
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1282
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Study on Basics of Replica Control Management in

Distributed Data
*Manohar Lal Raksha, *Dr. Ajay Jain

Research Scholar, Dr. APJ Abdul Kalam University-Indore

Abstract- A replicated database system is a distributed system in which each site stores a copy of the database (full replication) or

parts of the database (partial replication). Data access is done via transactions. A transaction represents a logical unit of read and

write operations. Two important components of a replicated database system are concurrency control and replica control.

Concurrency control isolates concurrent transactions with conflicting operations, while replica control coordinates the access to the

different copies. This Paper provides an informal introduction to database replication along with an overview of the advantages and

disadvantages of traditional solutions. In particular, we elaborate on the main drawbacks of these solutions to be able to distinguish

between inherent and avoidable limitations. This leads us to the key concepts behind the approach proposed in this dissertation

which eliminate the avoidable and alleviate the inherent limitations of traditional solutions.

Keywords- Replica, Database System, Read and Write Operations, Concurrency Control, Traditional Approach.

INTRODUCTION

The strongest correctness criteria for a replicated system

is 1-copy-serializability (1CSR) [BHG87]: despite the

existence of multiple copies, an object appears as one logical

copy (1-copy-equivalence) and the execution of concurrent

transactions is coordinated so that it is equivalent to a serial

execution over the logical copy (serializability). Furthermore,

transaction atomicity guarantees that a transaction commits

(executes successfully) on all or none of the participating sites

despite the possibility of failures. Not all replica control

protocols guarantee 1-copy-serializability or atomicity; some

provide lower or undefined levels of correctness in order to

increase performance. Gray et al. [GHOS96] categorize

replica control mechanisms according to two parameters:

when updates are propagated between the copies, and where

updates take place, i.e., which copies can be updated (Table

1). Update propagation can be done within transaction

boundaries or after transaction commit. In the first case,

replication is eager, otherwise it is lazy. Eager replication

allows the detection of conflicts before the transaction

commits. This approach provides data consistency in a

straight- forward way, but the resulting communication

overhead increases response times significantly. To keep

response times short, lazy replication delays the propagation

of changes until after the end of the transaction, implementing

update propagation as a background process. However, since

copies are allowed to diverge, inconsistencies might occur. In

terms of which copy to update, there are two possibilities:

centralizing updates (primary copy) or a distributed approach

(update everywhere).

Table 1: Classification of replica control mechanisms

Communication within the transaction execution time. In lazy

schemes the non-trivial problem of reconciliation arises.

When two trans- actions update different copies of the same

data item and both commit locally before propagating the

update, the data becomes inconsistent. Such a conflict must

be detected and reconciled.

Traditional Eager Replication- Using eager replication, 1-

copy-serializability and atomicity can be achieved in a

straightforward way. Replica control is combined with the

concurrency control mechanisms, for instance 2-phase-

locking (2PL) or timestamp-based algorithms, in order to

guarantee serializability. Furthermore, an atomic

commitment protocol, like 2-phase-commit (2PC) is run at

the end of the transaction to provide atomicity.

Table 1 classifies some of the better-known protocols. Early

solutions, e.g., distributed IN- GRES, use synchronous

primary copy/site approaches [AD76, Sto79]. Most of the

algorithms avoid this centralized solution and follow the

update everywhere approach guaranteeing 1-copy-

equivalence by accessing a sufficient number of copies. A

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1283
IJRITCC | December 2023, Available @ http://www.ijritcc.org

simple approach is read-one/write-all (ROWA) [BHG87],

which requires update operations to access all copies while

read operations are done locally. This approach has the major

drawback of not being fault-tolerant: processing halts

whenever a copy is not accessible. To tolerate site failures,

read-one/write-all-available (ROWAA) is used, which

requires to update only the available copies [BG84, GSC 83].

Carey et. al [CL91] provide an evaluation of ROWA with

different concurrency control mechanisms.

Lazy Replication: Due to the complexity and performance

implications of eager replication there exist a wide spectrum

of lazy schemes. Naturally, lazy replication reduces response

times since transactions can be executed and committed

locally and only then updates are propagated to the other sites.

However, 1-copy-serializability can only be guaranteed in

very restricted primary copy configurations. Some lazy

schemes only ensure that all replicas of a data item eventually

converge to a single final value and do not consider that

transactions create dependencies between the values of

different data items. Atomicity cannot be guaranteed at all. If

a node fails before it propagates the updates of a committed

transaction to the other sites, then is lost. Many lazy schemes

use a primary copy approach. This means that update

transactions must be submitted at the site with the

corresponding primary copies and transactions which want to

update data items whose primary copies reside at different

sites, are not allowed.

Replication in Commercial Database: Clearly, commercial

databases favor lazy propagation models (see Table 1). Most

systems started with a primary copy approach specialized for

either OLTP (On Line Transaction Processing) or OLAP (On

Line Analytical Processing) [Sta94, Gol94]. In the

meanwhile, many of the big database vendors provide a

whole spectrum of primary copy and update everywhere

approaches.

Sybase Replication Server provides an extended publish-and-

subscribe scheme and clearly favors a primary copy approach

although update everywhere configurations are possible. Up-

dates are propagated to the other copies immediately after the

commit of the transaction. The updates are obtained from the

log as soon as the log records are stored on disk. This push

strategy is an effort to minimize the time that the copies are

inconsistent and an implicit acknowledgment of the

importance of keeping copies consistent in an OLTP

environment. In the primary copy configuration, updates can

either be done by synchronously connecting to the primary

site or asynchronously by transferring procedure calls

between the site that wants to update the item and the primary

site. In their update everywhere configuration, updates may

take place at any site and conflict resolution has to be done by

the application. IBM Data Propagator was first a primary

copy approach geared towards OLAP and mobile

architectures. It adopted a pull strategy in which updates were

propagated only at the client request, which implies that a

client will not see its own updates unless it requests them from

the central copy. Having OLAP applications in mind, those

requests may range from simple point-in-time refreshes and

continuous update notifications to sophisticated subscriptions

for aggregate data. Over the years, IBM enhanced the system

to also support update everywhere providing conflict

detection and automatic compensation. IBM also uses the log

information to detect updates, and, to optimize the process,

can even capture log records directly from the memory of the

database system.

Lazy Replication with Lower Levels of Consistency: From

the research point of view, there has also been considerable

work in lazy replication. Early papers provide the user with a

way to control inconsistency, i.e., although the data may be

obsolete or even inconsistent, the degree to which the data

may be “wrong” is limited and well- defined. A couple of

weak consistency models have been constructed that provide

correctness criteria weaker than 1-copy-serializability.

Examples of weak-consistency replication models are

Epsilon-serializability [PL91] and N-Ignorance [KB91].

Epsilon-serializability measures the distance between

database objects like the difference in value or the number of

updates applied. The application can therefore specify the

amount of inconsistency tolerated by a transaction. N-

Ignorance is based on quorums. It relaxes the requirement that

quorums must intersect in such a way that the inconsistencies

introduced by concurrent transactions are bounded. The

replication system in Mariposa [SAS 96] builds an economic

framework for data replication. The frequency of update

propagation depends on how much the maintainer of a replica

is willing to pay. Also the staleness of the data in a query is

determined by the price a user wants to pay. For all these

approaches, however, making the choice of the right bound

of inconsistency is a non-trivial problem and users must have

a good understanding of the inconsistency metrics.

Lazy Replication providing 1-Copy-Serializability: More

recent work has explored the possibility of using lazy

replication while still providing 1- copy-serializability. Thus,

[CRR96] have shown that even in lazy primary copy

schemes, serializability cannot be guaranteed in every case.

The way to get around this problem is to restrict the placement

of primary and secondary copies across the system. The main

idea is to define the set of allowed configurations using

configuration graphs where nodes are the sites and there is a

non-directed edge between two sites if one has the primary

copy and the other a secondary copy for a given data item. If

this graph is acyclic serializability can be guar- anteed by

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1284
IJRITCC | December 2023, Available @ http://www.ijritcc.org

simply propagating updates sometime after transaction

commit [CRR96]. Pacitti et al. [PSM98, PMS99] have

enhanced these initial results by allowing certain cyclic

configurations. These configurations, however, require more

complex update propagation schemes, namely, up- dates to

secondary copies must be executed in causal or the same total

order at all sites. Breitbart et al. [BKR 99] propose an

alternative solution by requiring the directed configuration

graph (edges are directed from primary copy to secondary

copy) to have no cycles. This also requires to intro- duce more

sophisticated update propagation strategies.

Combining Eager and Lazy Replication: A further primary

copy approach combining eager and lazy techniques has been

proposed in [BK97, ABKW98]. The system is eager since the

serialization order is determined before the commit of the

transactions (using distributed locking or a global

serialization graph). This means that communication takes

place within the execution time of each transaction. However,

the system can be called lazy because within the boundaries

of the transaction the execution of the operations only takes

place at one site. Propagating the updates to the remote copies

is only after the commit and there is no 2-phase commit.

Replication in Non-Database Systems: There exist many

lazy replication solutions that have not evolved with the

concept of transactions in mind but in a more general

distributed setting, for instance, distributed file systems,

replication on the web [RGK96], document replication

[ARM97], and so forth. A good survey of early approaches

can be found in [CP92]. In these environments, lazy

replication provides more easily the requested level of

consistency because transactional dependencies do not need

to be considered.

Replication and Distributed Computing: In distributed

computing, the workload is distributed among several off-the-

shelf workstations connected by a fast network. Distributed

computing is used for scalability and fault-tolerance.

Whenever the workload increases more nodes are added to

the system in order to increase the process capacity.

Furthermore, distributed computing provides Contention

management if the failure of one site does not hinder the

execution at the other sites. It might even be possible for the

available nodes to take over the work of failed nodes.

Problems of Traditional Eager Replication and how to

avoid them: Although eager update everywhere replication

is the adequate choice from a theoretical point of view,

current solutions are not attractive options in terms of

performance and complexity. The question to ask is whether

their limitations are completely inherent to the eager, update

everywhere model or whether some of them are only an

artifact of the mechanisms used. In what follows, we discuss

some of the typical mechanisms found in traditional

approaches, how they influence performance and complexity,

and how their drawbacks can be circumvented by applying

adequate techniques.

CONCLUSIONS

As it is done with different levels of isolation, we propose to

weaken full correctness to provide faster solutions. We allow

a local site to commit a transaction whenever the global

serialization order has been determined and do not require

that it waits for the other sites to execute the trans- action.

Instead, the local site relies on the fact that the other sites will

serialize the transaction in the same way according to the total

order in which write sets are delivered. Furthermore, we

exploit the different

degrees of reliable message delivery provided by group

communication systems in order to determine the overall

correctness in failure cases.

REFERENCES:

[1] [AD76] P. A. Alsberg and J. D. Day. A principle for

resilient sharing of distributed re- sources. In Proc. of

the Int. Conf. on Software Engineering, pages 562–570,

San Francisco, California, October 1976.

[2] [ARM97] G. Alonso, B. Reinwald, and C. Mohan.

Distributed data management in workflow

environments. In Proc. of the Int. Workshop on

Research Issues in Data Engineer- ing (RIDE),

Birmingham, United Kingdom, April 1997.

[3] [BHG87] P. A. Bernstein, V. Hadzilacos, and N.

Goodman. Concurrency Control and Recovery in

Database Systems. Addison Wesley, Massachusetts,

1987.

[4] [BG84] P.A. Bernstein and N. Goodman. An algorithm

for concurrency control and recovery in replicated

distributed databases. ACM Transactions on Database

Systems, 9(4):596–615, December 1984.

[5] [BK97] Y. Breitbart and H. F. Korth. Replication and

consistency: Being lazy helps some- times. In Proc. of

the ACM Symp. on Principles of Database Systems

(PODS), pages 173–184, Tucson, Arizona, May 1997.

[6] [GHOS96] J. Gray, P. Helland, P. E. O’Neil, and D.

Shasha. The dangers of replication and a solution. In

Proc. of the ACM SIGMOD Int. Conf. on Management

of Data, pages 173–182, Montreal, Canada, June 1996.

[7] [CL91] M. J. Carey and M. Livny. Conflict

detection tradeoffs for replicated data. ACM

Transactions on Database Systems, 16(4):703–746,

1991.

[8] [CRR96] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi.

Deferred updates and data placement in distributed

databases. In Proc. of the Int. Conf. on Data Engineering

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

__

 1285
IJRITCC | December 2023, Available @ http://www.ijritcc.org

(ICDE), pages 469–476, New Orleans, Louisiana,

February 1996.

[9] [PL91] C. Pu and A. Leff. Replica control in

distributed systems: An asynchronous approach. In

Proc. of the ACM SIGMOD Int. Conf. on Management

of Data, pages 377–386, Denver, Colorado, May 1991.

[10] [KB91]]N. Krishnakumar and A. J. Bernstein. Bounded

ignorance in replicated systems. In Proc. of the ACM

Symp. on Principles of Database Systems (PODS),

pages 63–74, Denver, Colorado, May 1991.

[11] [SAS96] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M.

Stonebraker, and A. Yu. Data replication in Mariposa.

In Proc. of the Int. Conf. on Data Engineering (ICDE),

pages 485– 494, New Orleans, Louisiana, February

1996.

[12] [Sta94] D. Stacey. Replication: DB2, Oracle, or Sybase.

Database Programming & Design, 7(12), 1994.

[13] [PSM98] E. Pacitti, E. Simon, and R. N. Melo.

Improving data freshness in lazy master schemes. In

Proc. of the Int. Conf. on Distributed Computing

Systems (ICDCS), pages 164–171, Amsterdam, The

Netherlands, May 1998.

[14] [PMS99] E. Pacitti, P. Minet, and E. Simon. Fast

algorithms for maintaining replica consis- tency in lazy

master replicated databases. In Proc. of the Int. Conf. on

Very Large Data Bases (VLDB), pages 126–137,

Edinburgh, Scotland, September 1999.

[15] [RGK96] M. Rabinovich, N. H. Gehani, and A.

Kononov. Scalable update propagation in epidemic

replicated databases. In Proc. of the Int. Conf. on

Extending Database Technology (EDBT), pages 207–

222, Avignon, France, March 1996.

http://www.ijritcc.org/

