
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 320 – 323

320
IJRITCC | July 2017, Available @ http://www.ijritcc.org

Translating SQL to Spreadsheet: A Survey

Tasnim T. Hajiwala

Department of Computer Engineering

VPKBIET

Baramati

tasnim.kayamkhani@gmail.com

Prof. Santosh A. Shinde

Department of Computer Engineering

VPKBIET

Baramati

Meetsan.shinde@gmail.com

Abstract—Spreadsheets are the most popular and conventionally databases in use today. Since Spreadsheets are visual and expression based

languages, research into the features of spreadsheets is therefore a highly relevant topic to study. Spreadsheet can be viewed as a Relation

Database which contains a sheet and its corresponding information in terms of rows, while in RDBMS each table or say relation also represents

its contained information in terms of rows. Each row represents a record which belongs to one or more relation. Spreadsheets uses different

formulae to extract required information but it need expert knowledge about the tool and its usage. One can extend the usage of Spreadsheet in

any direction as it provides great flexibility in terms of data storage and dependency of stored data. We surveyed some of research which took

great attention over Spreadsheets and its applicability in different functional cases, such as Data Visualization, SQL Engines and many more.

Our survey focuses on QUERYSHEET, ES-SQL, MDSHEET and PrediCalc [3], [5], [4], [8]. These different researches are motivations to our

survey and attraction in Spreadsheets and its functional extensibility.

Keywords- Spreadsheet, Relation Database SQL Engines, QUERYSHEET, ES-SQL, MDSHEET, PrediCalc

__*****___

I. INTRODUCTION

The huge impact of DBMS attracted the business

managements to keep their tracks Relational Databases

because of its consistency; still we believe much of the

community‘s distaste, however, stems from inspection of

existing implementations of the tools which are commonly

used to keep data like Spreadsheets; these seem deeply flawed

to us. The question remains, then: is the spreadsheet metaphor

any good? The true measure of is the problem domain it

addresses. It‘s already well-known that modem spreadsheets

are well-suited for standalone business decision making and

financial modeling. The work decided to define a mini-

language to see if the spreadsheets might be a more general

instrument given the right implementation [1].

This analysis seems to be in stark opposite to some of the

claims of functional programming advocates, for example, that

functional programs are much reliable than, for example,

imperative programs, and contain fewer bugs. However, a

closer examination states that the increased reliability of

functional programs is achieved, at least to some extents,

through a cleaner language design, offering powerful

abstractions, such as higher level functions, and through

sophisticated type systems that help to detect programming

bugs early. [2]

A research paper presents QUERYSHEET: a tool that

proposes to spreadsheets the query database realm. The tool

offers a querying functionality, very similar to SQL, to query

spreadsheets. This query language is based on spreadsheet,

namely Class- Sheets [1], rather than on the spreadsheet data.

By relying on a simple, concise metadata of the spreadsheet

data, rather than on a possibly huge and complex spreadsheet

data, the paper duplicates the database approach: a database

programmer usually reasons about the relational model of the

database to code his/her queries, and not on understanding the

huge database. Such an approach has also the benefit of

writing queries using attribute names, and not by referring to

spreadsheet cells and column letters as provided by Google

and Microsoft methods to query spreadsheets. Both

approaches also need that the spreadsheet data is represented

in a matrix format, that is to say that the data has to be in (or

transformed to!) a non-normalized representation. In

QUERYSHEET this is executed automatically by using

normalization/de-normalization and model inference

methodologies [3].

As programming languages, spreadsheets lack the support

provided by recent programming environments, like for

example, higher abstractions and strong type and modular

architectures. As a result, they are vulnerable to errors. In

order to increase end-users productivity, several approaches

have been proposed, which let the end users to safely and

correctly modify spreadsheets, like, for example, the use of

spreadsheet templates [2], ClassSheets [3], [4], and the

inclusion of visual objects to benefit editing assistance in

spreadsheets. All these systems propose a form of end user

model-driven software platforms: a spreadsheet business

model is defined, from which a custom spreadsheet tool is then

generated guaranteeing the consistency of the spreadsheet data

with the underlying architecture[4].

Spreadsheet approach has proven to be a long success

stories, both in the context of the programming of simple

applications for personal use as well as to support business

model decisions within large corporate organizations.

A fascinating contribution to the great success of

spreadsheets is appreciated to their multi-purpose-ness which

can be observed, for example, by the fact that many

spreadsheets are actually used as data storage systems or

databases [1], in the sense that no formulas are defined in

them. [5]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 320 – 323

321
IJRITCC | July 2017, Available @ http://www.ijritcc.org

Spreadsheets are one of the most appreciated and widely

used software systems targeted towards the end users. The

uses of spreadsheets range from simple standalone

applications to large business oriented decision making

calculations. Although conceived to be simple, easy, visual,

and human friendly, the basic uses of spreadsheets in the

actual world tend to begin into large and complex data-centric

software tools. In this scenario spreadsheets often grow larger

than thousands of lines per thousands of columns and it

became difficult to extract, query, and reason about their

stored data. To simplify the spreadsheet querying approach,

authors have proposed an Embedded Spreadsheet-Structured

Query Language (ES-SQL) approach for end users [1], which

provide their previous work on model-driven spreadsheets

where a precise model abstracts the structure and logic of a

potentially large spreadsheet [2]. This abstraction allows

queries to be written by names, instead of column letters,

referencing entities [6].

II. DATA SOURCES

There are various ways to collect or generate the
Spreadsheet data. In literature the authors tend to generate and
working example transaction data through script execution,
which automatically generates the required data in
Spreadsheets.

A. Transaction Dataset

Different business activity needs to be consistent in their
day-to-day budget and resources; the database they generate is
stored in Spreadsheets in the form of rows and columns. We
consider the columns as attributes and rows as tuples.

.

Fig. I Example of Spreadsheet

B. Management Datasets

Various government and non-government offices tend to

store their data in Spreadsheet format for future use. This data

can be a source of Relation Database which can be used to

demonstrate the research in literature. Each of these data

sources is useful in visualizing the extensibility of

Spreadsheets.

III. RELATD WORK

A. QUERYSHEET

QUERYSHEET is designed as part of MDSheet [4]. Because

developing a powerful and effective query engine is very

tricky, the research expresses the semantics of their query

language using Google‘s QUERY model. To make the

language more powerful and user friendly, authors added extra

features such as a JOIN clause. Their query language provides

more human readable queries to be written with attribute

names, not column letters, and supporting ClassSheets. To do

so, authors designed a translator from their query language to

the Visualization API Query Language defined by Google for

use in the QUERY model. They have also used the de-

normalization process needed to automatically re-structure the

data in their environment to the allowed tabular de-normalized

format. Illustrated in Figure 2, is QUERYSHEET‘s

architecture. The top left part shows their spreadsheet

model/instance of their previous example. The

QUERYSHEET language is based on the SQL language,

while allowing some of the QUERY function‘s clauses such as

LIMIT and LABEL. The language supports the JOIN clause,

ClassSheet attribute selection, and multiple models of naming

the attribute to eliminate conflicts[3].

Fig. II The Architecture of QUERYSHEET

B. ES-SQL

In ES-SQL, users can write queries in their known

spreadsheet environment, without the need of learning textual

(SQL-like) notation. This is brought in by providing users in

query writing, and is achieved using drop-down lists to select

attributes, filter conditions, and other querying designs. This

avoids both syntactic and semantic false rate. Let us now see

the following question under ES-SQL: In a data represented as

in Figure 1 What was the total per annum, in decreasing order,

from 2010 onwards? In ES-SQL, the work shows all the

information from their original model-driven query language

in a human-friendly way: along with the ClassSheet model and

current state, the ES-SQL query is also displayed in its own

worksheet. In Figure 3 show how to write a query to answer

their previous question[6].

Fig. III ES-SQL representing the answer generated

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 320 – 323

322
IJRITCC | July 2017, Available @ http://www.ijritcc.org

C. ClassSheet

ClassSheets [4] are a high-level, object-oriented program to

specify the business logic of spreadsheets. Class-Sheets

provide end users to express business objects structures within

a spreadsheet using UML concepts. In fact in [7] the paper has

proposed a method to automatically map ClassSheets to UML.

Using the ClassSheets model, it is possible to define

spreadsheet relations and to give them names, to define labels

for the table‘s columns, to specify the types of the values such

columns may contain and also the way the table expands (e.g.,

horizontally or vertically).

Besides textual (and formal) notations, ClassSheets also

have a visual representation which very much resembles

spreadsheets [8]. Authors have embedded such visual model

representation that mimics the well-known embedding of a

domain specific language in a general purpose one. Like in

such embedding‘s, the paper inherit all the needful features of

the host language: in their case, the powerful interactive

interface offered by the (host) spreadsheet system. This

approach has two key benefits: first, the paper does not have to

build and maintain a complex interactive tool. Second, the

system provides ClassSheet model developers the

programming environment they are used to: a spreadsheet

environment

Fig. IV ClassSheet example

D. Predicalc

The research prototype has proven the feasibility of their

methodologies on spreadsheets containing thousands of cells

and hundreds of constraints. In fact, the limiting factor is not

the underlying algorithms, but is instead the GUI, which is

designed in a naive way and does not scale enough. One can,

of course, analyze examples where a small number of

interconnected constraints will result in an unacceptably slow

response time for the spreadsheet; however, simple examples

with little interconnection provides for large numbers of

constraints to be handled very quickly. Their prototype uses a

naive implementation of Existential W-entailment; however,

authors have found significantly better algorithms that scale

with the amount of inconsistency; details will be provided in a

forthcoming paper. An unnoticed question is how to

incrementally maintain materialized Existential W-entailment

consequences as the cell values are modified. Also,

experiments proves that unary relations do not scale

particularly well, and so authors extended their model to allow

for n-ary cells as well as unary ones in future versions of their

spreadsheet.

IV. APPLICATIONS

Spreadsheets provide various ways to extend its

applicability in different research and business needs. We have

mentioned some its application in research and business fields.

1. Data Management: Logical spreadsheets provide the

entry and editing of symbolic data governed by symbolic

constraints. ‗Correct on capture‘ data entry tools and resource

management systems are examples of this capability. The

constraint ‗only senior managers can reserve the third floor

conference room‘ is an example of this. Since rules and

policies can be expressed using logic, a logical spreadsheet

can be thought of as a simple kind of computational law

system (Love & Genesereth, 2005).

2. Interactive documents: Systems can provide

‗interactive answers‘ to end users, e.g., simulations, which

allow a user to analyze by varying certain inputs while the

system automatically propagates the consequences of those

variations. Let us, for example, a student learning how lenses

refract light by experimenting with various lens shapes. Or

consider a spreadsheet used by an insurance agent to

determine if a client is eligible for a specific kind of insurance.

The rule that ‗insurance applicants who make at least $60,000

and are under 50 years old are approved‘ is an example of this.

Essentially, an interactive document provides one to perform

the ‗what if‘ analyses that spreadsheets are famous for,

although there need not be a distinction between the cells used

as input parameters and the cells used to output results.

3. Design and Configuration: Configuration tools are

good examples of the use of logical Spreadsheets. Consider,

for example, a configuration tools to help consumers design

their own cars, which might have the limitations ‗if the car‘s

exterior color is blue, then the car interior color may be gray,

tan or black‘. Or consider a student preparing his course

schedule, which might have the constraint ‗students must take

at least two math courses to graduate‘.

Sr.

No

Authors Title Year Methodology

1 Orlando

Belo,

J´acome

Cunha

QuerySheet: A

Bidirectional

Query

Environment

for Model-

Driven

Spreadsheets

2013 Based on the

SQL language,

while allowing

QUERY

function‘s

clauses such as

LIMIT and

LABEL

2 Zhen Hai,

Kuiyu

Chang

Querying

Model-Driven

Spreadsheets

2013 Model-driven

query language

in a human-

friendly way:

along with the

ClassSheet

3] J´acome

Cunha_,

Jo˜ao

Paulo

Fernandes

MDSheet: A

Framework for

Model-Driven

Spreadsheet

Engineering

2012 It is possible to

define

spreadsheet

relations and to

give them

names, to define

labels for the

table‘s columns

4 M.

Kassoff,

L.-M. Zen,

A. Garg

PrediCalc:a

logical

spreadsheet

management

system

2005 Extended their

model to allow

for n-ary cells

as well as unary

ones

Table.I Methodologies used in Literature

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 7 320 – 323

323
IJRITCC | July 2017, Available @ http://www.ijritcc.org

V. CONCLUSION

In this survey paper we have studied some fascinating

techniques for extensibility and applicability for Spreadsheets.

The literature researches are quiet attracted towards the

Spreadsheets, specially its storage structure and capability of

managing the data in terms of records. The formulae and

expressions provided by Spreadsheet are also contains great

flexibility towards its extensibility. Basically Relational

Database Management has a very resembling data storage

structure to the Spreadsheet, so eventually the Spreadsheet is

pulled over Structured Query Language (SQL) and its

implementation.

VI. ACKNOWLEDGEMENT

I express great many thanks to Prof.Santosh A. Shinde for

this great effort of supervising and leading me, to accomplish

this fine work. To college and department staff, they were a

great source of support and encouragement. To my friends and

family, for their warm, kind encourages and loves. To every

person who gave me something too light along my pathway. I

thanks for believing in me.

REFERENCES

[1] Alan G. Yoder and David L. Cohn, ―Real spreadsheets for real

programmers,‖ in ICCL, H. E. Bal, Ed. IEEE Computer Society,

1994, pp. 20–30.

[2] R. Abraham and M. Erwig, ―Type inference for spreadsheet‖ in

PPDP ‘06: Proceedings of the 8th ACM SIGPLAN Symposium

on Principles and Practice of Declarative Programming. New

York, NY, USA: ACM, 2006, pp. 73–84.

[3] Orlando Belo, J´acome Cunha, ―QuerySheet: A Bidirectional

Query Environment for Model-Driven Spreadsheets,” 2013

IEEE Symposium on Visual Languages and Human-Centric

Computing, 2013 IEEE

[4] J´acome Cunha_, Jo˜ao Paulo Fernandes," MDSheet: A

Framework for Model-Driven Spreadsheet Engineering‖ 978-1-

4673-1067-3/12/$31.00c 2012 IEEE

[5] Zhen Hai, Kuiyu Chang, Jung-Jae Kim, and Christopher C. Yang

“Querying Model-Driven Spreadsheets”, 978-1-4799-0369-

6/13/$31.00 ©2013 IEEE

[6] J´acome Cunha_y, Jo˜ao Paulo Fernandes, “ES-SQL: Visually

Querying Spreadsheets”. 978-1-4799-4035-6/14/$31.00 ©2014

IEEE

[7] P. W. P. J. Grefen and R. A. de By, ―A multi-set extended

relational algebra - a formal approach to a practical issue,‖in

ICDE. IEEE Computer Society, 1994, pp. 80–88.

[8] M. Kassoff, L.-M. Zen, A. Garg, and M. Genesereth,

―PrediCalc:a logical spreadsheet management system,‖ in

VLDB‘05: Proceedings of the 31st international conference on

Very large data bases. VLDB Endowment, 2005, pp. 1247–

1250.

[9] B. Liu and H. V. Jagadish, ―A spreadsheet algebra for a direct

data manipulation query interface,‖ in ICDE ‘09: Proceedings of

the 2009 IEEE International Conference on Data Engineering.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 417–

428.

[10] J. Tyszkiewicz, ―Spreadsheet as a relational database engine,‖ in

Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, ser. SIGMOD ‘10. New

York, NY, USA: ACM, 2010, pp. 195–206.

[11] D. Wakeling, ―Spreadsheet functional programming,‖ J. Funct.

Program., vol. 17, no. 1, pp. 131–143, 2007

[12] A. G. Yoder and D. L. Cohn, ―Architectural issues in

spreadsheet languages,‖ in Proceedings of the international

conference on Programming languages and system architectures.

New York, NY, USA: Springer-Verlag New York, Inc., 1994,

pp. 245–258.

http://www.ijritcc.org/

