
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November2023 Revised: 12 December 2023 Accepted: 30 January 2024

 85

IJRITCC | February 2024, Available @ http://www.ijritcc.org

Comparing Two Inclusion Techniques in Timed

Automata

Hafedh Mahmoud Zayani
Department of Electrical Engineering, College of Engineering,

Northern Border University, (corresponding author)

Arar, Saudi Arabia,
hafedh.zayani@nbu.edu.sa

 Refka Ghodhbani, Taoufik Saidani
Department of Computer Sciences Faculty of Computing and Information Technology,

Northern Border University,

Rafha, Saudi Arabia,

Refka.Ghodhbani@nbu.edu.sa, Taoufik.Saidan@nbu.edu.sa

Abstract— Verifying the correctness of real-time systems often involves checking language inclusion between timed automata. This

problem determines if the language of a system implementation is a subset of the language specified by its design. While the general case is

undecidable, recent advancements have proposed techniques for specific scenarios. This paper compares two such techniques: a zone-based
semi-algorithm for non-Zeno runs and a time-bounded discretization approach. We analyze their strengths and weaknesses, highlighting cases

where each method is advantageous. The comparison highlights the timed bounded discretized language approach's advantages in terms of

guaranteed termination and lower memory usage.

Keywords-Timed Automata; Inclusion; Verification; Comparaison

I. INTRODUCTION

Timed automata are a powerful formalism for modeling real-
time systems, where behavior is governed by both discrete
actions and continuous time passage. A crucial aspect of real-
time system verification involves ensuring the implementation
adheres to the specified behavior. This translates to the problem
of language inclusion checking: determining if all legal
execution sequences (language) of the implementation
automaton are also valid sequences in the specification
automaton.

The general language inclusion problem for timed automata
is known to be undecidable [1], posing a significant challenge
for verification. However, research efforts have focused on
developing techniques for specific scenarios. This paper
explores two recent advancements in language inclusion
checking for timed automata.

Researchers have actively explored methods for language
inclusion checking in timed automata, a crucial step in verifying
if an implementation's behavior aligns with a specified property.
To address the challenge of non-Zeno runs causing misleading
results, Wang et al. [2] proposed a zone-based semi-algorithm
that leverages zones (sets of states with time constraints) for
efficient state space exploration and violation identification.
This approach is further enhanced through simulation reduction.
On the other hand, the general problem's undecidability is
tackled by Ammar et al. [3] with a time-bounded verification
framework. Their technique utilizes a novel discretization
approach to represent timed words within a finite time window,
achieving decidability for non-Zeno timed automata. Beyond
language inclusion checking, research in timed automata
verification encompasses broader property verification

techniques. Alur et al. [4] introduced a framework for model
checking timed automata using timed logic, enabling the
specification and automated analysis of complex properties in
timed systems. Additionally, Tripakis [5] introduced timed
testing techniques, where designing test cases explores the timed
behavior of a system to reveal inconsistencies.

The concept of language inclusion checking for timed
automata has been extensively studied in [2, 4, 5, 6, 7]. The
proposed technique in [2] proposes a zone-based semi-algorithm
specifically designed to handle non-Zeno runs. On the other
hand, the proposed technique in [3] introduces a time-bounded
verification framework for the inclusion problem. This
technique leverages a novel discretization approach to represent
timed words within a bounded time interval, enabling
decidability for non-Zeno timed automata.

This paper builds upon these existing works by comparing
and contrasting the two inclusion checking techniques. We delve
into the details of each approach, analyzing their strengths,
limitations, and potential application areas. The goal is to
provide a comprehensive understanding of these techniques and
guide users in selecting the most suitable approach for their
specific verification needs.

This paper is organized as follows. Section II lays the
foundation by introducing the specific type of timed automata
used in the analysis - the non-Zeno timed automata model.
Section III and IV delve into the core of the paper of the
reference [2] and [3]. Each section focuses on a specific
approach for verifying language inclusion. After introducing the
verification approaches, the paper applies both methods to the
same example of non-Zeno timed automata. This allows for a
direct comparison of their performance in Section V. The

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November2023 Revised: 12 December 2023 Accepted: 30 January 2024

 86

IJRITCC | February 2024, Available @ http://www.ijritcc.org

comparison focuses on two key aspects: space memory usage,
strengths and weaknesses

II. NOTATIONS

This section defines a timed automaton, a formal model used
to represent real-time systems. Here's a breakdown of the key
components:

• Clocks (X): A finite set representing the system's clocks.
Each clock holds a non-negative rational value ℚ+.

• Clock Constraints (C(X)): The set of formulas
expressing relationships between clocks and constants
using comparison operators (<, <=, =, >=, >) and
constants from positive rationales (ℚ+.). These formulas
define conditions that must hold for the system to be in
a specific state.

• Clock Valuation (𝑣): A function that assigns a non-
negative rational value to each clock.

• Time Delay (𝑑): A non-negative rational value
representing the time passage.

• Timed Automaton 𝑨 = (𝐿, 𝑙0, 𝑋, 𝛴, 𝐼, 𝑇) : A 7-tuple
consisting of:
o Locations (𝐿): A finite set of states the system can be

in.
o Initial Location (𝑙0): The starting state of the system.
o Clocks (X): As defined above. |X|=1
o Actions (𝛴): A finite set of events or actions the

system can perform.
o Location Invariants (𝐼): A function that assigns a

clock constraint to each location, restricting the
allowed clock valuations for the system to be in that
location.

o Transitions (𝑇 ⊆ 𝐿 × 𝐶(𝑋) × 𝛴 × 2𝑋 × 𝐿): A
finite set of transitions between locations. Each
transition is a 5-tuple (l, g, a, r, l') representing:
▪ Source Location (𝑙): The origin location of the

transition.
▪ Guard (g): A clock constraint that must be true

for the transition to occur.
▪ Action (a): The action associated with the

transition.
▪ Reset Set (r): A subset of clocks that are reset to

zero when the transition is taken.
▪ Target Location (l'): The destination location

after the transition.

• Non-Zenoness: The definition emphasizes that the
timed automaton is non-Zeno. This means there are no
execution paths where an infinite number of actions
occur within a finite amount of time.

• States: A state of a timed automaton is denoted by a pair
(l, v) where:

o l ∈ L: Represents the current location of the system.

o v ∈ ℚ+
|𝑋|

: Represents the current clock valuation,

assigning a non-negative rational value to each clock.

• Transition Run: A transition run, denoted by 𝜓𝑝 = 𝑙0
𝑒0
→ 𝑙1

𝑒1
→ 𝑙2… 𝑙𝑖

𝑒𝑖
→ 𝑙𝑖+1… 𝑙𝑝−1

𝑒𝑝
→ 𝑙𝑝+1 , represents a

sequence of transitions the automaton can take. It's a

sequence of elements e0, e1, . . . , e𝑖, e𝑖+1 . . . , e𝑝 where:

o Each e𝑖 is a transition from the set T of transitions.

o The transition e𝑖+1 follows e𝑖 such that:

▪ e𝑖 = (l𝑖 , a𝑖, g𝑖 , r𝑖, l
′
𝑖) and

▪ e𝑖+1 = (l𝑖+1,a𝑖+1,g𝑖+1, r𝑖+1, l′𝑖+1)
▪ The target location (l′𝑖) of e𝑖 is the source

location (l𝑖+1) of e𝑖+1 . This ensures a valid
sequence of transitions.

▪ This condition holds for all i between 0 and p-1.

This formal definition provides a foundation for understanding

and analyzing the behavior of real-time systems using non-Zeno

timed automata.

III. VERIFICATION OF INCLUSION PROBLEM USING A SEMI-

ALGORITM

The paper [2] contributes to the field of timed automata
verification by addressing language inclusion checking while
considering non-zenoness. The authors propose a zone-based
semi-algorithm to address language inclusion checking with
non-zenoness. This proposed method offers a practical solution
even though it may not provide a guaranteed answer in all
scenarios. This approach based on the following steps, as shown
in Fig. 1.

Figure 1. Steps of the timed bounded verification of inclusion in [1].

A. Unfolding of a timed automaton

The first step of the zone-based semi-algorithm for language
inclusion checking with non-zenoness involves unfolding the
timed automaton. This process creates a tree structure that
captures all possible executions of the automaton, while keeping
track of timing constraints. Each node represents a possible state
along an execution path in the original automaton. The labels on
the nodes connect these states back to the original automaton and
encode the timing information using the reset clocks. The
unfolding step as described as follows:

• New Clock Resets: At each level of the tree, the clocks
of the original automaton are reset. This ensures that all
timing constraints are considered afresh at each step.

• Node Labeling: Each node (n) in the unfolded
automaton B1 is labeled with a pair (l, z).

• Locality (l): This identifies the specific location in the
original automaton A that the current node in the
unfolded automaton B1 simulates.

• Clock Encoding (z): This describes how the clocks in
B are represented using the clocks in the unfolded
automaton B1. If z(x) = 𝑧𝑖, it implies that the clock value
x in B is currently equivalent to the value of clock 𝑧𝑖 in
B1. This allows for tracking timing constraints across
different levels of the tree.

Example 1:

Figure 2. Timed automaton B

Let 𝑩 = (𝐿𝐵 , 𝑙𝐵0, 𝑋, 𝛴, 𝐼𝐵 , 𝑇𝐵) be a timed automaton,
represented in Fig. 2 where 𝑋 = {𝑥} and Σ = {𝑎} . This

Unfolding
timed

automaton

Product timed
automaton

Verification
inclusion

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November2023 Revised: 12 December 2023 Accepted: 30 January 2024

 87

IJRITCC | February 2024, Available @ http://www.ijritcc.org

automaton describes the possible locations and transitions. The
unfolding process takes the timed automaton B and creates a new
automaton, typically shown in Fig. 3, which is a tree-like
structure. This unfolded automaton captures all the possible
execution paths of the original automaton, considering timing
constraints.

Figure 3. Unfolding of the timed automaton B

B. Product-timed automaton

The second step involves creating a new timed automaton
called the product automaton. This product automaton combines
the original timed automaton A with the unfolded timed
automaton B1. It as a merged structure that captures both the
original system's behavior and all potential execution paths

revealed through unfolding. The product automaton, denoted by
P, is based on the following elements:

• States: The product automaton's states are formed by
pairing a location from the timed automaton A with a
node from the unfolded automaton B1. This combined
state essentially tracks both the current position in the
original system and the specific point along a possible
execution path in the unfolded structure.

• Transitions: The product automaton only allows the
transition if the corresponding node in the unfolded
automaton permits it. This ensures the transition adheres
to the local state and timing constraints at that specific
point in the potential execution path.

• Clocks: The product automaton gathers all the clocks
from both the timed automaton A and the unfolded
automaton B1. This allows for a comprehensive view of
how time constraints influence the combined behavior.

The state of the product automaton is represented by a triplet
(𝑠𝑎 , 𝑋𝑏 ,∂) where 𝑠𝑎 identifies the specific location currently
active in the timed automaton A, 𝑋𝑏 refers to the particular node
from the unfolded automaton B1 and ∂ represents the combined
clocks constraints from the timed automaton A and any
constraints arising from the specific node in the unfolded
automaton B1.

Figure 4. Timed automaton A

Example 2:
Let 𝑨 = (𝐿𝐴, 𝑙𝐴0, 𝑋, 𝛴, 𝐼𝐴, 𝑇𝐴) be a timed automaton, shown

in Fig. 4 and B1 be an unfolding automaton shown in Fig. 3. The
timed automaton A is combined with the unfolded automaton B1
to create the product automaton shown in Fig. 5.

Figure 5. Product automaton of A and B1

Fig. 5 shows three active clocks: 𝑧0, 𝑧2 and 𝑧3 in level 3. The
authors propose to reuse 𝑧1 because that is not active in level 3
and renaming 𝑧3 to 𝑧1. This optimization aims to reduce the

number of active clocks in the product automaton while
maintaining the same behavior. Then, Fig. 6 depicts the resulting
tree structure after renaming the clock.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November2023 Revised: 12 December 2023 Accepted: 30 January 2024

 88

IJRITCC | February 2024, Available @ http://www.ijritcc.org

Figure 6. Product automaton with minimizing clocks in level 3

C. Verification

The final step of the semi-algorithm aims to determine
whether the language of timed words allowed by the timed
automaton A is entirely contained within the language allowed
by another timed automaton B. In other words, it verifies if all
the timed behaviors possible in A are also valid behaviors within
the timed automaton B. In this paper, the verification process
involves checking the product automaton P for a specific state:
Is there a state in P where 𝑋𝑏 is empty?

If the semi-algorithm explores all reachable states in P and
never encounters an empty nodes 𝑋𝑏, it strengthens the case for
language inclusion. If it finds a state in P with an empty 𝑋𝑏, it
indicates a violation of language inclusion.
Example 3:
Assuming Fig. 6 depicts the product automaton for our
verification process, we can analyze it to check language
inclusion. We note that the tree structure represents an infinite
tree. In this case, we need to make an assumption about the
number of clocks involved. We assume a maximum of 3 clocks
for this analysis. Thus, we conclude that language inclusion is
verified. In simpler terms, the timed automaton A is entirely
contained within the language allowed by timed automaton B.

IV. VERIFICATION OF INCLUSION PROBLEM USING A

DISCRETIZATION FRAMEWORK

The work in [3] proposes a novel approach to verifying
language inclusion for timed automata. It moves beyond
traditional discretization techniques that combine timed words
into simplified representations. Instead, it introduces the concept
of a "timed bounded discretized language." This language
consists of discrete timed words, each capturing an action along
with its minimum and maximum possible execution times. This
allows the verification process to leverage this richer
information compared to using just the actions themselves. The
following section details the steps involved in this verification
using the discretized framework.

Figure 1: Steps of the timed bounded verification of inclusion in [3]

A. Transition-run

The first step involves determining all possible transition-
runs for both timed automata being compared. A transition run
is a sequence of transitions and locations that the automaton can
take. However, these transition-runs could be infinite due to
ever-increasing time delays. To address this challenge, the work
in [3] proposes a novel approach. They suggest introducing a
bound on the time execution for the last transition in a given
transition-run. By introducing such bounds, the authors ensure
that the set of possible transition-runs becomes finite, enabling
further analysis within the verification process.
Example 4:

Let A and B be two timed automaton shown in Fig. 4 and
Fig.2 respectively and α=5 be a constant value. The set of
transition-runs of A and B is introduced in Table I.

Transition-runs generated by A Transition-runs generated
by B

TABLE I. TRANSITION-RUNS OF AUTOMATA A AND B

Transition-runs generated by A Transition-runs generated by B

𝑙𝐴0
𝑒0
→ 𝑙𝐴0 𝑙𝐵0

𝑒0
→ 𝑙𝐵0

𝑙𝐴0
𝑒0
→ 𝑙𝐴0

𝑒0
→ 𝑙𝐴0 𝑙𝐵0

𝑒0
→ 𝑙𝐵0

𝑒0
→ 𝑙𝐵0

 𝑙𝐵0
𝑒0
→ 𝑙𝐵0

𝑒0
→ 𝑙𝐵0

𝑒1
→𝑙𝐵1

 𝑙𝐵0
𝑒0
→ 𝑙𝐵0

𝑒1
→𝑙𝐵1

 𝑙𝐵0
𝑒0
→ 𝑙𝐵0

𝑒1
→𝑙𝐵1

𝑒2
→𝑙𝐵1

 𝑙𝐵0
𝑒1
→ 𝑙𝐵1

 𝑙𝐵0
𝑒1
→ 𝑙𝐵1

𝑒2
→ 𝑙𝐵1

 𝑙𝐵0
𝑒1
→ 𝑙𝐵1

𝑒2
→ 𝑙𝐵1

𝑒2
→𝑙𝐵1

Transition-run Discretized run
Timed bounded

discretized
langage

Verification
inclusion

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November2023 Revised: 12 December 2023 Accepted: 30 January 2024

 89

IJRITCC | February 2024, Available @ http://www.ijritcc.org

B. Discretized runs

Building upon the identified transition runs from step 1, the
authors in [3] introduce two key concepts: Minimum Execution
Duration (Dmin) and Maximum Execution Duration (Dmax).
Dmin represents the shortest possible time it takes to reach a
specific transition within a given transition run. Dmax represents
the longest possible time it takes to reach that same transition.

By analyzing each transition run, the authors construct a new
type of sequence called a discretized run. This discretized run
captures a series of elements, each represented as (action, [Dmin,
Dmax]) where action refers to the specific action performed
during the transition and [Dmin, Dmax] is a pair of values
representing the minimum and maximum execution times to
reach the transition associated with that action. Note that if the
constraints of clocks is strict, then the interval is opened and if
the constraints of clocks is large, then the interval is closed.
Example 5:

According to the results shown in Table 1, we determine the
set of discretized runs of A and B presented in Table II.

TABLE II. DISCRETIZED RUNS OF AUTOMATA A AND B

Discretized runs generated by A Discretized runs generated by B

𝑙𝐴0
(𝑎,]2,10[)
→ 𝑙𝐴0 𝑙𝐵0

(𝑎,]2,10[)
→ 𝑙𝐵0

𝑙𝐴0
(𝑎,]2,10[)
→ 𝑙𝐴0

(𝑎,]2,10[)
→ 𝑙𝐴0 𝑙𝐵0

(𝑎,]2,10[)
→ 𝑙𝐵0

(𝑎,]2,10[)
→ 𝑙𝐵0

 𝑙𝐵0
(𝑎,]2,10[)
→ 𝑙𝐵0

(𝑎,]2,10[)
→ 𝑙𝐵0

(𝑎,]0,∞[)
→ 𝑙𝐵1

 𝑙𝐵0
(𝑎,]2,10[)
→ 𝑙𝐵0

(𝑎,]0,∞[)
→ 𝑙𝐵1

 𝑙𝐵0
(𝑎,]2,10[)
→ 𝑙𝐵0

(𝑎,]0,∞[)
→ 𝑙𝐵1

(𝑎,]2,20[)
→ 𝑙𝐵1

 𝑙𝐵0
(𝑎,]0,∞[)
→ 𝑙𝐵1

 𝑙𝐵0
(𝑎,]0,∞[)
→ 𝑙𝐵1

(𝑎,]2,20[)
→ 𝑙𝐵1

 𝑙𝐵0
(𝑎,]0,∞[)
→ 𝑙𝐵1

(𝑎,]2,20[)
→ 𝑙𝐵1

(𝑎,]2,20[)
→ 𝑙𝐵1

C. Timed bounded discretized language

This step focuses on converting the discretized runs from
step 2 into a format suitable for the timed bounded discretized
language. Each discretized run is transformed into a discrete
timed word (action, [Tmin, Tmax]) where [Tmin, Tmax]
represents the minimum and maximum execution times to reach
the transition associated with the action.

Finally, all the obtained discrete timed words generated from
each discretized run are gathered together to form the timed
bounded discretized language. This language becomes the
foundation for the verification process, allowing the comparison
of behaviors between the two timed automata while considering
both actions and their possible execution time ranges.

Example 6:
According to the results shown in Table 2, we determine the

timed bounded discretized language of A and B as follow:
DTL(A,3)={(a,]2,10[), (a,]2,10[) (a,]4,20[)};
DTL(B,3)={(a,]2,10[), (a,]2,10[) (a,]4,20[), (a,]2,10[)

(a,]4,20[) (a,]4,20+[), (a,]2,10[) (a,]2,10+[), (a,]2,10[)

(a,]2,10+[) (a,]4,30+[), (a,]0,+[) (a,]2,20+[), (a,]0,+[)

(a,]2,20+[) (a,]4,40+[)}

D. Verification

With the timed bounded discretized language (DTLs)
constructed for both automata (A and B), the actual verification
of language inclusion can now take place. This step involves

checking each element (discrete timed word) within the DTL of
automaton A (denoted as DTL(A)) against the elements in the
DTL of automaton B (DTL(B)). Every discrete timed word in
DTL(A) must have a corresponding element (another discrete
timed word) within DTL(B). The corresponding elements in
both DTLs should share the same actions. Additionally, each
interval (minimum and maximum execution time range) for an
action in the discrete timed word generated from A should be
entirely contained within the corresponding interval for the same
action in the discrete timed word generated from B.

According to the results of timed bounded discretized
language of A and B, we obtain that DTL(A, α) is included in
DTL(B, α) (for each discrete timed word in DTL(A, 5), there
exists an equivalent discrete timed word in DTL(B, 5)).

V. COMPARISON BETWEEN THESE METHODS

This section focuses on how the previously discussed methods

([2] – semi-algorithm and [3] - Timed Bounded Discretized

Language) compare for bounded verification of language

inclusion between timed automata A and B.

A. Finiteness

The authors of method [2] acknowledge that their approach can

potentially lead to infinite exploration, which could prevent

verification from ever terminating. In contrast, the authors of

method [3] have proven that their approach using timed

bounded discretized language is guaranteed to terminate

(finite).

B. Bounding Techniques

The key difference between the methods lies in their approach

to bounding exploration. Method in [2] relies on a bound on the

number of clocks generated during the verification process.

Method in [3] employs a bound on the execution time for

transitions within the automata.

C. Complexity and Memory Usage:

Applying both methods to automata A and B, we observe that

method [2] (semi-algorithm) is generally more complex than

method [3] (timed bounded discretized language).

This increased complexity is also reflected in the memory

usage. Table III demonstrates that method [2] requires more

memory space for the verification of inclusion compared to

method [3].

TABLE III. SPACE MEMORY

 Method in [2] Method in [3]

Formula 2|L
B

|*  |X|+1 (2b) 2 *! * |LA|

|DTL(A,5)|* |DTL(A,5)|=

3*k2*|T’A|k *|T’B|k

Calcul 22*32*(2*3)3*3 *3!*|1|=

2 176 782 336
3*32*|1|3*|2|3=216

Where b is the maximum number clocks, k is the maximum

length of the discrete timed word and |T’| represents the

maximum number of out-degrees of a location.

VI. CONCLUSION

This paper investigated the verification of language inclusion
for timed automata, focusing on the challenges posed by non-
Zeno behavior. We explored two verification approaches: the
zone-based semi-algorithm [2] and the timed bounded
discretized language method [3].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 12 Issue: 2

Article Received: 25 November2023 Revised: 12 December 2023 Accepted: 30 January 2024

 90

IJRITCC | February 2024, Available @ http://www.ijritcc.org

Our analysis revealed key differences between these
approaches. While the zone-based semi-algorithm is a well-
established technique, it can lead to infinite exploration. The
timed bounded discretized language method offers a promising
alternative by incorporating execution time information, leading
to a guaranteed termination process and more comprehensive
verification.

The comparison of these methods on specific timed automata
highlighted the advantages of the timed bounded discretized
language approach in terms of guaranteed termination, lower
memory usage, and more informative verification results.

Building upon the insights gained from this comparison,
future work could involve exploring the potential benefits of
combining elements from both approaches to create a hybrid
verification technique that leverages the strengths of each.
Furthermore, the development of software tools based on these
verification approaches can facilitate practical application in the
design and verification of real-time systems.

REFERENCES

[1] Rajeev Alur and David Dill, A theory of timed automata,
Theor. Comput. Sci. (1994), pp. 183--235.

[2] Y. Wang, M. Sun, L. Sun, and J. Sun. "Language Inclusion
Checking of Timed Automata with Non-Zenoness." In IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp.
142-159, 2017.

[3] I. Ammar, Y. El Touati, J. Mullins, and M. Yeddes. "Timed
Bounded Verification of Inclusion Based on Timed Bounded
Discretized Language." In International Journal of
Foundations of Computer Science, vol. 32, no. 01 (2021), pp.
1-23, 2021.

[4] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Hooman.
"Model-checking for Timed Automata." In Theoretical
Computer Science, vol. 290, no. 1, pp. 251-273, 2003.

[5] S. Tripakis. "Formal Testing for Timed Systems: A Survey."
In Real-Time Systems Symposium (RTSS'99), pp. 166-175,
IEEE, 1999.

[6] Ting Wang, Jun Sun, Yang Liu, Xinyu Wang and Shanping
Li, Are timed automata bad for a specification language?
Language inclusion checking for timed automata, Tools and
Algorithms for the Construction and Analysis of Systems,
Vol. 8413 (International Conference TACAS, 2014), pp.
310--325.

[7] Ikhlass Ammar, Yamen El Touati et Moez Yeddes.
«Verification of bounded inclusion problem for Timed
automata with diagonal constraints». International
Conference on ELectrical, Computer, and Energy
Technologies (ICECET)-IEEE Explore to appear 20-22 july
2022.

http://www.ijritcc.org/

