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Abstract — We investigate the application of Independent Component Analysis (ICA) and the process of optimal ordering of independent 

components in reconstructing time series generated by mixed independent sources.  We use a modified fast neural learning ICA algorithm with a 

non-linearity dependent on the statistical properties of the observed time series to obtain independent components (IC’s). Experimental results 

are presented on the reconstruction of both artificial time series and actual time series of currency exchange rates using different error measures. 

The area of the error profile is introduced as a minimizing parameter to obtain optimal ordered lists of IC’s for the different series. We compare 

different error measures and different algorithms for determining optimal ordering lists. Our results support the use of an Euclidean error 

measure for evaluating reconstruction errors and are in favor of a method for obtaining optimal ordering lists based on minimizing the error 

profile between contributions of independent components in the lists and the observed time series. For the majority of the series considered, we 

find that quite acceptable reconstructions can be obtained with only the first few dominant IC’s in the lists.  
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I.  INTRODUCTION 

Independent Component Analysis (ICA) has been 

considered as a powerful tool in generating independent 

features in problems where sets of observed time series may 

be considered as results of linearly mixed instantaneous source 

signals [1,2]. It has been successfully applied in a wide variety 

of problems (see survey in [3]). In the application of ICA in 

time series analysis, there is great value in the reconstruction 

of observed data for trend discovery and forecasting [4,5].  

The process requires the optimal ordering of IC’s for the 

reconstruction process. Although this problem had some 

attention in the literature, the methods suggested vary 

considerably. For example, the components are sorted 

according to their non-gaussianity [6], or by selecting a subset 

of the components based on the mutual information between 

the observations and the individual components [7]. Also, in 

the work [8], the L∞ norm of each individual component is 

used to decide on the component ordering where the order is 

determined based on each individual component only. More 

recently, component ordering is suggested to be based on 

component power [9]. On the other hand, the works in [4] and 

[10] consider the joint contributions of IC’s in data 

reconstruction, which naturally leads the component ordering 

to a typical combinatorial optimization problem.  

In the present paper, we investigate the process of 

reconstruction of observed time series using ICA. We use a 

modified fast neural learning ICA algorithm with a non-

linearity dependent on the statistical properties of the observed 

time series. Experimental results are presented on the 

reconstruction of both artificial time series and actual time 

series of currency exchange rates using different error 

measures. The area of the error profile is introduced as a 

minimizing parameter to obtain optimal ordered lists of IC’s 

for the different series. We compare different error measures 

and different algorithms for determining optimal ordering lists. 

The paper is organized as follows: section II introduces the 

ICA of time series and the modified fast ICA algorithm used 

in the present work; section III describes the process of 

reconstruction of observed time series; section IV presents the 

different methods for the determination of optimal ordering 

lists; sections V and VI give results of experimentation; and 

finally section VII presents the summary and conclusion of our 

work.   

II. ICA OF TIME SERIES 

A. The ICA Model 

 Consider the observed k time series X = x(t) 

=[x1(t),…xk(t)]
T
  , 1 ≤ t ≤ N to be the instantaneous linear 

mixture of unknown statistically independent components Y = 

y(t) =[y1(t),…..yk(t)]
T
, i.e., X = A Y, where A is an unknown k 

x k nonsingular mixing matrix. Given X, the basic ICA 

problem is to find an estimate 𝒚  of Y and the mixing matrix A 

such that 𝒚  = W X = W A Y = G Y ≈ Y, where W = A
-1

 is the 

unmixing matrix, and G = W A is usually called the Global 

Transfer Function or Global Separating-Mixing (GSM) 

Matrix. The linear mapping W is such that the unmixed signals 

𝒚  are statistically independent. However, the sources are 

recovered only up to scaling and permutation. In practice, the 

estimate of the unmixing matrix W is not exactly the inverse of 

the mixing matrix A. Hence, the departure of G from the 
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identity matrix I can be a measure of the error in achieving 

complete separation of sources. 

B. The Neural Learning ICA Algorithm 

For computing the independent components (IC’s) from the 

observed time series, we have adopted the modified algorithm 

used before in [10], which is based on the Fast ICA algorithm 

originally given by [11]. Basically, the algorithm uses a fixed-

point iteration method to maximize the negentropy using a 

Newton iteration method. We assume that the observation 

matrix X of k time series and N samples has been preprocessed 

by centering followed by whitening or sphering to remove 

correlations. Centering removes means via the transformation 

X←X-E{X} and whitening is done using a linear transform 

(PCA like) Z = VX, where V is a whitening matrix. A popular 

whitening matrix is V = D
-1/2

 E
T
, where E and D are the 

eigenvector and eigenvalue matrices of the covariance matrix 

of X, respectively. The resulting new matrix Z is therefore 

characterized by E{ZZ
T
} = I  and E{Z} = 0. After obtaining the 

unmixing matrix W from whitened data, the total unmixing 

matrix is then W ← W V. The algorithm estimates several or 

all components in parallel using symmetric orthogonalization 

by setting W ← (W W
T
)

-1/2
 W in each  iteration. 

In the modified version [10] of the algorithm, the 

performance during the iterative learning process is measured 

using the matrix G = W A, which is supposed to converge to a 

permutation of the scaled identity matrix at complete 

separation of the IC’s. This is done by decomposing G = Q P, 

where P is a positive definite stretching matrix and Q is an 

orthogonal rotational matrix. The cosine of the rotation angle 

is to be found on the diagonal of Q so that a convergence 

criterion is taken as Δ |diag(Q)|min <  ε , where ε  is a threshold 

value. This leads to the normalized performance (error) 

measure, E3 introduced in [10] as: 

3
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where gij is the ij
th

 element of the matrix G of dimensions k x 

k, Mi = maxk | gik | is the absolute value of the maximum 

element in row ( i ) and Mj = maxk | gkj | is the corresponding 

quantity for column ( j ). 

 

The algorithm is summarized in the following steps: 

 

 Preprocess observation matrix X to get Z  

 Choose random initial orthonormal vectors wi to form 

intial W and random  A 

 Set Wold ← W 

Iterate: 

1. Do Symmetric orthogonalization of W  by setting W 

← (W W
T
)

-1/2
 W 

2. Compute dewhitened matrix A and new G = W A and 

do polar decomposition of G = Q P  

3. Compute error E3 

4. If not the first iteration, test for convergence:   

Δ | diag(Q) |min <  ε  

5. If converged, break. 

6. Set Wold ← W 

7. For each component  wi of W, update using learning 

rule wi   E{z f (wi z)} 

– E{ f ’ (wi z)} wi 

 After convergence, dewhiten 

using W ← W V 

 Compute independent components 𝒚  = W X 

In the update step, z is a column vector of one sample from Z, 

and the expectation is the average over the N samples in Z. 

C. Choice of Non-linearity 

In the above neural learning algorithm, a  non-linearity f(y)  

(and its derivative f
 
‘(y)) is essential in the optimization 

process and for the learning rule that updates the estimates of 

the unmixing matrix W and, overall, it is important for the 

stability and robustness of the convergence process. It is 

common to use non-linearities f (x) that are derived from 

assumed source models such that 𝑓 𝑥 = −(𝜕𝑝(𝑥)/𝜕x) / p(x), 

where p(x) is the PDF of the source. For super-gaussian 

sources, the PDF p(x) = 1/cosh(x) leads to the general purpose 

non-

linearity 

f (x) = tanh(x).  

For sub-gaussian sources, it was shown in [12] that the 

PDF can be represented by a bimodal Exponential Power 

Distibution (EPD) symmetric mixture density 

 

         (3) 

 

where, 
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The function (4) is the single EPD with scale parameter (a), a 

shape parameter (b) and location parameter μ. The above 

symmetric density leads to a non-linearity 
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where, 
1 1bη ρ b| x μ| sign (x μ), b

               (6) 

 

Considering the stability profiles of such mixture model, the 

work in [12] has given for sub-gaussian sources the following 

set of parameters for the non-linearity given by equation (3): 
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III. RECONSTRUCTION OF OBSERVED TIME SERIES USING 

INDEPENDENT COMPONENTS 

A. Contribution of Independent Components to Observed 

Time Series 

Assume we have a list Li of independent components 

indices expressing a specific component ordering. The process 

of reconstructing time series xi from the estimated independent 

components Yj, j = 1…k can be done by summing their 

contributions in the order given by the list Li. Following [4], 

[10], the contribution may be expressed by the 3-D space:  

                           (7)                       

         

where W
-1

(i,j) is the (i,j)th element in the inverse of the W 

matrix. The reconstructed series of xi by the first m 

independent components in the list Li is given by the sum of 

the contributions of the individual component, i.e.,        

                                                            

                                (8) 

where (s) denotes the s
th

 element of Li.. 

B. Reconstruction Error Profile 

The reconstruction error for xi can be computed under a 

certain error measure (e.g. Euclidean Distance or MSE, 

Average Mutual Information (AMI), etc). At a given time (t) 

in the time series xi, this error may be denoted by the quantity

ˆ( ( ), ( , ))m

i i iq x t x L t . For the whole series, the average is given 

by: 

      

         (9) 

 

The dependence of the above quantity on m represents the 

error profile for the reconstruction of series xi using list Li. 

Naturally, it will also depend on the error measure used. 

C. Error Profile Area 

The error profile Q(m) depends on the list Li  and the used 

error measure. For comparison purposes, we introduce the 

error profile area as a collective error measure for a given 

profile. From observations, we find that typical error profiles 

exhibit an approximate exponential decrease with increasing 

m. If we express the error as 𝑄 𝑚 = 𝐶 exp − 𝑚 , 𝑚 > 0,  

then the area under the error profile will be 

                                  

                                                                                              (10) 

 

In practice, we compute the area as 

                           

       (11) 

The error profile area is therefore a sensitive measure of 

IC’s order given by the list Li. Using such area, an optimal 

ordering list may be obtained as: 

arg min ( ( ))
i

opt

i L iL A L                                          (12) 

IV. DETERMINATION OF OPTIMAL ORDERING LISTS 

We investigate five different methods for determining the 

optimal list for the reconstruction of an observed series xi. 

These methods are summarized as follows: 

A. Exhaustive Search Method (ES) 

A list Li of k indices of IC’s has k! permutations. 

Exhaustive search will examine the error profile for each of 

these permutations for a given observed series xi. Based on a 

given error measure, the resulting k! error profile areas A(Li ) 

are then used to find 
opt

iL  as given by (12). This method 

involves k!  reconstruction steps. 

 

B.  The L∞ Norm Method (LN)  

The contribution of independent component (j) to the 

reconstruction of observed series xi is given by the quantity 

u(i,j,t). In this method, the L∞ norm of each of these individual 

components is used to decide on the component ordering. The 

optimal list represents the component indices sorted in 

descending order of their L∞ norm. 

 

C.  Exclude the Least Contributing IC First (EL) 

This is basically the Testing-and Acceptance (TnA) method 

given by [4]. The method first selects from the set of k IC’s the 

component that when excluded from the list will minimize the 

reconstruction error. This component is then removed from the 

set of IC’s and its index becomes the last in the order list Li. 

The process is repeated on what remains in the component set 

to select the second-last in the order list, and so on. The 

algorithm for this method is given in the following: 

 

Algorithm Exclude-Least-First 

Li = {  } is an empty list;     Z = set of indices 1: k; 

r = 1 is the reverse order of the least contributing IC; 

While (r ≤ k) 

    For all indices j remaining in Z 

        Find the sum of contributions excluding component (j),  

   ,

( ) ( , , )ij

m Z m j

C t u i m t
 

 
 

        Find the error ij of reconstructing xi using Cij; 

    End For 

 α = index (j) for which ij is minimum = index of IC of 

least  contribution; 

    Li (r)  α; 

    Remove α from set Z; 

    r  r +1; 

End While 
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Li  Reverse (Li); 

 

This algorithm will involve 𝑘(𝑘 + 1)/2 − 1  reconstruction 

steps. 

 

D.  Maximizing the Average Mutual Information (AMI) 

Average mutual information (AMI) measures the 

dependence between pairs of random variables. It can be used 

in selecting a subset of the components based on the mutual 

information between the observations and the individual 

components [7]. In the present work, an optimal list may be 

obtained by sorting in ascending order the AMI between 

individual contributions u(i,j,t) and the observed series xi. This 

method involves only k reconstruction steps. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Dependence of AMI on  for bivariate Gaussian 

series (x,y) 

 

Several algorithms exist for computing the AMI between 

two series. [13]. A fast implementation given in [14] will be 

used here. In order to test the AMI algorithm, it is well known 

[e.g. 15] that if (x,y) are bivariate normal, then the AMI 

between x and y depends only on the correlation coefficient   

between them. Specifically in this case,  

 
2

2( , ) (1/ 2)log (1 )AMI x y     
We have generated two random Gaussian series x and y 

with a correlation coefficient between them in the range -0.95 

≤  ≤ +0.95 in steps of 0.05. The AMI obtained from the 

algorithm is compared with the theoretical values as shown in 

Fig. 1 for series length of N = 5000. The validity of the 

algorithm is evident from the comparison of computed and 

theoretical AMI values. 

 

E. Minimizing the Reconstruction Error for Individual IC’s 

Contribution (ME) 

Given a certain error measure, the list is obtained by 

sorting in ascending order the error between individual 

contributions u(i,j,t) and the observed series xi. This method 

involves only k reconstruction steps. 

 

V. EXPERIMENTS WITH ARTIFICIALLY GENERATED 

DATA 

A.  ICA of Artificially Generated Time Series 

In order to validate the present methodology and to 

compare between different methods for determining 

reconstruction lists, we have used k = 6 artificially generated 

time series, each of length N = 2000. The generated series S 

were mixed by a random mixing matrix A to obtain the 

simulated observed series X = A S. Fig. 2 shows portions of 

the source signals S, the mixed signals X and the IC’s obtained 

from the fast ICA algorithm given in Section II.B. For 

choosing the appropriate non-linearity, we have computed the 

normalized kurtosis K for the mixed series X as given by K= 

E{x
4
} / (E{x

2
})

2
 – 3. with the results shown in Table (1). 

 

 

 

Figure 2. Artificial source signals, mixed series and obtained 

IC’s 

 

TABLE 1. Kurtosis of mixed series 

 

X Series 1 2 3 4 5 6 

Kurtosis 0.156 0.275 0.441 0.182 0.365 1.262 

 

Table (1) shows that the mixed signals are all super-

gaussian (K > 0) and a suitable non-linearity would be the 

general purpose one f (x) = tanh(x). 

 

B.  Error Measures 

 

For evaluating reconstruction errors, we have selected 3 

error measures as follows: 

 

1. Relative Hamming Distance (RHD) 

The Q-measure using RHD is given as: 

 

𝑄 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚 = 𝑅𝐻𝐷 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚 =  

                    =  
1

𝑁−1
 [𝑅𝑖 𝑡 − 𝑅 𝐿𝑖

𝑚 (𝑡)]2𝑁−1
𝑡=1                       (13) 

where, 

 

𝑅𝑖 𝑡 =  𝑠𝑖𝑔𝑛[𝑥𝑖 𝑡 + 1 − 𝑥𝑖(𝑡)] , 
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𝑅 𝐿𝑖

𝑚  𝑡 =  𝑠𝑖𝑔𝑛[𝑥 𝐿𝑖

𝑚  𝑡 + 1 − 𝑥 𝐿𝑖

𝑚(𝑡)]    

   

2. Euclidean Distance or Mean Square Error (MSE) 

The Q-measure using MSE is given as: 

𝑄 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚 = 𝑀𝑆𝐸 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚  

=
1

𝑁
 [𝑥 𝐿𝑖

𝑚  𝑡 − 𝑥𝑖 𝑡 ]2𝑁
𝑡=1                            (14) 

 

3. AMI Distance (AMID) 

The Average Mutual Information (AMI) may be used as 

an error measure equivalent to the distance between AMI 

(max) and AMI (x,y). In the present work, we use AMI Q-

measure in the form: 

 

𝑄(𝑥𝑖 , 𝑥 𝐿𝑖

𝑚 ) = 𝐴𝑀𝐼𝐷 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚   

= 𝐴𝑀𝐼 𝑥𝑖 , 𝑥𝑖 −  𝐴𝑀𝐼( 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚                    (15) 

C.  Results for Series Reconstruction 

In order to reconstruct observed series X from the obtained 

IC’s, we have to first determine the error measure most 

appropriate for such process. We have derived trial ordered 

lists of IC indices  using the method of minimizing the MSE 

and computed the error profiles for the 3 different error 

measures (RHD, MSE, and AMID). Fig. 3a shows an example 

for x1 of such profiles representing the dependence of the 

reconstruction error Q(m) on the number of contributing IC’s 

(m) taken in order from the ordered list.  

It can be seen from the figure that the MSE measure gives 

the desired lowest profile. Such result is also found in the 

reconstruction of all other series X. This result is also evident 

from computations of the error profile area as shown in Fig. 3b 

where A(L) is plotted against the indices of the observed series 

X. From these results, it is possible to conclude that the MSE 

error measure is superior to RHD and AMID for the 

evaluation of reconstruction error. 

 

 
 

Figure 3a. Example error profiles 

 

 
Figure 3b. Reconstruction error area 

Turning now to the problem of determining optimal lists for 

reconstruction, we have made calculations of the error profiles 

and error profile areas for the 5 methods given in Section IV 

using MSE as the error measure. Fig. 4 shows a comparison of 

the different methods for the observed artificial series X. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Reconstruction error area for observed series 

 

It can be seen from this figure that the L∞ norm method 

(LN) cannot compete with the other methods. It is also clear 

that the three methods of Exhaustive Search (ES), Exclude 

Least (EL), and Minimizing MSE (ME) give exactly the same 

results and are superior to all other methods, including 

maximizing AMI.  

Table (2) gives an example of the optimal lists obtained for 

the reconstruction of observed series x1 again highlighting the 

conclusions drawn from Fig. 4. In particular, the ES, EL, and 

ME (with MSE measure) methods give exactly similar lists. 

 

TABLE 2. Optimal IC lists for observed series x1 

 

Method     List       

ES 1 5    4   2 3 6 

LN 2 4 6 1 5 3 

EL 1 5 4 2 3 6 

AMI 1 5 4 3 2 6 

ME (MSE) 1 5 4 2 3 6 
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On the other hand, the AMI method gives slightly different 

lists resulting in slightly higher reconstruction error, while the 

lists obtained by the LN method cannot be judged to be optimal 

and therefore produce much higher reconstruction errors. 

Although tables like Table (2) for the other 5 series are not 

given here, it can be shown that similar conclusions apply to all 

the 6 observed series X. 

 

D.  Obtained Reconstruction Ordered Lists 

There is an exact match between the ordered lists obtained by 

the 3 methods of ES, EL and ME using the MSE error measure 

and all give the same minimum reconstruction error. Recall 

that the number of reconstruction steps required by these three 

methods are:  k! , k(k+1)/2 – 1, and k respectively, where k is 

the number of observed time series. For our case of k = 6, the 

number of reconstruction steps are 720, 20 and 6, respectively. 

Hence, we may consider the ME (MSE) method to be of least 

complexity. Using this last method, we obtain the following 

set of ordered lists for the 6 artificially generated time series: 

 

L1 = [1  5   4   2   3   6]   L2 = [1   5   2   3   4   6] 

     L3 = [1  3   6   5   2   4]   L4 = [3   2   1   5   4   6] 

     L5 = [1  6   3   4   2   5]   L6 = [2   4   1   5   6   3] 

 

Note that exactly the same sets are also obtained by the 

Exhaustive Search (ES) and the Exclude Least (EL) methods. 

 

VI.    EXPERIMENTS WITH FINANCIAL DATA 

A.  Exchange Rate Time Series Dataset 

As a second set of experiments, actual time series of 6 

foreign exchange rate series were selected representing USD 

versus Brazilian Real (BRL), Canadian Dollar (CAD), Danish 

Krone (DKK), Japanese Yen (JPY), Swedish Krona (SEK), and 

Swiss Franc (CHF) in the period from January 4, 2010 till 

December 31, 2015. The dataset size was 6 time series over 

1504 days collected from different historical exchange rates 

data sources such as [16, 17, 18]. Fig. 5 shows these time 

series.  

In order to choose the appropriate non-linearity for the fast 

ICA algorithm given in Section II.B., we have computed the 

normalized kurtosis K for the above series X with the results 

shown in Table (3). The observed series represent a mixture 

between super-gaussian (K > 0) and sub-gaussian signals (K < 

0). We found that our fast ICA algorithm would converge in 

fewer number of iterations if we use the mixture non-linearity 

given by (5) rather than the general purpose non-linearity f (x) 

= tanh(x).  

 
Figure 5. Exchange rate time series 

 

TABLE 3. Kurtosis of observed series 

 

X Series 1 2 3 4 5 6 

Kurtosis 1.491 0.867 0.330 - 1.004 - 0.082 1.628 

 

B.  Results for Series Reconstruction 

Using the IC’s obtained from the fast ICA algorithm, we 

have derived trial ordered lists of IC indices  using the method 

of minimizing the MSE and computed the error profiles for the 

3 different error measures (RHD, MSE, and AMID). Fig.6a 

shows an example for x5(SEK) of such profiles representing the 

dependence of the reconstruction error Q(m) on the number of 

contributing IC’s (m) taken in order from the ordered list.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6a. Example error profiles 

 

This result is also evident from computations of the error 

profile area as shown in Fig.6b where A(L) is plotted against 

the indices of the observed series X. It can be seen from that 

figure that the MSE measure also gives the desired lowest 

profile for the financial series. Such result is also found in the 

reconstruction of all other series X.  
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Figure 6b. Reconstruction error area 

 

For determining optimal lists for reconstruction, we have 

made calculations of the error profiles and error profile areas 

for the 5 methods given in Section IV using MSE as the error 

measure. Fig. 7 shows a comparison of the different methods 

for the observed artificial series X 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Reconstruction error area for observed Exchange 

rate series X: Comparison of Methods for obtaining optimal 

lists 

 

It can be seen from Fig. 7 that the three methods of 

Exhaustive Search (ES), Exclude Least (EL), and Minimizing 

MSE (ME) give exactly the same results and are superior to all 

other methods, a result that is in accordance with our findings 

for artificially generated series. 

Table (4) gives an example of the optimal lists obtained for 

the reconstruction of observed series x2 (CAD) again 

highlighting the conclusions drawn from Fig. 7. In particular, 

the ES, EL, and ME (with MSE measure) methods give exactly 

similar lists. 

It can also be seen from Table (4) that the LN method gives 

slightly different lists resulting in slightly higher reconstruction 

error, while the lists obtained by the AMI method produce 

much higher reconstruction errors. Although tables like Table 

(4) for the other 5 series are not given here, it can be shown that 

similar conclusions apply to all the 6 exchange rate series. 

 

TABLE 4. Optimal IC lists for exchange rate series x2 

(CAD) 

Method     List       

ES 1 3 5 6 2 4 

LN 1 3 6 5 2 4 

EL 1 3 5 6 2 4 

AMI 5 3 1 2 6 4 

ME  1 3 5 6 2 4 

 

C.  Results for Ordered Lists and Contributions of IC’s 

Although the ES, EL, and ME methods give exactly similar 

lists, the ME method is superior since it involves only k = 6 

reconstruction steps. Using this method, we obtain the set of 

ordered lists for the 6 exchange rate time series X. Table (5) 

shows the obtained ordered lists. 

 

TABLE 5. Obtained ordered lists 

Series Ordered List 

BRL 1     3     5     4     6     2 

CAD 1     3     5     6     2     4 

DKK 3     1     6     4     5     2 

JPY 3     5     1     6     4     2 

SEK 3     1     2     6     4     5 

CHF 2     6     5     1     4     3 

 

 Table (6) gives the percentage cumulative contribution of 

the first m IC’s from the lists to the reconstruction of the 

exchange rate time series. In this table, the contributions are 

calculated as 1 -𝑀𝑆𝐸 𝑥𝑖 , 𝑥 𝐿𝑖

𝑚  / 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑥𝑖  = 1- Q(m), since 

the series have zero mean and unit variance. 

 

TABLE 6. Cumulative Contributions of IC’s (%) 

Series m=1 m=2 m=3 m=4 m=5 m=6 

BRL 58.1 81.6 88.5 93.3 97.3 100.0 

CAD 49.3 90.3 95.8 99.8 100.0 100.0 

DKK 49.5 77.4 88.0 97.7 100.0 100.0 

JPY 40.8 73.5 93.4 97.5 100.0 100.0 

SEK 54.6 86.8 95.2 97.6 99.2 100.0 

CHF 64.1 93.1 96.0 98.0 99.3 100.0 

 

The results given in Table (6) indicate that most of the 

observed exchange rate series considered here can be 

reconstructed to an excellent degree  using the first 4 IC’s in 

their respective ordered lists (contributions > 97 %). For the 

majority of series, quite acceptable reconstructions (> 93 %) 

can also be obtained with only the first 3 IC’s in the lists 

 

D.  Comparison between Reconstructed and Observed Series 

As an example, Fig. 8 compares the observed CAD/USA 

series with the reconstructed ones using the first one, the first 

two and first 3 IC’s in their ordered lists.  
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Figure 8. Reconstruction of exchange rate time series X2 

(CAD), Red (Observed), Blue (constructed) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Reconstruction of exchange rate time series X5 

(SEK), Red (Observed), Blue (constructed) 

 

A second example is shown in Fig. 9 for the SEK/USD 

series. Notice that the series compared in these figures have 

zero mean and unit variance as obtained from the preprocessing 

of the data for the ICA algorithm. A third example is also 

shown in Fig. 10 for the CHF/USD series. 

 

 
Figure 10. Reconstruction of exchange rate time series X6 

(CHF), Red (Observed), Blue (constructed) 

 

It can be seen from these figures that the reconstruction of 

observed series can preserve the general trends with one or two 

dominant IC’s and that quite acceptable matching can be 

realized with only the dominant 3 IC’s in the lists. 

 

VII.    SUMMARY AND CONCLUSIONS 

We have used Independent Component Analysis (ICA) in 

the process of reconstructing observed time series that might 

have been generated by mixed independent sources. A 

modified fast ICA algorithm is adopted with enhancements 

achieved by using non-linearities dependent on the normalized 

kurtosis of the observed series.  

We have experimented with both artificially generated 

series and actual observed series of currency exchange rates. 

The artificial data were all super-gaussian for which we have 

used a general purpose non-linearity. The exchange rate data 

were a mixture between super-gaussian and sub-gaussian 

signals. For this latter dataset, we found that our fast ICA 

algorithm would converge in fewer iterations if we use a 

mixture non-linearity derived from a bimodal Exponential 

Power Distribution (EPD) symmetric mixture density. 

For the reconstruction of the observed series from the 

obtained IC’s, one has to obtain ordered lists of such 

components using an error measure that would minimize the 

error between observed and reconstructed series.  

We have experimented with three different error measures 

namely, Relative Hamming Distance (RHD), Mean Square 

Error (MSE) and Average Mutual Information Distance 

(AMID). The area of the error profile is introduced as a 

sensitive measure of IC’s order given by a list and to compare 

between the performances of the different error measures for a 

given ordered list. We find that the MSE measure is superior to 

the other two methods for all of the series concerned. 
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We have also compared five different methods for 

determining the optimal lists. These utilize Exhaustive Search 

(ES), the L∞ norm (LN), Exclude Least contribution (EL), 

Maximizing Average Mutual Information (AMI) and 

Minimizing Mean square Error (MSE). Naturally ES gives 

optimal ordered lists but it requires k!  reconstruction steps 

where k  is the number of IC’s used.   

From experiments with artificial and exchange rate datasets, 

we find that both EL and MSE algorithms offer excellent 

results since they give exactly the same ordered lists as the ES 

method. However, we consider the MSE to be the most 

efficient since it requires only k reconstruction steps compared 

to k (k+1)/2-1 steps for the EL algorithm and k! steps for the 

ES algorithm.  

On the other hand, the LN and AMI algorithms sometimes 

produce lists that are not optimal and therefore cannot compete 

with the other three algorithms. Here we might argue that the 

LN method does not necessarily consider the whole 

contribution of a given IC to the reconstruction process. As for 

the AMI algorithm, it is observed that AMI computations 

converge to correct results only for long series length [13] and 

that AMI values are not very sensitive to correlations in the 

pairs of series when they are characterized by low correlation 

values. 

For comparing observed exchange rate series with the 

reconstructed ones, we have produced results for the percentage 

contribution of cumulative IC’s from the ordered lists obtained 

using the MSE algorithm. For the majority of the series 

considered, we find that quite acceptable reconstructions (> 93 

%) can be obtained with only the first 3 dominant IC’s in the 

lists. Even the reconstruction with only the first, or with the 

first and the second IC’s, the trends in the observed series are 

acceptably preserved.   
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