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Abstract 

Mathematical models have been employed for a significant period to replicate dynamic biological processes. In more recent years, 

quantitative methods have gained widespread use in cancer research. Over the past century, modelers have characterized and 

examined tumor growth kinetics, resulting in a diverse range of models that encompass simple empirical ones as well as complex 

functional models considering cell cycle kinetics, cell-cell interactions, cell age distribution, and microenvironmental factors. 

Nonetheless, these models are seldom verified with experimental tumor growth data due to limited suitable data availability. 

Increasingly, techniques from mathematics, physics, computational science, and engineering are being utilized to comprehend how 

cancer populations react to clinical treatments. This article delves into the essential principles of mathematical modeling in tumor 

growth and tumor-host interactions while emphasizing crucial approaches vital for cancer research. 

Keywords:   Ordinary Differential Equation, Partial Differential Equations, Mathematical Modelling, Tumor Growth, Tumor 

Treatment. 
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1. Introduction 

 Mathematical modeling is a powerful tool to test 

hypotheses, confirm experiments, and simulate the dynamics 

of complex systems[1]. In addition to helping understand the 

mechanistic underpinnings of dynamical systems, 

mathematical models simulate complex systems relatively 

quickly without the enormous costs of laboratory experiments 

and the corresponding biological variations[2]. For oncology, 

in particular, such models can be calibrated using 

experimental or clinical data[3] and competing hypotheses of 

tumor progression can be evaluated and treatment options 

thoroughly analyzed before clinical intervention[4-6]. 

Techniques for quantitative modeling are plentiful, and many 

theoretical approaches are successfully applied to cancer 

biology[7]. Differential equation models and individual-based 

cell models paved the way into quantitative cancer biology 

about two decades ago[8]. In this paper, we will outline the 

process of developing these models and discuss their 

important use in simulating both tumor growth and its 

response to treatment. Furthermore, we will explore various 

models, evaluating their validation and predictive capabilities 

within the realm of cancer biology. 

 The process of estimating the quantity of cancer 

cells within a tumor poses considerable difficulties because 

of the ever-changing and dynamic nature of cell behavior 

throughout time. Tumor cells exhibit characteristics such as 

proliferation, entering into a quiescent state, or undergoing 

cellular death, making it complex to define their numerical 

growth pattern accurately. A deeper and more comprehensive 

understanding of the tumor, along with accurate prediction, 

can significantly aid in tackling cancer and identifying the 

most effective treatment approaches. Mathematical 

modelling, dynamic systems and differential equations can 

help on this treatment method[9]. 

 

2. Differential equation for modelling of tumor growth  

 Living systems exhibit characteristic processes 

related to the birth and death of cells. The fluctuations in the 

quantity of living cells occur through cell proliferation and 

mortality, resulting in a net change equal to the difference 

between new cell births and cell deaths over a specific time 
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interval. The rate of new cell proliferation and cell death is 

subject to the temporal variations. 

 For a cancerous cell with a 24-hour cycle, we can 

estimate that the likelihood of a new cell emerging through 

division in one day is very high, approaching 100%. Even 

without understanding the present phase of cell division, it is 

reasonable to estimate that within one hour, the probability of 

this process occurring is approximately 1/24. This concept 

can be applied to the entire population, even when precise 

information about the precise quantity of cells within a tumor 

population is unavailable. For an unsynchronized cell 

population with a 24-hour cell cycle length, it can be 

presumed that all cells divide once during this time interval. 

Likewise, if the time interval (dt) is set at 1 hour, it can be 

expected that only about 1/24th of the cells within the 

population will divide. Therefore, if ( )N t   denotes the cell 

population and 
( )dN t

dt
 represents the change in ( )N t as t 

increases: 

  ( )
(

)
)

(b N t
d

d
t

t

t
d N

N
= −   

      (2.1) 

 Here, b is the function of newly form cell, which is 

called the rate of birth, and d, the function of dying cells, 

known as the rate of death. Here, the quantity ( )N t  rises as 

new cells are generated while simultaneously other cells 

perish. Consequently, there is an anticipated increase in cell 

count after a proliferative event and a decrease following 

instances of cell death. The mathematical expression 

presented as eqn. (2.1) is commonly known as an Ordinary 

Differential Equation (ODE). 

 Initially when t = 0, suppose we start with one 

million cells, denoted as 6(0) 10 .N =  The dynamics of 

population growth can lead to only one of the possible results:  

 (a) When the rate of births is equivalent to the rate 

of deaths i.e. b = d, then 
( )dN t

dt
= 0. In this situation, the 

population size remains constant and the tumor enters a 

dormancy state. The dormancy state of a tumor is 

significantly influential in determining the progression and 

treatment of cancer. During dormancy, the tumor cells remain 

inactive, marked by minimal division activity. This can make 

the tumor less sensitive to traditional cancer treatments, such 

as chemotherapy, which often target proliferative cells. On 

the other hand,  when 0b d=  , we can say that the cell 

proliferation is balanced by cell death[10,11].  

 (b) If the birth rate is greater than the death rate, then 

( )
0

dN t

dt
  and the cellular population is steadily increasing, 

with the higher rates of b d−  resulting in faster growth. 

Several factors, such as nutrient availability and 

environmental conditions, influence the growth rate of the 

cell population and genetic makeup of the cells. In a favorable 

environment, where nutrients are abundant and the conditions 

are optimal, the cells will multiply at a faster rate.  

 (c) On the contrary, if the birth rate is lower than the 

death rate  i.e. 
( )

0
dN t

dt
  the population will steadily decline. 

In such a scenario, with the birth rate being lower than the 

death rate, the population will continue to decrease over time. 

 However, combining the terms ( ) ( )b N t d N t−  

simplifies eqn. (2.1) into a single-parameter problem into the 

unified term ( ) ( )b d N t− , and by introducing a function,  

r b d= − , which represents the net population growth rate 

and proves pivotal in overseeing the regulation of cell 

population expansion. This function is closely linked to 

factors like nutrient accessibility and available space. 

Consequently, differential equation that characterizes 

variation in cell population over time is simplified to: 

  ( ) ( )N t r N t=    

      

 (2.2) 

 Then, if the rate ( )r t  is less than zero, the population 

experiences a decrease; but when ( ) 0r t = , the population is 

a constant, or   ( ) 0r t  , the population increases respectively. 

As r assumes values greater than 0, less than 0, or equal to 0, 

the population experiences an increase, decrease, or remains 

constant, respectively.  

 

2.1 Population Growth Law 

 It was observed that Solid tumors initially grow 

rapidly, but growth decelerates as tumors grow bigger[12-14]. 

Since access to nutrients and space availability control the 

cell proliferation and death, the coefficients ( )b t  and ( )d t  is 

taken as nonlinear function of ( )N t  leading to a self-

contained equation[13]. For this purpose, we take into account 

the non-linear :N R function. This is commonly referred to 

as the bulk growth rate and eqn. (2.2) transforms accordingly: 

  ( ) ( ( )) ( )N t R N t N t=   

      

 (2.3) 

 If r represents the natural birth rate in environments 

with abundant space and nutrients, then R needs to satisfy one 

of two conditions:  

1) When lim ( ) 0
N

R N
→

= , we must have (0)R r= which 

is positive; provided )'(R   is negative.  
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2) But when (0)R r= which is positive; provided )'(R 

is negative and ( ) 0.R K =  Here,  K represents the carrying 

capacity, which signifies the maximum size a tumor would 

reach without treatment, ultimately leading to mortality. This 

concept is pivotal for comprehending the dynamics and 

forecasting population growth patterns. 

 Both scenarios indicate that )'(R  is negative, 

signifying that R is a decreasing function. 

 

2.2 Verhulst equation 

 If 2t  represents the tumor doubling time, eqn. (2.2) 

can be represented as: 

  
( )

( )e

dN t
g N t

dt
=  where 0(0)N N=

      (2.4) 

where 
0N  represents the initial cell population, which is used 

to model growth over time t, and 
2

ln 2
eg

t
=  denotes the 

constant rate of tumor development. 

  An example of the rate of tumor growth dependent 

on tumor size relative to the host carrying capacity K is given 

by the logistic model[12]: 

  1
N

N rN
K

 
= − 

 
   

      (2.5) 

 Here, the non-constant growth rate denoted by r, is 

associated with logistic growth and can be adjusted to reflect 

the growth rate in the exponential scenario at population size 

0N  using the relation: 

  

1

01e

N
r g

K

−

 
= − 

 
 

 From eqn. (2.5), we see that when the tumor  size c  

is significantly smaller  than the carrying capacity K, then 

1 1
N

K

 
−  

 
 such that the population growth, as described by 

equation (2.4), appears to be almost exponential. As the 

population nears the carrying capacity K, it is evident that 

further growth will be limited and eventually cease when 

1 0
N

K

 
− → 

 
.  

 From eqns. (2.3) and (2.5), we can express Verhulst 

equation as[14]: 

  ( ) 1
N

R N r
K

 
= − 

 
; 0K   

      

 (2.6) 

 Verhulst introduced the logistic model, proposing 

that the population growth rate is not constant but diminishes 

as the population size nears its maximum capacity, K. The 

parameter r defines the growth rate and the Verhulst equation 

can be extended as follows[5]:  

 

 

( ) 1 0, 0

a
N

R N r a K
K

  
= −    

   

 

     (2.7) 

 

2.3 Gompertz Equation 

 Various researchers had studied the numerous 

dynamic growth rate functions with the potential application 

with reference to the tumor growth[13,15]. The Gompertz 

curve[16] has been shown to reproduce biological growth that 

decelerates with population size[17] and is therefore applicable 

to observed tumor growth slowdown with tumor size[10,11,18]. 

The growth rate is determined by taking the negative 

logarithm of the current population size divided by the 

carrying capacity, serving as a significant indicator of 

population dynamics[18]: 

  log
K

N bN
N

 
=  

 
   

      (2.8) 

where the rate of growth is adjusted by a factor 
1

0

lnl

K
b g

N

−

 
=  

 
. Gompertz’s concept was that the growth 

rate ought to diminish exponentially over time in order to 

accurately describe the entire growth curve. Here, it is clear 

that lim ( ) 0
N

R N
→

=  which means if the cell population is 

decreasing, the growth rate becomes unbounded. The rate of 

growth is constrained by the duration of the entire cell cycle, 

indicating a positive assumption for a large number of cells.  

 

Proposition 1.  Gompertz law represents the asymptotic 

condition of the logistic power law when 0a→  and .b ra=  

Proof. Initially, by replacing b ra= in log
K

b
N

 
 
 

. As both 

functions N and K become equal, they are both equal to 0. 

Hence, we assume that they are not equal such that, 

  
0

1

lim

log

a

a

N

K

K
a

N

→

 
−  
 

 
 
 

 

 which is  indeterminate  and since the two functions are both 

differentiable functions, L’Hôpital rule can be applied. Then: 
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0

log

lim 1

log

a

a

N N

K K

K

N

→

   
−   
    =

 
 
 

 

 Proposition 2. When ( ) aR N bN −= , 
1

3
a = in eqn. (2.3), the solution corresponds to the linear expansion of the radius, specifically 

( ) 3N T r t , where 
1

3
r b=  as t approaches infinity, and 

0 0t = . 

Proof. Assuming that ( ) aR N bN −= , we have  

  
adN

NbN
dt

−=  

 1 . .aN dN b dt− =   

 Integrating, we get  

 

0

1

0

N t

a

N

N dN bdt− =   

 
0

N
a

N
N a bt  =    

 ( )
1/

0

a
aN abt N = +  

We assume that 
1

3
a = , which gives 

  
3 31

lim ( )
3t

N t bt r t
→

 =  

 

Theorem 1. Consider a continuous function :h I →R  within the interval I and the differential equation ( )
dN

h N
dt

= . Assuming 

that a set of isolated zeros of h is distinct  and for each zero 0z , given that 

0

1( )

N

N

h N dN−

 is divergent (z in proximity to 0z ); then, the 

required solution  for  ( )
dN

h N
dt

=   corresponding to the initial condition 0 0( , )t N , there exists a unique solution. 

Proof.  If N is not a point of singularity such that ( ) 0h N  . We have, 

   ( )
dN

h N
dt

=  

 1( )h N dN dt− =  

  Integrating, we get  

  

0 0

1( )

N t

N t

h N dN dt− =   

  

0

1

0( ).

N

N

h N dN t t− = −  

  
0

0

N

N
H t t = −  
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Here, H is the antiderivative of 
1

( )h N
. It can be inferred that 

0 ,N t t= − 1H − exists as 
1

0
h
  and this shows that 1 0H − 

and thus H is a monotonic function. Consequently, the 

function N(t) exists. For any value of  
0N , the integral will 

be convergent, which implies that 

0
( )

N

N

dN

h N , representing the 

time it takes for 0N  to reach N, is finite. 

 

3. Mathematical Model for Cytotoxic and Cytostatic 

drugs 

 A tumor originates from mutated cells that undergo 

rapid proliferation, surpassing the normal growth rate of cells. 

But, not all tumor cells exhibit the same growth pattern and it 

is necessary to differentiate between at least two types of 

cells: those that proliferate (growing rapidly) and those that 

are quiescent (either growing slowly or in a dormant state). If 

they did, a 24-hour cell cycle would lead to the formation of 

a tumor comprising a million cells in a month, resulting in an 

unmanageable size of 10 cm. Therefore, it is essential to 

differentiate between these distinct cell types within the 

tumor. 

 Let F(P) describes the proliferative cells growth. 

Within a tumor, there exists a layer of quiescent cells, 

speculated in transitioning into proliferating cells upon 

nutrient deprivation. Likewise, quiescent cells undergo death 

after an extended period of nutrient deficiency, denoted by 

the term − dQ representing the death rate. Additionally, 

quiescent cells can transition back to proliferating state as 

( )bP cQ−  where bP represents the transitioning to 

quiescence and − cQ denotes transitioning back to a 

proliferative state. The same dynamics apply to proliferative 

cells necessitating addition of ( )bP cQ− +  in the equation 

representing evolution of proliferative cell population 
dP

dt
. 

Hence, a logistic model for interaction between proliferative 

and quiescent, expressing both would be (McAneney and 

O’Rourke, 2007): 

 

( )

for proliferative cells

and, for quiescent cells

dP
F bP cQ

dt

dQ
bP c d Q

dt







= +

− +


−

=

     (2.9) 

such that the size of the tumor can be expressed as, 

  N P Q= +  

 

Considering that proliferating cells have the most significant 

impact on the growth of N, numerous therapies concentrate 

on these cell populations through two primary strategies: 

➢ Cell Transition Control: This strategy revolves 

around the regulation of cell transition. The idea is to 

maintain cells in a quiescent state, effectively halting their 

continuous growth. This is achieved through the use of 

cytostatic drugs, denoted as cstat in our model. These drugs 

target specific proteins known as cyclins, which  play a 

pivotal role in hindering the proliferation of cells.  

➢ Direct Destruction of Proliferative Cells: Another 

approach involves directly targeting proliferative cells for 

destruction using cytotoxic drugs, referred to as ctox. These 

treatments fall under the category of chemotherapies. This 

approach is commonly associated with chemotherapy, where 

the goal is to eliminate rapidly dividing cells. Cytotoxic drugs 

disrupt the cell cycle and induce cell death in actively 

proliferating cells. 

We, now, introduce our model, which incorporates these 

dynamics and considerations, as:  

( )

( ) ( )

for proliferative cells

a t

,

nd, for quiescen  cells

stat tox

stat

dP
F b c P cQ c P

dt

dQ
b c P c d Q

dt







= − + +

= + −


−

+

             (2.10) 

where .

aa

a

K P
F P R rP

K

 −
= =  

  

; ( )  c d r bd+   and all r, K a, b, c and d are positive. To assist in the examination of the 

model, we make the assumption that:  

   1 stat toxb b c c= + +  is positive. 

 also, 2    statb b c= + is positive.   

 However, the results are presented in relation to eqn. (2.10). 
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( )

1

2

for proliferative cells

and, for quiescent cells

,
dP

F b P cQ
dt

dQ
b P c d Q

dt







= +

− +


−

=

          (2.11) 

 

Lemma 1. The dynamical equation (2.5) maintains positivity i.e. 0P and 0Q are positive which implies that ( )P t  and ( )Q t  will be 

positive for all positive values of t.  

Proof.  In this context, we find a triangle that remains invariant to demonstrate that the solutions are valid for all t > 0. Similarly, 

the objective is to determine the slope ( ) 0,m   of line    Q L mP= − , along with the conditions for ( )0,  L  . This involves 

establishing the dynamics of this line, which acts as a transversal to the model, ensuring its trajectory remains within the confines 

of the rectangle.  

 In simple words, our objective is to establish criteria that enable the line's movement to remain inside the specified 

rectangle: 

  ( ), , ,  1 0
dP dQ

m
dt dt

 

 

  

which results in, 

  ( ) ( ), , ,1
dP dQ

g P m
dt dt

 
=  

 
 

           ( ) ( )2 1   ( )c d cm L b P b c d cm mP mF P= − + − + − − − + +  

so that,  

  ( )  0       g c d mc L=− + −  

Here, 

        0c d mc L− + −    

which is true if and only if,  

  
( )c d L

m
cL

+
  

 1
d

m
c

  +  

 Here, we see that when d = 0,  we get the minimum for the function 1
d

c
+  which is 1. Based on this evidence, we can 

deduce that m   (0, 1), we choose the most suitable option  for m as 0.5. 

 

 

Lemma 2. Consider 

  * 1 *
0 2

2
0

2 2 4 2 2 2

a
P b Pc d r r

L b
c d K

  
= − + + + + −    +   

  

 where  
( )

1

1 2

*
2 .

1

ac
b b d r

P K
r a

 
− + + + + 

=  
+ 

 

 Therefore,  for all values of 0 ,L L  and (0,2 )P L  given that ;
2

P
Q L

 
= − 
 

 

 
1

, , ,
2

dP dQ
m

dt dt

 
 


 





 
is always negative. 

Proof.  We are given that ;
2

P
Q L

 
= − 
 

such that 
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       ( )1 2

1
, , ,

1
, , ,

22
1b

d
P

P dQ
m

dt d
F cQ b P c d Q

t

   
= − + − +    

 
 

 






 

                                1
2

2 2 4 2 2 2

a
bc c d r r P

d L b P
R

    
= − + − − − − − +    

     

 

 Let us denote B(P) as the above expression. Our objective is to determine if B has a maximum value. 

  ( )1
2'( )

2 4 2 2 2
1

a
b c d r r P

B
R

aP b
  

= − − − − +  


+


−
 

 

 For maxima or minima, 

  '( ) 0B P =  

which is true if and only if, 

  
( )

1

1 2

*
2 .

1

ac
b b d r

P K
r a

 
− + + + + 

=  
+ 

 

 

This represents the highest maximum limit. Again, 

  

2

''( ) 2 2

a a
ar P a r P

B P K K

P

       
+          = −        

  

  

which shows that ''( )B P  is negative i.e. *''( )B P  is negative. Therefore, B(P) has a maxima at *.P  Now, we have    

  1
* 2 *( )

2 2 4 2 2 2

a
bc c d r r P

B P d L b P
R

    
= − + − − − − − +    

     

 

 and when *( )B P  is negative, 

 i.e. * 1 *
* 2

2

2 2 4 2
( ) 0

2 2

a
P b Pc d r r

L b
c d K

B P
  

= − + + +


  + −  +   

 

which is clearly positive. 

Lemma 3. There is a stable equilibrium at the point (0, 0). And when ( )   toxc r c rd− + > ( )  stat toxb c c d+ + , another steady state is 

located at  

( )
( ) ( )

1 1

( ) ( )( )
,    1 , 1

( ) ( )

a a
tox stat tox statstat

c d c b c d c d c b c db c K
P Q K

r c d c d r c d

 
+ + + + + +   + = − −    + + +   

  

 

which lies in the first quadrant. 

Proof.  Here, we get a stable equilibrium only if, 

    0 
dP

dt
=  

which is possible if and only if, 

  2
11 =0

a
cb P

P r b
c d R

  
+ − −  

+    

 

 
( )

1

2 1 1  )
 

(
  0  or   1

  

ac b b b d
P P K

r c d

 
 − − 

 = = +   +   

 

 and,  0 
dQ

dt
=  

which is true if and only if, 
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  2  
b P

Q
c d

=
+

 

Hence, (0, 0) is a point of stable equilibrium. Again, when 
( )1 2 11  

( )

b d c b b

r c d

− −
−

+
is positive, we get the other equilibrium point 

2,
b P

P
c d+

 
 
 

which is possible if and only if, 

  ( )1 2 1b d r b b c rd + − +    

 

Lemma 4. If the equilibrium point (0, 0) is an attracting node, then we have  

  ( ) ( )   tox stat toxc r c rd b c c d− +  + +  

Proof.  The linear equation at the point (0, 0) can be expressed as, 

  
1

2 ( )

dP

r b c Pdt

b c ddQ Q

dt

 
  −   

=     
− +     

  

 

 Therefore, the characteristic polynomial is given by ( )2

1       x b c d r x+ + + − ( )( )1     r b c d− − + 2 b c− . Thus, the eigenvalues 

will be: 

  ( ) ( ) ( )( )( )2

1 1 1 2

1
      4   
2

r b c d r b c d r b c d b c = − − − − − − − + +  + −    

   ( ) ( ) ( )( )( )2

1 1 1 2

1
      4   
2

r b c d r b c d r b c d b c = − − − + − − − + +  + −  

Here, we observed that when the discriminant is positive, then the eigenvalues will be real. Now, we can examine the sign of α and 

β, 

  ( )( )1 2 2 1 1  r b c d b c cr dr b c b c b d− + + = + + − −  

                       ( ) ( )2 1 1 r b b c r b d= + − + −    

Here, ( ) ( )2 1 1 r b b c r b d+ − + −    is negative, only if 

  ( )1 2 1b d r b b c rd + − +    

Similarly, ( ) ( )2 1 1 r b b c r b d+ − + −   is negative, only if 

  ( )  ( )2 1 14 0r b b c r b d + − + −    

 ( ) ( )  ( )
2

1 2 1 1 14r b c d r b b c r b d b c d r  − − − + + − + −  + + −   

Again, if ( ) ( )2 1 1 r b b c r b d+ − + −   is negative, we have 

  
( )

( )
1 2 1b d b b c

r
c d

− −


+
 

 
( )

( )
1 2 1

1 1

b d b b c
r b c d b c d

c d

− −
 − − − = + + −

+
 

            
( ) ( )( ) ( )

( )
1 1 2 1b c d c d c d b d b b c

c d

+ + + + − + −
=

+
 

            
( )

( )

2

2 0
c d b c

c d

+ +
= 

+
 

As a result, it can be deduced that 
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  ( ) ( )  ( )
2

1 1 2 1 1 4   0r b c d r b c d r b b c r b d − − −  − − − + + − + −    

i.e. β is negative. Thus, if ( )1 2 1b d r b b c rd + − +    and both α and β will be negative, so the zero equilibrium point becomes an 

attractive node. This dynamic is shown in Figure 2.1. 

 

 
Figure 2.1 Illustration showing (0, 0) is an attracting node  

Lemma 5. If ( ) ( ) ,tox stat toxc r c rd b c c d− +  + +  the zero steady state is a critical point and its equilibrium manifold is not located 

in the first quadrant. Additionally, the another equilibrium  point ( ),  P Q  acts as an attracting node. 

Proof.  In accordance with the expression in the preceding lemma, we have 

 ( ) ( ) ( )  ( )( )2

1 1 2 1 1

1
      4   
2

r b c d r b c d r b b c r b d  = − − − − − − − + + − + −     

  ( ) ( ) ( )  ( )( )2

1 1 2 1 1

1
      4   
2

r b c d r b c d r b b c r b d  = − − − + − − − + + − + −   

 We can follow a similar approach as outlined in the preceding lemma. Here, ( )  ( )2 1 1r b b c r b d+ − + − is negative if and 

only if 

  ( ) 1 2 1b d r b b c rd + − +  

Similarly, ( )  ( )2 1 1r b b c r b d+ − + − is negative, only if 

  ( )  ( )2 1 14 0r b b c r b d + − + −    

 ( ) ( )  ( )
2

1 2 1 1 14r b c d r b b c r b d r b c d  − − − + + − + −  − − −   

Then, we will consider two different scenarios: 

(i) When 1r b c d− − − is positive: This condition is true if and only if, 

 ( ) ( )  ( ) ( )
2

1 2 1 1 1 4 >r b c d r b b c r b d r b c d − − − + + − + − − − −  

 0   

Here, 0  . 

(ii) When 1r b c d− − − is negative: This condition is true if and only if, 

  ( ) ( )  ( ) ( )
2

1 2 1 1 1 4 <r b c d r b b c r b d r b c d − − − + + − + − − − −  

 0   
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  Here, 0  .  

 In general, if ( )1 2 1b d r b b c rd + − +   :  when 0   and 0  ; the zero equilibrium point functions as a critical point. 

Hence, the eigenvector of α, serving as the stable manifold (since λ is less than 0), can be characterized as: 

 
( ) ( )  ( )

2

1 1 2 1 1

2

 4  
,1 ( , )

2

r b c d r b c d r b b c r
u v

b

b d  
 

− +
 =

 

− − −



− − −



+ − −



+
 

The negativity of u indicates that the eigenvector is not located in the first quadrant. 

1

2

2 2 2 2

1 1 1 2 12 4 2 2  

2

2 2 2
u

r b c d b b c b c b d b r c d r cd cr

b

dr− − − − − + − − + + + +
=

+ +
 

   
( )

2

2 2

1 2 1 14 2( (

2

) )  b c d r b c b c d r b c d r

b
=

− + + + − + − + + + + +
 

   
( )

2

2

1 2 14 ( )

2

 b c d r b c b c

b

d r
=

− + + + − + − + + +
 

  Here, we can see that ( ) ( )1 2 14  r b c d b c b c d r− − −  + − + + + , which means that the above expression is negative. Now, 

it will become evident that the non-zero equilibrium point functions as an attracting node if ( )1 2 1b d r b b c rd + − +   . The equation 

can be linearized with respect to ( ),  P Q  as follows:  

  
 

( )

1 2 1

2

1
( )

dP
a

b d c b c ar b c P Pdt
c d

dQ Q Q
b c d

dt

   + 
  + − − −  −  

+=       −    − +   

 

 

dP

P Pdt
M

dQ Q Q

dt

 
   −

 =   
−   

  

 

Now, let us denote that: 

    ( )1 12 ) 
1

(t
a

b d c b c ar
c

dr
d

M b c
+ 

+ − −=
+

+


+


+  

 and,   ( )1 1 22 ( ) 
1 a

b d cd b c
c d

et M ar b c d cb
 

= − − −


+ − 
+ 

+ −



+

 

             ( ) 2 1 ( )a r c d b c b c d= + + − +    

The characteristic polynomial associated with M is: 

  ( )2     x tr M x det M− +  

Therefore, the eigenvalues can be written as, 

  
( )

2
  4  

    
2

tr M tr M det M


+ −
=  

 and, 
( )

2
  4  

    
2

tr M tr M det M


− −
=  

Here, the eigenvalues are real because since the discriminant will always be positive. In addition, det M wil take on positive value 

if and only if,  

  ( ) 2 1  ( ) 0det M a r c d b c b c d + + − +     

 ( )1 2 1b d r b b c rd  + − +    
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Again, when det M is positive, we should have 

  ( )
2

 4   tr M det M tr M−   

 Moreover, it is essential that when ( )1 2 1b d r b b c rd + − +   , the value of  tr M should be negative. In addition, det M 

will be positive and we have 

      ( )1 2 1

1
)   (

cb
t cM

a
bb d cr c d c d

c d
b ar

c d

 
= + + +  − + + 

+ 
+ − −

+ +

 

 

which is clearly negative. Thus, ( )
2

   4   tr M det M tr M −   which is negative. Similarly, since  tr M is negative, 

( )
2

 4  tr M det M− −  should also be negative i.e. μ is also negative.  

 Additionally, if ( )1 2 1b d r b b c rd + − +   , λ and μ should be negative, which implies that the non-zero stable point is an 

attracting node. The dynamics of the system is illustrated in Figure. 2.2.   

 

 

Figure 2.2 ( ) ( )tox stat tox dc r c rd b c c− +  + + . 

Observation 1. The transformation of non-zero equilibrium 

states into zero equilibrium states occurs when 

( ) ( ) .stat tox toxb c c d r cc c rd+ + = − + Additionally, when λ = 0 

and μ < 0, the equilibrium state loses its hyperbolic property. 

This emphasizes the significance of parameter values in 

influencing the behavior and stability of the system. The 

dynamic behavior of the system under different parameter 

conditions is illustrated in Figures 2.3.  

 Figures 2.1, 2.2, and 2.3 illustrate the transition 

between different parameter states and showcase the behavior 

in each situation; equilibrium points are denoted by red dots, 

trajectories are shown with blue lines, green arrows indicate 

tangents to the trajectories, while red and orange signify 

nullclines. It is clear that the system’s behavior is highly 

sensitive to the parametric values and from these figures, it is 

evident that periodic orbits cannot exist based on the 

nullclines. 

 

 

Figure 2.3 ( ) ( )       stat tox toxb c c d c d r cc+ + = + −  

 

Lemma 6.  The system does not exhibit any periodic 

trajectories. 

Proof.  Here, let us examine two scenarios: 

(1) ( ) 1 2 1b d r b b c rd + − +  

We only have a solitary equilibrium point in the first 

quadrant, and this zero equilibrium point operates as an 

attracting node. As mentioned previously, the impossibility 

of a periodic orbit around this point leads to the conclusion 

that there are no periodic trajectories in the first quadrant. 

Upon further analysis, it becomes evident that the absence of 

periodic orbits in the first quadrant aligns with our initial 

assessment. This finding contributes to a better understanding 

of the system’s behavior in this specific region. Moving 

forward, we can direct our focus to other aspects of the system 

to gain a more comprehensive perspective. 

(2) ( ) 1 2 1b d r b b c rd + − +  

Lemma 4.5 implies the existence of two stable states. 

According to the Poincarè-Bendixon criterion, it is clear that 
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a periodic trajectory can only exist in the region where the 

sign of divergence changes. Therefore, our primary focus is 

to pinpoint the curve at which the divergence equals zero. 

This will allow us to determine the critical point and analyze 

the behavior of the trajectories emanating from it. To 

establish the lemma, it is imperative to demonstrate that the 

dynamics of P are positive. 

    1 1'( ) (1 )

a
dP dQ P

F P b c d r b c d a r
dP dQ K

 
 = + = − − − = − − − − +  

 
 

We can differentiate between two cases: 

 (a) 1When 0,  we have 0r b c d− −  −  which lies in the first quadrant. 

 (b) 1When 0,r b c d− − −  we have 

   0=  if 1
1

(1 )
a

r b c d
P K

a r

− − −
=

+
 

  We can analyze the overall dynamics of the points ( )1,  P Q  where Q and a are positive. 

   1 1 1( )
dP

F P b P cQ
dt

= − +  

 1
1 11

a
PdP

P r b cQ
dt K

    
 = − − +   

     

 

( )1

1 11
(1 )

r b c ddP
P r b cQ

dt a r

 − + + 
 = − − +  

+   

 

( )1

1 1

(1 )

(1 )

a r r b c ddP
P b cQ

dt a

 + − + + + 
 = − +  

+   

 

( )1 1

1

(1 ) (1 )

(1 )

a r r b c d b adP
P cQ

dt a

+ − + + + − + 
 = + 

+ 
 

( )1

1 1( ) 0
(1 )

a r b r c ddP
P cQ P c d cQ

dt a

− + + 
 = +  + +  

+ 
 

1
1 1

( )
( )

(1 )

a r b c ddP
P cQ P c d cQ

dt a

 − + +
 = +  + + 

+ 
  

which is  clearly positive as ( )1 0.r b c d− + +  Thus, 
dP

dt
 is 

also positive. Hence, we can say that the trajectories is non-

periodic orbit as it does not cross the line ( )1,  P Q  when Q  

is positive. 

 

Theorem.2. In the first quadrant, if 

( ) ( )       stat tox toxb c c d r c c rd+ +  − + : the point (0, 0) serves as a 

global attractor with no periodic trajectory. If 

( ) ( )       stat tox toxb c c d r c c rd+ +  − + , the point ( ),  P Q  also acts 

as a global attractor without any periodic trajectories in the 

first quadrant. 

Proof.  In the case where ( ) ( )       stat tox toxb c c d r c c rd+ +  − + , 

according to Lemma 5, ( ),  P Q  is the only fixed point in the 

first quadrant. We have also established, through Lemma 6, 

the absence of periodic trajectories. Combining these 

Lemmas, all the orbits are bounded within positively 

invariant triangles, implying the existence of an ω-limit set. 

Consequently, by the Poincaré-Bendixon criterion, there 

exists an ω-limit, and all the solutions converge towards this 

ω-limit, denoted as (0, 0). 

For ( ) ( )       stat tox toxb c c d r c c rd+ +  − + , there are two steady 

states: (0, 0) and ( ),  P Q  using Lemma 4. Applying Lemma 

5, we find that the point (0, 0) is linearly unstable, where the 

stable manifold is not located in the first quadrant. 

Additionally, Lemma 6 rules out the presence of a periodic 

orbits. Since ( )0 0,  P Q  exists for all positive values of t and 

is bounded, the dynamical system possesses an ω-limit set. In 

these conditions, the Poincaré-Bendixon criterion can be 

applied. As a consequence of this theorem, there is an ω-limit, 

represented as (P, Q), to which all solutions converge towards 

the attracting node. As a result, ω serves as a universal 

attractor in the first quadrant. 
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Observation 1. Biological inferences 

(1) ( ) ( )stat tox toxb c c d r c c rd+ +  − +  

 When this scenario occurs, the point (0, 0) serves as 

a universal attractor. In simpler terms, both P and Q approach 

zero, resulting in: 

  0N P Q= + =  

 This signifies the disappearance of the tumor. 

Research has shown that the phenomenon of global attractor 

is a promising development in the field of tumor dynamics. 

This behavior indicates a potential strategy for targeting the 

conditions that lead to the vanishing of the tumor. 

Understanding the underlying mechanisms behind this 

attraction to the origin point is crucial for developing 

effective therapies and interventions. Further investigation 

into the specific factors and processes involved in this 

phenomenon could provide valuable insights for the 

development of novel treatment approaches. If this situation 

happens, (0, 0) is a global attractor.   

 

(2) ( ) ( )stat tox toxb c c d r c c rd+ +  − +  

 Under this scenario, the model transitions to the non-zero equilibrium state. 

  ( )
( ) ( )

,   ,
( )

stat tox stat
a

rc r b c d c d c b c
P Q K P

r c d c d

 + − − + + + 
=    + +  

 

 But, the transition is independent of the initial conditions. We know that ( ) ( )stat tox toxb c c d r c c rd+ +  − + , which gives 

   
( ) ( )

, (0,1)
( )

stat tox stat
a

rc r b c d c d c b c

r c d c d

+ − − + + + 
 

+ + 
 

  ( )0,  P K   

 and, 0, statb c
Q K

c d

 +  
  

+  
 

Therefore,   

  N P Q= +  

 

1/

( )
 1 1

( )

a

stat tox statb c d c b c
N K

r c d r c d

 +  +  
 = − −  +    

+ +   
 

Hence,  0,  1   statb c
N K K

c d

 
 
 

 + 
 +  

+  
 

 

It is evident that cytotoxic drugs consistently exhibit efficacy. 

This is attributed to the decrease in N  as toxc  increases. 

Furthermore, an increase in either statc  or statb c+  leads to an 

increase in N ; however, it is noteworthy that the cells that 

experience this increase are the quiescent ones. The 

parameter c, which governs changes in quiescent cells and the 

death rate (d) of quiescent cells, contributes to a decrease in 

N . It is apparent that N  also shows increments as K, 

representing the maximal tumor size grows larger. 

Furthermore, it becomes clear that N  increases significantly 

when 
d

r
 << 1. 

 

4. Conclusions 

 The field of cancer research has witnessed an 

expanding array of mathematical models being used in recent 

decades. The use of mathematical modeling has demonstrated 

its effectiveness as a valuable tool for comprehending the 

intricate nature of cancer and its advancement. Such models 

have offered valuable insights into factors such as growth of 

tumor, the dynamics of cancer cell populations, and the 

impact of different treatment methods. By using 

mathematical equations and simulations, researchers have 

been able to predict how tumors may respond to different 

therapies and identify optimal treatment strategies for 

individual patients.  In this paper, we have showcased 

the application of simple models, and when compared with 

emperical data, illustrated their utility in simulating intricate 

biological processes. These models proficiently encapsulate 

the dynamics of tumor growth and the subsequent response to 

treatment. However, as the realm of cancer research 

progresses, more advanced mathematical models are being 

crafted to address the intricacies inherent in cancer biology. 

These advanced models consider genetic diversity, the tumor 

microenvironment, and interactions with the immune system, 
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offering a more comprehensive understanding of cancer 

progression and treatment outcomes. 
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