
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 376
IJRITCC | February 2024, Available @ http://www.ijritcc.org

Automated Test Case Generation Model from UML

Diagrams based on Monotonic Genetic Algorithm
Jyoti Gautam Tiwari

Department of Computer Science and Engineering, SGSITS, Indore, M.P., India

jyotitiwariscs@gmail.com

Ugrasen Suman

Professor, School of Computer Science& IT Devi Ahilya University,Indore, M.P., India

ugrasen123@yahoo.com

Abstract :The procedure of developing package includes software testing as an imperative phase. The three components of the testing process are

test execution, test evaluation and test case generation. The creation of test cases remains at the heart of challenging automation. It decreases the

amount of mistakes and flaws while saving time and effort. A new way to automate the testing process has been developed to reduce the high tot

test evaluation al of software testing and to improve the dependability of the testing procedures. In this paper, a innovative technique for creating

and refining test cases using UML Activity Chart diagrams is proposed. The Genetic Algorithm's crossover method was used to create the new

test sequence, and the test sequences' effectiveness was assessed by Mutation Analysis. As a result, they are unable to effectively combat multilayer

perceptrons when faced with incorrect properties. Monotonic genetic algorithm is a Concept that is easy to understand and Supports multi-

objective. The radial basis function (RBF) neural network algorithm currently in use has challenges counting the amount of neurons in the hidden

layer and has poor weight learning ability from the hidden layer to the output layer. RBF networks have the drawback of giving respectively

attribute a comparable weight since all factors are taken into account equally while calculating distance unless the attribute weight parameters are

included in the entire optimization procedure.

Keywords: Mutation analysis, Genetic Algorithm, State Chart Diagram, Test Cases, Crossover, software Testing, Activity Diagram and activity

design.

1. INTRODUCTION

Software evaluation involves balancing performance cost,

and period. Software testing accounts for over half of the

whole charge and time of a typical software development

project. Testing is more than just troubleshooting. Testing

may be done for reliability estimation, superiority

declaration, or validation and verification. The three primary

stages of software testing remain, test execution, test

evaluation and test case creation. It is simple to device the

final deuce sections. However, the initial portion requires a

certain amount of knowledge.

The Unified Modeling Language (UML) is "a standard

programming language for establishing, illustrating,

preserving, and modelling the various aspects that comprise

software systems" and is also used in non-IT technologies and

commercial applications. Applying excellent fundamentals of

engineering to the development or modelling of massive,

intricate structures has proven beneficial, and UML is a

consequence of that [1]. With its emphasis on pictorial

designations, the UML is an essential part of the software

creation and the computer program development procedure.

When project teams use the UML, they can validate the

product's design and architecture, develop new ideas,

communicate and collaborate more successfully.

A graphical language for imagining, defining, building, and

authenticating the objects of software-intensive systems is

called the Unified Modeling Language [2]. A standardized

approach to writing a system's blueprint is provided by the

UML. It covers both concrete and conceptual fundamentals,

such as database schemas, courses printed in a specific

software design language, and refillable package

mechanisms. Conceptual elements include business

processes and system functions.

The developmental process for creating software comprises,

software testing [3] is a crucial task. A sizeable amount of the

budgets of software companies are allocated to testing-related

activities. Before being accepted, the customer will validate a

thoroughly tested software system. A program is tested by

running it through a series of test cases and comparing the

outcome to what was anticipated [4]. Defect avoidance

should be a primary focus of testing. Typically, software

artifacts like design, implementation, or specifications are the

source of test cases. A suitable model of the system can be

created to gain an understanding of the implementation before

testing the system.

http://www.ijritcc.org/
about:blank

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 377
IJRITCC | February 2024, Available @ http://www.ijritcc.org

Software testing remains an essential and fundamental step in

the construction of software. The process involves running a

program to identify any blunders in the cipher. Exercise or

evaluation is the procedure of applying manual or automated

methods to a system or system component to confirm that it

meets the required specifications or to find discrepancies

among the predictable and actual consequences.

Demonstrating incorrectness remains the goal of testing, and

when an error is found, the test is deemed successful [6]. A

sizeable amount of the budgets of software companies are

allocated to testing-related activities. Testing accounts for

over half of the software development budget, according to

studies [7].

Test cases have been generated from UML diagrams in a few

previous studies. However different approaches taken and

distinct cases presented by earlier researchers result in

imprecise comparison and appraisal of this field. This study

offers a single scenario case with multiple UML diagrams

that can be utilized during the process of creating test cases.

The state chart diagram and the activity diagram are two

UML behaviours diagrams that will be used in the initial

work. A use-case or business process's state flow of activities

from the beginning to the end can be represented using an

activity diagram, which can also be rummage-sale to model

system logic. A state chart diagram, on the other hand, can

provide more specific information about the relationships

between processes, their sequence of interaction, and the

lifespans of the objects about those messages. In this research,

an additional graph is created by combining the activity and

state diagrams, and it is also utilized to produce test cases.

The format of the article is as surveys. We go over the

research that has been done on case study creation methods

utilizing various UML diagrams within subsection 2. The

translation of diagrams of sequences and activity chart

representations for hospital administration to graphs is

covered in section 3. The graphs are combined into a system

testing graph, and test cases created with the help of the

provided example are developed and optimized using a

genetic algorithm. We finally wrap up the report in this

section by outlining the conclusion and our plans for future

research. The cited sources are provided in the final section.

2. BACKGROUND AND RELATED WORK

This section, we review several studies on test case-

generating methods utilizing UML diagrams. The proposed

technique creates test cases by combining a sequence diagram

and a use case diagram [8]. They transform the sequence

diagram into a sequence graph after first converting the use

case diagram into a use case graph. Following that, a System

Graph is created by integrating the two graphs. It never

becomes clear how the two graphs are combined.

Furthermore, the generated test cases lack optimization.

They offered a technique for producing cases for testing that

makes use of the activity schematic and UML sequence chart

[3]. Using this method, a sequence chart is first turned into a

sequence chart, and the activity diagrams into an activity

graph. A system graph is then created by combining the two

graphs, the sequence graph and the activity diagram. The test

cases are then created by traversing the System Diagram

using the Depth First Search Method (DFS). This process has

also been applied to the validation of ATM cards.

The test cases were created with the aid of diagrams of

activities [10]. Using that method, a diagram of activities is

used to to develop a flow of activities graph first. AFG is

traversed using the depth-first traversal method. The

generation of every activity path is then suggested by an

algorithm. Lastly, using activity path coverage criteria, test

cases are created.

The method for creating test scenarios with a combination

UML diagram for systems that are object-oriented was

presented [11]. This method creates a Sequence-Activity

Graph, which is then crossed to produce test cases that

decrease the explosion of test cases. However, the test cases

aren't at their best.

A model-based evaluation methodology using scenarios for

testing produced from UML Sequence diagrams has been

developed by [12]. Test cases are developed for mobile phone

applications when the order diagram is converted to labeled

changeover arrangements. The test case runs flawlessly on a

small-screen smartphone application. The number of test

cases is larger than request features test coverage is unmoving

an issue for larger applications with larger LTSs. Utilizing

their method, it is also necessary to reduce test case

redundancy.

In UML state diagrams, Samuel et al.'s automatic test case

generation proposal is presented in [13]. It covers every

occurrence connected to state diagrams. By checking the

borders established by straightforward predicates, they have

decreased the overall number of test cases. They have

provided examples of their automated test cases for frozen

treat vending machines. They were unable to use the

combination of variable methods to arrive at a globally

optimal solution. They recommended a genetic algorithm to

accomplish the same thing.

The de-facto norm for modeling object-oriented applications

is the Unified Modeling Language (UML). Diagrams are

available in UML to depict both the dynamic and static

behavior of a framework [14]. Activity, sequence, and state

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 378
IJRITCC | February 2024, Available @ http://www.ijritcc.org

drawings are used to depict the dynamic behavior of the

system, whereas class, element, and distribution drawings are

applied to denote the system's static behavior. The operations

can be carried out during the design phase itself thanks to the

UML Activity Diagram, which displays the object's actions

[15].

The proposed technique utilizes UML models, which are a

valuable source of data for test case design [16]. The

implementation of the operation during the design phase is

described by the UML-based activity diagram model, which

also perfectly supports the information or explanation of

similar happenings and organization features complicated in

various activities. This method effectively meets the

maximum path coverage criteria by creating test cases by

examining the corresponding sequence and class diagrams of

respectively state. It also has the benefit of lowering test

model criteria costs due to design reuse.

A System Testing Graph (SYTG) is a graph created by

converting a Activity Diagram and an State Chart Diagram.

The test case is generated and optimized using a genetic

algorithm according to their criteria. However, this method

uses UML diagrams for state charts and sequence diagrams,

and it does not explicitly state how the results compare.

3. RESEARCH METHODOLOGY

In our future procedure, an organization below test is

transformed into a graph known as the System Testing Graph

(SYTG), which is created by fusing a sequence diagram and

a state chart diagram. Primary, the state chart diagram is

transformed into a graph, and the sequence diagram into a

graph. To create the System Testing Graph, these two graphs

are then combined. This graph contains all the data needed to

generate test cases in advance.

Constructed on a failure model and a coverage criterion, the

genetic algorithm (GA) is functional to this network to

automatically produce and enhance the test cases. We go over

the approach we recommend in the section that follows.

3.1 Conversion of SCD into ACDG

First, we define the state chart figure and activity chart figure

graph in this segment. After that, we demonstrate how to

change SCD into ACDG. An activity chart figure depicts the

active movement of a switch within a system beginning one

state to another.

ACDG Definition: The description of the Activity Chart

Graph is

ACDG ={S, T, GC, Si, Sf}

S=States in state chart figures stand for a collection of

individuals’ worth groupings where an item responds to

events in the same way. T= the move beginning one state to

extra is represented by a transition. A guard state must be

satisfied to allow the change to that it fits to occur: Guard

circumstances can be utilized to show that a given event can

result in a variety of transitions, depending on the condition.

Si stands for the source of all objects and is their initial

condition. Because there are no items in this state yet, it is not

a typical state. Sf = Final state denotes the object's final state

of existence. Because the things in a final state do not exist, it

is not a real state.

We will now talk about converting SCD to ACDG. The

Activity chart design allows for the mapping of every state as

a node. The continuous dependence of one on a different is

represented by each transition from one state to the next.

SDG Definition: The definition of a state diagram graph is

The State is traditional of all nodes that represent the

numerous stages of a situation, and SDG stands for {State,

Edge, First, Last}. Edges indicate the exchange of

information between several states. The beginning node,

which represents the preliminary state, comes first. The last

node represents the state in its ultimate form.

 3.2 Combination of SDG and ACDG into SYTG

The following step after creating SDG and ACDG is to

combine both of the graphs into one graph named a System

Testing Graph (SYTG). We now outline SYTG.

SYTG definitions Condition = State (SDG) U Activity

(ACDG) is the collection of entire the states of the order

figure and state chart figure, and the SYTG is distinct as

SYTG={S, T, F, L}.

T is the combination of the transitions from the Activity Chart

Graph and State Graph, and its formula is T = T (SDG) U T

(ACDG).

The initial node in the ACDG is F, and the last collection of

nodes in the SYTG is L.

The algorithm to produce SYTG from SDG and ACDG is

now presented.

Algorithm 1: GENERATE-SYTG

SYTG was created by combining the activity diagram graph

and state chart diagram. This gave the test cases additional

feature and covered the over-all framework of a system that

users would use after start to finish, but they also included

redundant information. It shows the Algorithm 1.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 379
IJRITCC | February 2024, Available @ http://www.ijritcc.org

After that, we need to create test cases once we have gathered

all the data in the SYTG Graph. Test cases must be optimized

using any evolutionary technique once they have been

generated. One evolutionary technique that we have used to

create and optimize test cases on the SYTG (System Testing

Graph) is called G.A. The technique we propose.

3.3 proposed methodology

3.3 Proposed Methodology

Fig 1. Over all work Flow diagram

Fig.1 shows the overall work Flow diagram the first step in

the process is to identify and choose the UML diagrams that

will be used as the groundwork for creating test cases,

specifically the UML Activity and State Chart diagrams. Data

from UML Activity and State Graphs should be used.

Specific UML Activity and State Chart figures are picked for

further processing from the selected UML diagrams. The

process of creating a system testing graph using the chosen

UML diagrams. Add test data to the activity diagram.

Relevant test-related information is incorporated into the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 380
IJRITCC | February 2024, Available @ http://www.ijritcc.org

UML Activity Figure. The improved Activity Figure is used

to provide an activity graph that shows the progression of

decisions and actions. State Chart Figure to State Chart Graph

Conversion. The State Chart Figure produces a State Chart

graph that displays the states and transitions. From an activity

and state chart graph, create a framework testing graph. A

thorough System Testing Graph that captures system

behaviour is produced by fusing the Activity Graph and State

Chart Graph. The process of creating test cases is optimized

using monotonic genetic algorithms.

There are stages in the procedure designed for monotonic

improvement.

i. Fitness value

ii. Best individuals

iii. Crossover

iv. Perform selective Mutation

v. Determine the best solution

Create enhanced test cases through applying the specified

Monotonic Genetic Procedure to the System Testing Graph,

the procedure generates optimal test cases. The performance

of the created optimized test cases is assessed using a variety

of test coverage criteria.

3.3.1 Hospital Management System

Before drawing UML diagrams for the system, the first step

is to collect as much hospital management information as you

can. You need to complete every field to provide them with a

high-quality system. Following that, the UML diagrams will

be built using the data that was gathered. The class diagram

for the hospital management system shows how the

information or data the system will manage is structured. To

denote these proofs or bits of information, classes will be

applied. Depending on the methodologies it employs, each

class will have its groupings. The categories that must be

made in a hospital include patients, users, doctors, nurses,

admissions, and transactions.

3.3.2 Model Diagram for Activity Diagram

In this step we have converted Activity chart diagram to

Activity chart Graph the possible paths from the .xml files

based on the kind of the state like State, Edge, First, Last,

and condition of the state (like yes or no)

Possible paths from the Activity Diagram:

Path1 ➔0→1→

2→3→12→13→4→5→14→10→9→11→16

Path2

➔0→1→2→3→12→13→4→6→15→7→8→14→10→9→

11→16

Path3

➔0→1→2→3→12→13→4→6→7→8→14→10→9→11→

16

3.3.3 Model diagram for State Diagram:

In this step we have converted a state chart figure to State

chart Graph the possible paths from the .xml files based on

the kind of the state like State, Edge, First, Last and condition

of the state (like yes or no).

Possible paths from the State Diagram:

Path4 ➔ 3→13→15→16→17→18→20→24→25

Path5 ➔

3→13→15→16→17→19→21→22→23→20→24→25

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 381
IJRITCC | February 2024, Available @ http://www.ijritcc.org

Path6 ➔ 3→14→13→15→16→17→18→20→24→25

Path7 ➔

3→14→13→15→16→17→19→21→22→23→20→24→25

Path Finalization

From the System testing Graph, we collected the possible

paths.

All Possible Paths are,

• Path1 ➔0→1→

2→3→12→13→4→5→14→10→9→11→16

• Path2

➔0→1→2→3→12→13→4→6→15→7→8→14→10

→9→11→16

• Path3

➔0→1→2→3→12→13→4→6→7→8→14→10→9

→11→16

• Path4 ➔ 3→13→15→16→17→18→20→24→25

• Path5 ➔

3→13→15→16→17→19→21→22→23→20→24→2

5

• Path6 ➔ 3→14→13→15→16→17→18→20→24→25

• Path7 ➔

3→14→13→15→16→17→19→21→22→23→20→2

4→25

3.4 Proposed Monotonic Genetic Algorithm for path

selection

The steps in the algorithm we recommend are as follows:

1. Create a state flow diagram for a particular project or

program.

2. Examine and compile every route that could lead from the

starting point to the desired state.

3. Repetition of Steps 4 and 5 will prevent the most distinct

path from happening.

4. Pick two potential directions. P1 and P2 {p11, p12, p13...

p1n} and {p21, p22, p23... p2n}

5. Conduct crossover on P1 and P2 to enable the creation of

a original sequence. The sequence P3= {p31, p32,

p33...p3n} will be chosen based on the frequency of a state

at file location i.

6. Carry out the alteration on P3 to carry out the dead state

trimming.

7. Exit

3.5 Mutation analysis

The Mutation is the name given to a binary modification

procedure. When a single genotype is exposed to it, a changed

mutant is produced as the offspring or child. The Mutation is

typically thought to result in an objective, random change.

Theoretically, the mutation has a purpose. It can ensure that

the area is interconnected. The result of mutation is that all

conceivable chromosomes are accessible. The examination is

limited to alleles that exist in the original sample even with

crossover and even inversion. This can be overcome using the

mutation operator by simply randomly choosing and altering

a somewhat bit position in a string. This is helpful because if

novel alleles do not develop in the first generation, crossover

and inversion may not be capable of processing them.

Suppose we've already obtained an original string via

crossover: [A=> B=> C=> E=> H =>A.]

Accept the alteration amount is 0.001, which is typically a

low number. After that, we choose a random number between

0 and 1 for the A. The initial A must mutate if the amount is

smaller than the mutation rate (0.001). For every test case, we

produce and obtain a number. The procedure is recurrent

using similar steps for the test cases following processing A

and B in the same manner.

In our example, the new chromosome will look like the one

below if only the first test changes and the respite of the tests

remains the same. [B=> C=> E=> H =>A]

A single number at random is chosen for respective order in

the parental residents, and this sequence has a 1% probability

of evolving through mutation. If the above sequence is chosen

for mutation, the operation sequence procedure is reversed

and a copy of the sequence is created. To ensure that a

workable schedule is always produced by the mutation, only

activities from separate jobs will be reversed. According to

the results of the investigation, reciprocal exchange (RX) and

order crossover (OX) are effective together and are hence in

use. We obtain the test case's final sequence following a

random crossover.

In our instance, the last test procedure is [A=> B=> C=> E=>

H]

Algorithm 2: Monotonic Genetic Algorithm

Optimised persons (p) have a more complex data structure or

it can be a binary string. One can generate the initial pool of

optimised persons manually or at random. The fitness

function evaluates an optimised person’s suitability for

achieving a given goal. The optimised persons that take part

in the evolutionary stage of the genetic algorithm comprised

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 382
IJRITCC | February 2024, Available @ http://www.ijritcc.org

of the crossover and mutation operators are determined by the

selection function. By exchanging genes from two p, the

crossover operator produces two new optimised persons. A

optimised person’s gene is altered by the mutation operator,

adding a new optimised person.

4. RESULTS AND DISCUSSIONS

Test path with maximum fitness value will be the optimum

path. From this research, ['path3', 'path2', 'path7', 'path4',

'path1'] shows higher fitness value (0.86) compared with

others (0.737,0.775,0.73). Thus, we could conclude that

['path3', 'path2', 'path7', 'path4', 'path1'] are the optimum paths

that has maximum coverage.

Optimized Paths are:

Path3

➔0→1→2→3→12→13→4→6→7→8→14→10→9→11→

16

Path2

➔0→1→2→3→12→13→4→6→15→7→8→14→10→9→

11→16

Path7 ➔

3→14→13→15→16→17→19→21→22→23→20→24→25

Path4 ➔ 3→13→15→16→17→18→20→24→25

Path1 ➔0→1→

2→3→12→13→4→5→14→10→9→11→16

Selected Paths Fitness Values

['path5', 'path1', 'path4', 'path6', 'path2'] 0.737

['path4', 'path7', 'path2', 'path6', 'path3'] 0.775

['path3', 'path2', 'path7', 'path4', 'path1'] 0.862

['path5', 'path1', 'path4', 'path6', 'path2'] 0.737

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 383
IJRITCC | February 2024, Available @ http://www.ijritcc.org

5. CONCLUSION AND FUTURE WORK

The proposed approach involves creating test cases using

activity charts and state chart diagrams, and then optimizing

those test cases using a GA. The advantage of utilizing this

technique is that the determined amount of test cases is

produced; beyond this point, no other legitimate test cases can

be produced. This strategy makes use of an activity chart

diagram; on an Activity chart, one Activity can lead to

numerous Activities that will produce the best results. Most

interactions between the items during the procedure are

covered by a sequence diagram. Therefore, if two UML

diagrams are combined, the determined number of test cases,

or all possible scenarios, will be covered. pre-post condition

issues We created UML diagrams using Rational Rose

software. Additionally, we have enhanced test cases using a

genetic algorithm, which yields the best results. Furthermore,

since this remains an automated method, we can automate the

entire process in subsequent work.

REFERENCE

[1] Jones, B. F., Sthamer, H. H., & Eyres, D. E. “Automatic

structural testing using genetic algorithms”. Software

engineering journal, 11(5), 299-306.

[2] Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H.,

Xuandong, L., & Guoliang, Z. “Generating test cases

from UML activity diagram based on gray-box

method”. In 11th Asia-Pacific software engineering

conference (pp. 284-291). IEEE.

[3] Engels, G., Förster, A., Heckel, R., & Thöne, S., Process

modeling using UML. “Process‐Aware Information

Systems: Bridging People and Software through Process

Technology”, 83-117.

[4] Dennis, A., Wixom, B., & Tegarden, D., “Systems

analysis and design: An object-oriented approach with

UM”, John wiley & sons.

[5] Fowler, M. “UML distilled: a brief guide to the standard

object modeling language”, Addison-Wesley

Professional.

[6] Akhil Reddy, B. “Designing Microservices with Use

Cases and UML” (Doctoral dissertation, University of

Dayton).

[7] Booch, G. The unified modeling language user guide.

Pearson Education India. Mateen, A., Nazir, M., &

Awan, S. A. “Optimization of test case generation using

genetic algorithm (GA)”, arXiv preprint

arXiv:1612.08813.

[8] Sarma, M., Kundu, D., & Mall, R. “Automatic test case

generation From UML sequence diagram”, In 15th

International Conference on Advanced Computing and

Communications (ADCOM 2007) (pp. 60-67). IEEE.

[9] Tripathy, A., & Mitra, A. “Test case generation using

activity diagram and sequence diagram”, In

Proceedings of International Conference on Advances

in Computing (pp. 121-129). Springer India.

[10] Swain, R. K., Panthi, V., & Behera, P. K. “Generation

of test cases using activity diagram”, International

journal of computer science and informatics, 3(2), 1-10.

[11] Dalai, S., Acharya, A. A., & Mohapatra, D. P. “Test case

generation for concurrent object-oriented systems using

combinational UML models”, International Journal of

Advanced Computer Science and Applications, 3(5).

[12] Cartaxo, E. G., Neto, F. G., & Machado, P. D. “Test case

generation by means of UML sequence diagrams and

labeled transition systems”, IEEE International

Conference on Systems, Man and Cybernetics (pp.

1292-1297). IEEE.

0
0.2
0.4
0.6
0.8

1

Selected
Paths

['path5',
'path1',
'path4',
'path6',
'path2']

['path4',
'path7',
'path2',
'path6',
'path3']

['path3',
'path2',
'path7',
'path4',
'path1']

['path5',
'path1',
'path4',
'path6',
'path2']

0

0.737 0.775 0.862
0.737

Chart Title

Series1 Series2

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November 2023 Revised: 12 December 2023 Accepted: 30 January 2024

__

 384
IJRITCC | February 2024, Available @ http://www.ijritcc.org

[13] Samuel, P., Mall, R., & Bothra, A. K. “Automatic test

case generation using unified modeling language

(UML) state diagrams”, IET software, 2(2), 79-93.

[14] Sapna, P. G., & Mohanty, H. “Automated scenario

generation based on uml activity diagrams”, In 2008

International Conference on Information Technology

(pp. 209-214). IEEE.

[15] Thanakorncharuwit, W., Kamonsantiroj, S., &

Pipanmaekaporn, L. “Generating test cases from UML

activity diagram based on business flow constraints”, In

Proceedings of the Fifth International Conference on

Network, Communication and Computing (pp. 155-

160).

[16] Sabharwal, S., Sibal, R., & Sharma, C. “Prioritization of

test case scenarios derived from activity diagram using

genetic algorithm”, In International Conference on

Computer and Communication Technology (ICCCT)

(pp. 481-485). IEEE.

http://www.ijritcc.org/

