; 2
n» n+1»

10

MYVon—1,Yon,t) + 1
¢{M(y2n:y2n+1:kt)r 2 22n :M(YZn' yZn—lrt)rM(yZn'YZn+1:kt)v1} =0

¢ is non- increasing in second argument

M (Yo, Yon+1, kKO, M (Van—1, Yors £), M (Yo, Yan—1, )y M (Von, Yan+1, kt)} = 0

M (Y20, Yon+1 kt) Z M(Yan-1, Y20, t)
Similarly we put x = x5,42,¥ = X544 in (iv) we have

M(ABX2p42, LX2n42,t) + M(LX2n42, ST X2p41, 1)
¢{M(Lx2n+2,Mx2n+1,kt), Z = 2 = Z )'

M(STXon11, ABX 2042, 1), M(STX 2041, MX2p 41, kE),
aM(ABxyn 41, MXop41,t) + DM(ABX3p 41, STX 2041, 1)

1>0
aM (STxzn+1, MXop41,t) + b

MVons1 YVons2 ) + M(Yonio, Yon, t)
¢{M(y2n+2,}’2n+1, kt), n+l n+ 2 n+ n )’

aM (Yon, Yons1, t) + DM (Yon, Yo, t)

MY2n, Yani1, ) M(YV2n, Yans1, kt), M (Yom Yoman, ©) + b }1=0
n» n+1»

M (Yan+2) Yont1 k), M(Vans1, Yans2) ) M (Vons Yons1, £, M (Yo, Yona1, kt) = 0
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M (Yans2, Yan+1, kt) = M(Yans1, Yan, t)

therefore for all n even or odd, we have
M(Yn' yn+1' kt) = M(yn' Yn—lﬁ t)

M(yn' Vn+1 t) 2 M(yn'yn—lfi) = M(ynryn—lt kiz) o2 M(ynt Yn—likLn)
n — oo
S0, M(Yn, Vns+1,t) = 1 asn — oo and for any t > 0. For each € > 0 and each ¢t > 0 we can L = ABz. Choose n, € Nsuch that
M (Y, Yns1,t) > 1 — € form,n € N, we suppose m = n. Then we have that

t t
MG Y ) 2 MO, Ynaro =) * M(Ynt1 Ynaz =)

A
* ok M(yn! Vn-1 T)
m-n

MYn, ym,t) 2 (1 =€) * (1 =€) *..x(1—¢€)
=>(1-¢)
And hence {y,} is a cauchy sequence in X. Since X is complete therefore {y,,} = z in X and its subsequence {ABx,,} {MX3n41},

{ST %2141}, {Lx,,} also converges to z. Since X is € chain from x,, to x,,, that is there exists a finite sequence x,, = y1,¥,, ...y; =
Xan4q SUCh that M(y;, yi_q,t) > 1 —€eforallt >0andi =1,2, ...

Thus we have
t
1

M (X, Xna1,t) = M1, Y20 D) * M2, Y3, 5) % oo * MVt 70,7)
A-e)x(1—-e)*..(1—¢)

=>(1-¢)
form>n

t t t
M (tn, X, ) 2 M Qe Xnn, =) % M (nar, Xna, ) e M (e X )
A-e)x(1—-e)*..(1—¢)
=>(1-¢€)

And so {x,} is a Cauchy sequence in X and hence there exists x € X such that x,, = z. By the reciprocally continuity and semi
compatibility of maps (L, AB) we have

lim,,oL(AB)x,, = Lz, lim, ,AB(L)x,, = ABz
and lim,_,L(AB)x,, = ABz,

which implies
lim,_,L(AB)xy, = ABz

Step I:- By putting x = z,y = x5,44 in (iv) we get
M(ABz,Lz,t) + M(Lz,ST X541, t)
2

D{M (Lz, Mxpp 41, kt), ,M(ST X041, AB2, 1),
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aM (ABx3n41, MX3041,t) + DM (ABX2541, STX 3041, ) .

0
aM(STx2n+1! Mx2n+1' t) + b

M(STx2n41, MXon1, kE),

Lettingn — o
M(Lz, Lz, t) + M(Lz, z,t)
2

¢{M(Lz, z, kt), ,M(z,Lz,t),M(z, z, kt),

aM(z,z,t) + bM(z,z,t)
aM(z,z,t)+ b

14+ M(Lz,z1t)

¢{M(Lz, z, kt), >

¢ is non-decreasing in second, fourth and fifth arguments
M(Lz,z,kt) = M(Lz, z,t)

,M(z,Lz,t),1,1} =0

Thus we get
Lz =2z=ABZ
Step 11:-
By putting x = Bz,y = x,,,4¢ in (iv)
we get,
M(AB(Bz),L(Bz),t) + M(L(Bz),STx ,t
SM(LBz, My oy, kD), (AB(Bz), L(Bz),t) ! (L(Bz),5TX2n41 ))’
M(STx2n+1, AB(B2),t), M (STX2n+1, MX2n41, k),
aM (ABXan+1, MXgn11,t) + DM(ABXgn41, STXon11,1) >0
aM (STXap+1, Mx3n41,t) + b B
Since,

AB = BA,LB = BL
therefore AB(Bz) = B(ABz) = Bz and L(Bz) = B(Lz) = Bz letting n — oo we get
M(Bz,Bz,t) + M(Bz,z,t)
2 ),M(Bz,z,t),M(z, z, kt),

aM(z,z,t) + bM(z,z,t)
aM(z,z, t) + b

¢{M(Bz, z, kt),

>0

1+ M(Bz,z,t)

{M(Bz, z, kt), >

),M(z,Bzt),1,1} 2 0
¢ is non-decreasing in second, fourth and fifth arguments
M(Bz,Bz,t) + M(Bz, z,t)

¢{M(Bz, z, kt), >

),M(z,Bz,t),M(Bz,z,t),

aM(Bz,z,t) + bM(Bz,z,t)
aM(Bz,z,t)+ b

[}

¢{M(Bz,z,kt),M(z,Bz,t),M(z,Bz,t),M(Bz,2,t)} = 0
ie.
M(Bz,z,kt) = M(Bz,z,t)
By lemma 2.14
Lz=Az=Bz=z
Since L(X) < ST (X) there exist u € X such that z = Lz = STu.
Step Il1I:-
By putting x = x5,y = u in (iv)
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we get
M(ABxyp, Lxop, t) + M(Lx,y,, STu, t)

2

d{M (Lx,p,, Mu, kt),

aM(ABu, Mu,t) + bM(ABu,STu, t)

M(STu, M
(STu, Mu, kt), aM(STu, Mu,t) + b

Lettingn - o
M(z,z,t)+ M(z z,t)
2

¢{M(z, Mu, kt),

aM(z, Mu,t) + bM(z,z,t)
aM(z, Mu,t) + b

H{M (2, My, kt),—=),1, M (2, Mu, kt),1} > 0
¢ is non-decreasing in second, fourth and fifth arguments

¢{M(z, Mu, kt), M(z, Mu,t),M(z, Mu,t), M(z, Mu, t), M(z, Mu, t)} = 0

M(Bz,z,kt) > M(Bz,z,t)
z = Mu = STu
Since M is ST — absorbing then we have

M(STw, STMu, t) = M(STu, Mu,7) = 1

Step IV:-
By putting x = x,,,,y = z in (iv) we get

M(ABxyy,, Lxyy, t) + M(Lx,,,STz, t)
2

O{M (Lxy,, Mz, kt),

aM(ABz,Mz,t) + bM(ABz,5Tz,t)
aM(STz,Mz,t) + b

M(STz, Mz, kt),

Lettingn — o
M(z,z,t)+ M(zz,1t)
2

${M(z, Mz, kt), ), M(z,2,t),

aM(z,Mz,t) + bM(z,z,t)
aM(z,Mz,t) + b

M(z,Mz, kt),
H{M(z, Mz, kt),%)@, M(z, Mz kt)1} > 0
¢ is non-decreasing in second, fourth and fifth arguments
O{M(z, Mz, kt),M(z,Mz,t),M(z,Mz,t),M(z,Mz,t), M(z,Mz,t)} = 0

Hence by lemma 2.14
z=Mz=STz

Step V:-
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By putting x = x,,,,y = Tz in (iv)

we get,

M(ABx 3y, LX gy, t) + M(LxXyp, STTz, t)
2

d{M(Lx,,, MTz, kt), ), M(STTz, ABxyy,,t),

M(STTz MTz kt aM(ABTz,MTz,t) + bM(ABTz, STTz,t) >0
(STT2 MT2 kt), aM(STTz, MTz,t) + b =
Since ST =TS and MT = TM therefore M(Tz) = T(Mz) =Tz ST(Tz) =T(STz) =Tz
and letting n — oo we get
M(z,z,t) + M(z,Tzt)
2

O{M(z,Tz, kt), ), M(Tz,z,t),
aM(z, Tz, t) + bM(z,Tz,t)

M(Tz, Tz, kt), >
Ky e aM(Tz, Tz, t)+ b

1+ M(zTzt) (a+b)M(z,Tzt)
> ), M(Tz,z,1t),1, @+b) >

O{M(z,Tz, kt),

14+ M(zTzt)

¢{M(z,Tz, kt), > ), M(Tz,2,t),1,M(2,Tz,t)} =0

¢ is non-decreasing in second, fourth and fifth arguments
¢{M(z,Tz, kt),M(z,Tz,t),M(z,Tz,t),M(z,Tz,t),M(z,Tz,t)} = 0
ie.
¢{M(z, Tz, kt) = M(z,Tz,t)}
Hence by lemma 2.14
z=Tz=Mz=S5Tz
Therefore,
z=Az=Bz=Sz=Tz=Lz= Mz
That is z is a fixed point of 4,B, X, T, L and M.

UNIQUENESS:-
Let w be another fixed point of 4, B, X, T, L and M; therefore putting x = z and y = w in (iv) we get

M(ABz, Lz, t) + M(Lz,STw, t)

d{M(Lz, Mw, kt), >

), M(STw, ABz,t),

aM(ABw,Mw, t) + bM(ABw, STw, t)
aM(STw, Mw,t) + b -

M(STw, Mw, kt),

M(z,z,t) + M(z,w,t)

d{M(z,w, kt), >

), M(w, z,t), M(w,w, kt),

aM(w,w, t) + bM(w,w, t)
aM(w,w,t) + b

120

1+ M(zw,t)

d{M(z,w, kt), >

Yy M(w,z,t)1,1} =0

¢ is non-decreasing in second, fourth and fifth arguments
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M(z,w,t) + M(z,w,t)
2

¢{M(z,w, kt), ), M(z,w,t),M(z,w,t)} =20

M(z,w,kt) = M(z,w,t)
Hence by lemma 2.14 z = w, hence z is a unique fixed point of X. This completes the proof.

Corollary 3.2 Let 4, B, S and T be self mapping of a complete € — chainable fuzzy metric space (X, M,*) with continuous t —
norm defined by a * b = min{a, b} satisfying (i) — (iv) of theorem and there exists k € (0,1) such that for all x,y € X and t >
0, where a,b = 0.
1. AXX) € T(X)and B(X) € S(X)
2. B isabsorbing T
3. 3 k € (0,1) such that for some ¢ € ® every x,y € X and t > 0.
M(Ax,Sx,t) + M(Ax, Ty, t)

¢{M (Ax, By, kt), >

), M(Ty, Sx, t),

aM(Ay,By,t) + bM(Ay, Ty, t)

M(Ty, B
(Ty, By, kt), aM(By,Ty,t) + b -

If A is absorbing S and both are reciprocal then 4, B, S, T have a unique fixed point in X.
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