
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

Article Received: 25 March 2023 Revised: 12 April 2023 Accepted: 30 May 2023

__

 585
IJRITCC | June 2023, Available @ http://www.ijritcc.org

A Study of Reusability of Component on Software

Engineering
Praveen Kumar

Research Scholar,

Computer Sciences & Application

Dr. A.P.J. Abdul Kalam University, Indore

Praveenkr1@gmail.com

Dr. Kailash Patidar

Research Supervisor,

Computer Sciences & Application

Dr. A.P.J. Abdul Kalam University, Indore

kailashpatidar123@gmail.com

Abstract : The process of creating new software is equal parts art and science. It's the process of creating something that meets

requirements while staying within budget and deadline restrictions. First coined in the 1960s during seminars hosted by the NATO

Science Committee in response to the so-called "Software Crisis," the term "Software Engineering" has since become common

parlance in the IT industry. For its focus on modularity and reusability, Component-Based Software Engineering (CBSE) stands

out among the numerous subfields of Software Engineering. CBSE is a sub-paradigm of software engineering that places an

emphasis on software artifact reuse and the reusability lifecycle. CBSE strongly advocates the idea of "buy, don't build." The

Component-Based Software Development (CBSD) method streamlines the development of software systems by choosing and

integrating suitable components from a library of prebuilt, reusable (off-the-shelf) software work-products. CBSD recommends

using pre-made, context-independent, and diverse parts while developing software. Component-Based Software solutions are

constructed by integrating reusable, pre-existing, and new components linked through error-free interfaces.

Keywords : Reusability, Software Engineering, Component-Based Software Solutions, Software Systems.

I. INTRODUCTION

Over the last three to four decades, the software business has

expanded greatly. Software is essential for many different

types of vehicles, embedded systems, internet commerce,

and service businesses such as banking, telephones, and

hotels. The three most crucial aspects of any software

development process are budget, schedule, and quality. The

majority of the total cost is attributable to the use of highly

skilled professionals and the ongoing development of

relevant technologies. Planning a timeline may be quite

helpful for software development initiatives. Timely

completion of software development is crucial to the success

of any project. Many software projects have failed to meet

their deadlines in the past, which is not a promising sign for

the industry as a whole Today, software quality is a core

value, right alongside budget and timeline, for developing

top-notch software products.

Multiple software companies have been crying "software

crisis" since the 1980s due to problems

with the software development process. Robert Glass has

said, "I look at my failure tales and see exception reporting,

spectacular failures in the middle of numerous triumphs, a

cup that is [now] almost full." While progress has been

achieved in the software sector, there is always opportunity

for enhancements. One of the major challenges in software

development is understanding the current body of

information and then applying the relevant domain logic to

it. Ignoring the efforts of a person to improve the software

development process will not be compensated for by a fast

data center or cutting-edge hardware developments. Open-

source, like SaaS, is the new approach for the software

industry to meet customer demand, but it needs a higher

skill level from employees.

The software development process has advanced with

technology to remain competitive in today's software

business market. The software development process has too

many long-held assumptions that have been reinforced by

experience and observation. However, not all types of

recursive reuse are advantageous in the long term, as shown

by the cost-benefit analysis of the development process.

http://www.ijritcc.org/
mailto:Praveenkr1@gmail.com
mailto:kailashpatidar123@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

Article Received: 25 March 2023 Revised: 12 April 2023 Accepted: 30 May 2023

__

 586
IJRITCC | June 2023, Available @ http://www.ijritcc.org

While some notable companies have been successful in

using an improvement process approach, others have

attempted and failed because they failed to properly

appreciate the benefits. Despite the upgrade's negative

impact on profits, many companies persist in investing in

time-consuming software engineering.

Several software businesses have published programs on a

variety of platforms in preparation for the third decade of the

21st century. Some have developed in novel methods to

further strengthen the stability and reliability of the

system/application software. They will be used as soon as

feasible since they were delivered on time and improved in

quality. Many big companies have chosen a software

development process that puts a premium on technical and

project management duties, and this approach is considered

the "standard (varies on the basis of individual business

policy)". Many firms, however, persist in using the trial-and-

error technique of software development.

As a result, success in today's competitive software business

market requires both kinds of organization to engage in

daily feedback-based software process improvement (SPI) in

the direction of defining standard policy (legal or digital) or,

alternatively, throughout the whole software development

process.

II. SOFTWARE PROCESS IMPROVEMENT

The software development life cycle is broken down into the

following stages when using SPI:

(a) Key software development process indicators should be

reviewed and updated.

 (b) Determine the value of the method's useful parameters

by determining how challenging it is to implement in

practice.

 (c) After doing the aforementioned analysis, the most

effective method for making advancement may be

implemented. The traditional approach to software

development is reimagined in light of the SPI technique,

which is more flexible, adaptive, and reliable. The method

for improving software is worthwhile in the long run,

despite the time and effort required. Process enhancements

may lead to a reduction in the number of useful software

parameters. Less money will be spent on software

maintenance, less time will be wasted on quality issues, and

less hidden costs will be incurred as a result of software

delivery delays. The method for improving software takes a

long time and requires a lot of work, but it is worth it in the

end. Therefore, less parameters in software are needed for

more efficient operations. It also reduces the time and effort

spent correcting quality issues, the expense of software

maintenance, the risk of passing errors on to consumers, and

the indirect costs of delivering software late.

III. APPLICATION DEVELOPMENT

The phrase "software engineering" is used to describe a set

of procedures where an engineering approach is used to

developing and maintaining software. By "technology," we

refer to the whole spectrum from abstract concepts to

operational structures. The IEEE defines software

engineering as follows:

 To put it simply, Software Engineering is the application of

engineering principles and practices to the process of

creating, deploying, and maintaining software. [2]

In this regard, Philippe Kruchten suggests that software

engineering may be distinguished from Civil, Electrical, and

Mechanical engineering in the following ways: -

▪ Since there aren't many widely accepted theories on how

to go about creating software, theoretical Software

Engineering research may be difficult.

▪ Changes to software are encouraged despite the

difficulty of predicting their impact.

▪ Emerging technologies cannot be adequately evaluated

due to the rapidity with which they are evolving.

▪ It is important to remember that fixing issues, installing

updates, and reworking the system are not accounted for

in the initial software cost estimate.

Some of the current problems in software engineering

include novel approaches to software development, Open

Source Software (OSS), Commercial Off-The-Shelf

(COTS), and a more methodical synthesis and aggregation

of multinational domains.

IV. AN OVERVIEW OF COMPONENT-BASED

SOFTWARE DEVELOPMENT

The phrase "component-based software engineering"

(CBSE) first appeared around the turn of the century. This

technique was created because object-oriented reuse analysis

has been greeted with dissatisfaction by the software

development community. Integration of loosely coupled

software components requires their specification, selection,

implementation, retrieval, and incorporation into

applications.

In-House, Outsource, and Cots Methods for CBSE

Component-based Software Engineering allows for the

usage of both custom and external software components.

Both COTS and OSS (Open Source Software) refer to third-

party software components. Accessible in large numbers,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

Article Received: 25 March 2023 Revised: 12 April 2023 Accepted: 30 May 2023

__

 587
IJRITCC | June 2023, Available @ http://www.ijritcc.org

commercial off-the-shelf (COTS) products are notoriously

difficult to understand owing to their commercial nature.

The source code for open-source software (OSS)

components, on the other hand, is usually available to

anybody who wants to have a look Commercial off-the-shelf

(COTS) software has third-party support for even earlier

versions, and its components are normally accessible for the

three most current editions. As documented by (Basili and

Boehm, 2001).

The Advantages of Partitioned Software Development

Component-based Low-Development-Expense Software

Engineering is useful for reducing expenditures on new

software because of its emphasis on reusability. The need to

develop software from scratch is therefore obviated. As a

result, less garbage is produced, which in turn lowers

expenses.

Time to Market is Decreased

CBSE reduces development time by testing and debugging

all software components in advance of writing code.

Therefore, the time spent testing and fixing bugs in the

program is minimized when employing software

components.

Software Complexities That Are Simple To Administer

To simplify the complexities

Higher Standards for the Software Engineering Process

In the course of reusing software parts, there are several

chances to catch and fix errors. This is why our software is

so trustworthy.

5% less Defectiveness

By dividing the total number of bugs by the total number of

lines of code, we can get the defect density. CBSE employs

reusable software components that have already been tested

and configured, leading in applications with a reduced

defect density.

V. HYDROLOGY AS AN EXAMPLE OF A DOMAIN

These investigations will be put to use in the domain of

Hydrology. The hydrological cycle is at the heart of

hydrology, the scientific study of water's endless cycle on

Earth and in its environs. The world's water supply are

managed for the greater benefit with the help of

hydrologists. The water supply on Earth is affected by

shifting distribution practices, climate change, and the water

cycle. The following are some of the ways in which humans

affect water supplies:

There are a plethora of positive and negative human

activities that impact water quality and circulation on Earth.

The following are only a few of the numerous uses for

Hydrology information:

Those working in science, research, planning, agriculture,

administration, management, engineering, local government,

county government, and the armed forces all depend on

hydrological data to carry out the aforementioned social

good activities.

VI. APPLICATIONS IN THE DEFINED FIELD

Hydrology software is used by a wide variety of

professionals, including hydrologists, water managers,

researchers, scientists, and academics. Software in this area

often includes tools for data integration, GIS mapping,

scenario planning, optimization, statistical analysis, report

production, research project management, and workflow

control.

Most of the software in this area is used to encode physical

laws as mathematical algorithms, integrate with geographic

information systems (GIS), computer-aided design (CAD),

and two- and three-dimensional imagery. Commercial

software with hydrology-related features is provided by a

number of businesses, including Deltares, DHI software,

Innovyze, Bentley, and others. [4] There is a present lack of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 6

Article Received: 25 March 2023 Revised: 12 April 2023 Accepted: 30 May 2023

__

 588
IJRITCC | June 2023, Available @ http://www.ijritcc.org

significant software use in the hydrological area. It's

important to learn more about software reuse so that more

software problems may be solved.

VII. CONCLUSION

Component-based software development, which emphasizes

separation of concerns, has recently spurred a revolution in

the software industry. Software is built from smaller, more

specialized pieces called modules. In software, the whole is

greater than the sum of its parts.

Maintaining high standards of quality throughout growth is

essential. The development team requires precise knowledge

of the quality factors and sub-factors that influence the

components in order to manage their quality effectively.

However, previous component quality models haven't made

an effort to systematically capture the most crucial quality

elements that may affect the quality of the component at any

point in its development. Since there is no overall

framework that details the relationship between quality

indicators and their constituent elements, developers have no

way to improve the finished product's quality. Establishing a

procedure to assess the component's quality throughout

construction is vital for fixing the issues with the

component. The majority of studies examining software

quality have been conducted on commercially accessible

programs. Although it is understood that quality features are

crucial, the connections between these traits and software

metrics have not been investigated extensively until

recently.

REFERENCES

[1] Ahmed, Salman. (2018). A Systematic Literature

Review of Success Factors and Barriers of Agile

Software Development. International Journal of

Advanced Computer Science and Applications. 9.

10.14569/IJACSA.2018.090339.

[2] Asghar, Ikram & Usman, Muhammad. (2013).

Motivational and De-motivational Factors for Software

Engineers: An Empirical Investigation. Proceedings -

11th International Conference on Frontiers of

Information Technology, FIT 2013. 66-71.

10.1109/FIT.2013.20.

[3] Martin DE LAAT “Design and validation of a

Software Requirements Specification evaluation

checklist”2019

[4] Khan, Hameed & Asghar, Ikram & Ghayyur, Shahbaz

& Raza, Mohsin. (2015). An Empirical Study of

Software Requirements Verification and Validation

Techniques along their Mitigation Strategies. 2321-

5658.

[5] Ghayyur, Shahbaz & Ahmed, Salman & Ullah, Saeed

& Ahmed, Waqar. (2018). The Impact of Motivator

and Demotivator Factors on Agile Software

Development. International Journal of Advanced

Computer Science and Applications. 9.

10.14569/IJACSA.2018.090712.

[6] Anurag Dixit et.al “Umbrella: A New Component-

Based Software Development Model” IPCSIT vol.2

(2011) © (2011) IACSIT Press, Singapore

[7] Hasan Kahtan et.al “2DCBS: A Model for Developing

Dependable Component-Based Software” doi:

10.20944/preprints201608.0155.v1

[8] Amandeep Bakshi, “Component Based Development

in Software Engineering” ISSN: 2277-3878,Volume-2

Issue-1, March 2013

[9] Thomas Murphy et.al “An analysis of non-observance

of best practice in a software measurement program”

doi: 10.1016/j.protcy.2012.09.006

[10] Mr. Sandeep Chopra et.al “Comparative Study of

Different Models in Component Based Software

Engineering” International Journal on Emerging

Technologies (Special Issue NCETST-2017) 8(1): 441-

445(2017) (Published by Research Trend, Website:

www.researchtrend.net)

[11] Umesh Kumar Tiwari, et.al “Component-Based

Software Engineering”

https://doi.org/10.1201/9780429331749

[12] Andrzej Beniamin BUJOK “Development of a

Software Testing Best Practice Framework for Medical

Device Software”2020

[13] Sharanjit Kaur et.al “A Review on Automatic

Detection of Dental Tooth Decay in Bitewing

Radiography” Volume: 05 Issue: 03 | Mar-2018

[14] Tomar, Pradeep & Gill, Nasib. (2010). Verification &

Validation of components with new X Component-

Based Model. 10.1109/ICSTE.2010.5608788.

[15] Afrah Umran Alrubaee et.al “A Process Model for

Component-Based Model-Driven Software

Development” Information 2020, 11, 302;

doi:10.3390/info11060302

http://www.ijritcc.org/

