
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 933
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Design and Implementation of Software Engineering

Developed Process Models

Md Asghar Ali

Research Scholar, Department of Computer Application

Dr. APJ Abdul Kalam University, Indore.

Dr. Sandeep Singh Rajpoot, Dr. Ajay Jain

Research supervisor

Associate Professor, Computer Sciences and Application

Dr. APJ Abdul Kalam University, Indore.

ABSTRACT

An Analysis is done of the traditional software life cycle models that are used in the field and current software development

practices. It then gives a more in-depth look at the traditional models of software evolution that are used a lot and are thought of as

the best way to organize software engineering projects and technologies. There are so many things that go into making software

that it's hard to think of a single process model that would work for all projects. This study, however, came up with a generalized

model that could help companies make good software. A general goal for evaluation, which means to think about or think about

how important it is, is shown. Examining current practices, confirming theories, exploring when the subject isn't well understood,

and describing the current state of things are all part of the general evaluation goals. Evaluation helps predict the future and

explain why things or sequences are taking place, so it is important to do it. It is important to know about both the software

process and what the software does. With this evaluation, we can figure out how to evaluate it.

Keywords: Evaluation, Procedure, Software Process Models, software development practices

INTRODUCTION

There are a lot of different models for how to make

software, and they're all explained in software engineering,

which talks about how software changes over time. The

lifecycle is all about the product, and it shows how a product

goes from when it's made to when it's used and then thrown

away. A software process model is an abstract

representation of how the architecture, design, or definition

of the software process is thought of in general terms.

In software development, process models are used to deal

with issues like cost, time, and quality, as well as changes in

the needs of the client. The way a software product goes

through its life cycle can have a big model on a lot of

different issues. It's very likely that if the process is weak,

the end product will be bad as well. There has been a lot of

process done in this field, but there are still not enough

software process models to deal with the changes that

happen during the development of large software projects.

This leads to software projects that don't meet their

customers' expectations in terms of functionality, cost, and

delivery time. Several factors can cause a project to fail, but

the most common ones are the project management process

itself and how IT fits in with the culture of the project where

it's being used.

Developing and maintaining software systems requires a lot

of very connected work. In order to manage these structured

set of activities, different models have been used over the

years with a range of success. These are the Waterfall

model, Continuous development, Prototyping, Spiral model,

and RAD. Each product can go through different stages

depending on the circumstances of each project, so there are

different models to make them. For example, if the problem

is well-defined and well-understood, and the user's need is

almost always the same, a short waterfall-like life cycle is

likely to be enough. The Waterfall Model was used a lot

because it formalized some basic process control rules. It's

not going to be easy to write down all the things we need to

do when we don't know what the problem is or how the user

wants to use it. Spiral Model: In this case, we have to go

with longer and more complicated life cycles, like this one.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 934
IJRITCC | December 2023, Available @ http://www.ijritcc.org

During each cycle of the Spiral Model, more and more of

the development of the software product is looked at. They

did this in a series of papers called "Win–Win Spiral

Model." This is a different version of the spiral model that

they came up with. The win–win stakeholder method is used

to figure out three important project milestones: life-cycle

architectures, life-cycle objectives, and initial operational

capability. Prototyping Model helps you figure out what you

need, but it can also lead to false expectations and a poorly

designed system. Rapid Application Development is one of

the most common ways to use the Prototyping Model

(RAD).

In this model, there are strict time limits for each

development phase and a lot of development on tools that

make it rapid to make things happen quickly. Exploratory

models use prototyping to get information about what

people need. They were very simple to build, but they don't

have a lot of high-level language for quick development.

This model works best when very few, or no, of the system

or product requirements are known ahead of time. This

model is mostly based on smart guesses. This method isn't

very cost-effective and sometimes leads to less-than-optimal

systems, so it should only be used when there doesn't seem

to be a better option.

In the Agile process model, there is less stress put on

analysis and design. Implementation starts very early in the

process of making software. This process model has a set

amount of time. Extreme Programming (XP) was invented

by Kent Beck while he was working on software. It is based

on the model that you can keep improving your

development over time. XP, like other agile software

development, tries to cut down on the cost of change by

having many short development cycles instead of one long

one. It only works with teams of 12 or less people. As XP

evolved, Industrial Extreme Programming (IXP) was added.

It is meant to make it easier for people to work in large and

spread out teams. Then, it could have a wide range of

values. There is not enough evidence to show that it is good

for you.

Almost all of the software projects that are done now

involve some reuse of other artifacts, like design or code

modules. It's called the component-based development

(CBD) model, and it has many of the same features as the

spiral model. It is a process that changes over time, which

means that making software must be done in small steps. As

a result of the component-based development model, more

software can be reused, which has a number of measurable

benefits for software engineers. Some people have thought

about making software by putting together different models.

The unified software development process is one of them.

Using a combination of iterative and incremental

development, the unified process defines the system's

function by taking a scenario-based look at how it will work.

There is a lot of focus on object-oriented development.

METHODOLOGY

At the moment, the process of making software keeps

changing based on what is needed and when. There are a lot

of people who help with the development process. People,

process, and technology all work together to make sure that

software is made with the least development of resources

(time, software, resources, and people) possible. If you want

to be more productive, you need effective knowledge

management. With the help of reuse knowledge and

experience, we can do that at a very low cost. Software

development is broken down into two types: traditional and

agile. Traditional development is based on a plan, while

agile is more flexible. In plan based or traditional

development process there is lack of learning and past

experience. In the agile model, learning and past experience

are used to make sure users are happy, make better decisions

in a changing environment, and quickly deliver a high-

quality product.

Proposed hybrid model employs knowledge management

which is based on knowledge flow throughout process.

Figure 1 depicts the proposed model's information flow and

the transitions between phases.

Figure 1. Proposed Method Model

Phase 1: Figure 1 shows how tacit to tacit knowledge is

changed in a process called socialization. This is the first

phase of the process (requirement). Phase 1 uses tacit

knowledge both as an input and as an output of it. System

analyst's knowledge is used as an input when gathering

requirements, and after gathering requirements the draft

requirement is made, as an output of this requirement

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 935
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Phase 2: Phase 2 (design) is the next input after tacit to tacit

knowledge is converted. This draft requirement is used as a

starting point for that. This draft architecture is used as a

starting input for a design document, which is an output.

Phase 2 is called externalization because it uses tacit to

explicit knowledge, which is how we learn.

Phase 3: It is used as an input for phase 3 (coding) and

explicit to explicit knowledge conversion code to make

software. This code is used as an input, and the code

developer runs and checks the knowledge conversion code.

That code is used as an output. In phase 3, the conversion of

explicit to explicit knowledge is used, which is called a

combination.

Phase 4: Use this module as input for phase 4 (testing). The

software testing team looks for errors or bugs and fixes

them. This module is used in phase 4 (testing). A corrected

draft of the product is made and sent to the user for

suggestions and feedback. This draft is used as input and

sent back to the user. If there are any changes that need to be

made, users and analysts meet or gather for more

processing. Otherwise, this draft product is the final product.

This is called internalization. In phase 4, explicit to tacit

knowledge is changed, which is called internalization.

A cyclic and iterative flow of knowledge is used in the

development of software. When you get to phase 4, if the

user is satisfied with the draft product and its quality, then

you can stop making changes to it any more. Otherwise, go

back to phase 1 and start collecting user guidelines. Then,

follow the same steps. The main thing about the spiral

model is that it is cyclic. Each time the spiral model is used,

there are four stages that it uses through in the cycle. Stage 1

is used to figure out what the goal is and what alternatives

there are. Stage 2 is used to evaluate the alternative and find

out what risks there are, stage 3 is used to develop and

identify the next level of the product, and stage 4 is used to

review the results and plan for the next iteration if

necessary.

Algorithm Implementation

Stage 1: Getting software requirements by using tacit

knowledge means that an expert system analyst is hired to

do that job.

Stage 2: A design process is used to write down a Software

Requirement Specification (SRS). When this happens, the

software architecture is created with the help of tacit

knowledge, which means that experienced system designers

or architects are involved in that work.

Stage 3: In the next stage, with the help of a design

document, software design is turned into source code using

explicit knowledge, which means that new code developers

can write software.

Stage 4: After each module is written, it is tested with

explicit knowledge, which means that fresh software testers

are used to do that work.

Stage 5: When the final product is made, it goes through

people who use and test the software. If the user is satisfied

with the final product and quality, there is no need for any

more processing. Otherwise, go back to stage 1 and start

collecting requirements.

This algorithm goes through these simple stages. It is based

on iteration and cycles like the spiral model, except in stages

1 and 2 where tacit knowledge is used instead of explicit

knowledge, which is what this algorithm is like. Using a

hybrid model, time, money, and resources are all saved

because we can reuse knowledge and experience. This can

help us make software in a few iterations and improve the

quality of the software, too. The proposed hybrid model uses

both tacit and explicit knowledge for development, and there

is less iteration to make a good product, which saves both

time and money.

ANALYSIS AND RESULT

It has a big process on how software is made because of

social factors, the environment, and how long you have

worked on software. There are rules for the environment and

management systems that make it look like you're making

progress. Knowledge has its own traits and value. Both

types of knowledge are important for software development,

but tacit knowledge is more important because it is based on

learning, experience, and creativity. The finished product

has a high level of quality because experienced people are

involved in the software development and there is little risk

of failure or overruns of time and money. Using Table 1,

you can see how the existing spiral model is different from

the hybrid spiral model that we're working on.

Table 1. Comparison between Spiral model and

Proposed Hybrid model

Spiral Model Hybrid model

A good model for

larger and critical

projects.

This model works with small,

medium and large projects.

Focuses on risk

management.

Focuses on the planning phase

and risk management.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 November 2023

 936
IJRITCC | December 2023, Available @ http://www.ijritcc.org

Frequent and

overlapping phases.

Identifies the end point for

each phase

Experience is required

for its application.

Easy to understand and apply,

especially with small and

medium projects

Depends on the concept

of repetition to produce

more than a prototype

Depends on the phases of risk

analysis and tests to reveal the

success of the project.

CONCLUSION

An algorithm for a hybrid model that is based on simple

iteration, like this one. The hybrid model is a variation of the

spiral model that uses knowledge management. Stages 1 and

2 of the proposed algorithm use tacit knowledge to make

high-quality products. If we use tacit knowledge in the

requirements and design stages, we get a good product.

REFERENCES

1. Garg, P.K., P. Mi, T. Pham, W. Scacchi, and G.

Thunquest, The SMART approach for software

process engineering, Proc. 16th. Intern. Conf. Software

Engineering, 341 - 350,1994.

2. Garg, P.K. and W. Scacchi, ISHYS: Design of an

Intelligent Software Hypertext Environment, IEEE

Expert, 4, 3, 52-63, 1989.

3. Garg, P.K. and W. Scacchi, A Hypertext System to

Manage Software Life Cycle Documents, IEEE

Software, 7, 2, 90-99, 1990.

4. Goguen, J., Reusing and Interconnecting Software

Components, Computer, 19,2, 16-28, 1986.

5. Graham, D.R., Incremental Development: Review of

Non-Monolithic Life-Cycle Development Models,

Information and Software Technology, 31, 1, 7-20,

January,1989.

6. Grundy, J.C.; Apperley, M.D.; Hosking, J.G.; Mugridge,

W.B. A decentralized architecture for software process

modeling and enactment, IEEE Internet Computing,

Volume: 2 Issue: 5, Sept.- Oct. 1998, 53 -62.

7. Grinter, R., Supporting Articulation Work Using Software

Configuration Management, J. Computer Supported

Cooperative Work,5, 447-465, 1996.

8. Heineman, G., J.E. Botsford, G. Caldiera, G.E. Kaiser,

M.I. Kellner, and N.H. Madhavji., Emerging

Technologies that Support a Software Process Life

Cycle. IBM Systems J., 32(3):501-529, 1994.

9. Hekmatpour, S., Experience with Evolutionary

Prototyping in a Large Software Project, ACM

Software Engineering Notes, 12,1, 38-41 1987

10. Hoffnagel, G. F., and W. Beregi, Automating the

Software Development Process, IBM Systems J.,24 ,2

1985 ,102-120 Horowitz, E. and R. Williamson,

SODOS: A Software Documentation Support

Environment--Its Definition, IEEE Trans. Software

Engineering, 12, 8, 1986.

11. Horowitz, E., A. Kemper, and B. Narasimhan, A Survey

of Application Generators, IEEE Software, 2,1 ,40-54,

1985.

12. Hosier, W. A., Pitfalls and Safeguards in Real-Time

Digital Systems with Emphasis on Programming, IRE

Trans. Engineering Management, EM-8, June, 1961.

13. Humphrey, W. S., The IBM Large-Systems Software

Development Process: Objectives and Direction, IBM

Systems J., 24,2, 76-78, 1985.

14. Humphrey, W.S. and M. Kellner, Software Process

Modeling: Principles of Entity Process Models, Proc.

11th. Intern. Conf. Software Engineering, IEEE

Computer Society, Pittsburgh, PA, 331-342, 1989.

15. Kaiser, G., P. Feiler, and S. Popovich, Intelligent

Assistance for Software Development and

Maintenance, IEEE Software, 5, 3, 1988.

16. Kling, R., and W. Scacchi, The Web of Computing:

Computer Technology as Social Organization,

Advances in Computers, 21, 1-90, Academic Press,

New York, 1982.

17. Lehman, M. M., Process Models, Process Programming,

Programming Support, Proc. 9th. Intern. Conf.

Software Engineering, 14-16, IEEE Computer Society,

1987.

18. Lehman, M. M., and L. Belady, Program Evolution:

Processes of Software Change, Academic Press, New

York, 1985

19. MacCormack, A., Product-Development Practices that

Work: How Internet Companies Build Software, Sloan

Management Review, 75-84,

20. Winter 2001. Mi, P. and W. Scacchi, A Knowledge Base

Environment for Modeling and Simulating Software

Engineering Processes, IEEE Trans. Knowledge and

Data Engineering, 2,3, 283-294, 1990.

http://www.ijritcc.org/

