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Abstract— Requirement identification and prioritisation are two principal activities of the requirement engineering process in the Software 

Development Life cycle. There are several approaches to prioritization of requirements identified by the stakeholders. However, there is a need 
for a deeper understanding of the optimal approach. Much study has been done and machine learning has proven to help automate requirement 

engineering tasks. A framework that identifies the types of requirements and assigns the priority to requirements does not exist. This study 

examines the behaviour of the different machine learning algorithms used for software requirements identification and prioritisation. Due to 

variations in research methodologies and datasets, the results of various studies are inherently contradictory. A framework that identifies the 
types of requirements and assigns the priority to requirements does not exist. This paper further discusses a framework for text preparation of 

requirements stated in natural language, type identification and requirements prioritisation has been proposed and implemented. After analysing 

the ML algorithms that are now in use, it can be concluded that it is necessary to take into account the various types of requirements when 

dealing with the identification and classification of requirements. A Multiple Correlation Coefficient-based Decision Tree (MCC-based DT) 
algorithm considers multiple features to map to a requirement and hence overcomes the limitations of the existing machine learning algorithms. 

The results demonstrated that the MCC-based DT algorithm has enhanced type identification performance compared to existing ML methods. 

The MCC-based DT algorithm is 4.42% more accurate than the Decision Tree algorithm. This study also tries to determine an optimisation 

algorithm that is likely to prioritise software requirements and further evaluate the performance. The sparse matrix produced for the text dataset 
indicates that Adam optimisation method must be modified to assign the requirement a more precise priority. To address the limitations of the 

Adam Algorithm, the Automated Requirement Prioritisation Technique, an innovative algorithm, is implemented in this work. Testing the 

ARPT on 43 projects reveals that the mean squared error is reduced to 1.34 and the error cost is reduced to 0.0001. The results indicate an 84% 

improvement in the prioritisation of requirements compared to the Adam algorithm. 

Keywords- Requirements Classification, Requirements Prioritisation, Optimisation Algorithm, Machine Learning 

 

 

I.  INTRODUCTION 

Understanding the customer requirements, analysing them, 
determining feasibility, checking for the practical solution, 
clearly specifying the needs and a solution, validating the 
documents and managing the requirements as they are 
transformed into a working system are all covered by 
Requirement Engineering (RE). Requirement engineering is the 
systematic use of well-established ideas, methodologies, tools, 
and notation to specify a proposed system's expected behaviour 
and restrictions [1]. This phase mainly elicits, specifies, validates 
and manages requirements activities to be followed sequentially. 
The perspective to interpret the user’s requirement changes from 
developer to developer due to the ambiguous nature of the 
requirements. This creates several flaws that are considered 
during the software development process. For this purpose, 
identifying types of software requirements specified in a natural 
language plays a vital role in the success or failure of a software 
product [2]. Classification of software requirements should be 
done systematically, so that developers can make decisions 
about the sequence of software attributes to be implemented. 

However, there are many stakeholders with different 
requirements involved in the development process of a software 
product. For this reason, the software requirements are to be 
automatically classified into functional and non-functional 
requirements. 

Recent research work has shown that these requirements 
described in software requirements specification (SRS) can be 
classified automatically using Natural Language Processing 
(NLP) techniques and Machine Learning (ML) algorithms [3]. 
The first step of the classification of requirements stated in a 
natural language is the text preparation and the second step is to 
apply classification ML algorithms. The text preparation 
involves two stages, that is, text preprocessing and feature 
extraction. Text preprocessing involves text segmentation that 
describes the frontiers for a word by removing stop words, 
punctuations and white spaces and converting the text into 
tokens [4]. Text preprocessing also involves text normalization, 
which uses stemming or lemmatization steps. Feature extraction 
can be done by converting words into vectors as a machine 
circuitry that only understands 0s and 1s [5]. Different 
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classification ML algorithms include Decision Tree, Support 
Vector Machine, Neural Network, Naïve Bayes, Logistic 
Regression, K-Nearest Neighbor and Random Forest. Decision 
Tree and Support Vector Machine are the most popular 
algorithms for classifying software requirements [6]. Decision 
tree uses criteria such as Information Gain, Gini Index, chi-
square and gain ratio to split an attribute [7]. Using these criteria, 
the attribute will be selected to split on that has a significant 
number of dissimilar values. For example, a dataset has an 
attribute with a maximum number of unique values. As this 
attribute will be considered to split, the number of levels in the 
tree will be increased. This increases the biasness.  

Because of this reason, these criteria are unable to provide 
satisfactory accuracy for some datasets where the dependency 
should be considered.  To overcome this drawback, a new 
method is proposed in [8] that uses the concept of multiple 
correlation coefficient as a splitting criterion. This approach 
considers two attributes for classification mapped to a single 
target value.  

There are a few constraints during software development, 
such as cost and time, due to which different software versions 
can be released in succession. Hence, it is important to decide 
which requirements should be considered in the first release of 
the software. Requirement Prioritisation (RP) is the process 
where the stakeholders prioritise the requirements [9]. The 
prioritisation of requirements to be implemented in successive 
software releases is determined by stakeholders. 

Requirements Prioritisation has proven incredibly difficult, 
with scalability being one of the most significant challenges [10] 
[11]. The number of stakeholders in the case of large-scale 
projects is enormous. These stakeholders may have different 
requirements, resulting in disagreements over which criteria 
should be prioritised. The major problem facing today's 
companies is meeting stakeholder's requirements and raising 
potential expectations in a timely, secure, cost-effective and 
relevant manner. Due to budget constraints and production time 
constraints, it may be difficult for requirements analysts to 
decide which requirements should be prioritised, resulting in 
excellent user satisfaction. Inaccuracy in prioritising 
requirements can lead to the software being rejected by end-
users due to a lack of standards and the product being declared a 
failure sooner or later. To increase the cost advantages and fulfill 
the timeframes of software, high-priority requirements must be 
considered first, followed by low-priority requirements. 
Methods that prioritise requirements are becoming increasingly 
necessary. Most research is done in this area, but finding the 
correct technique or framework at the right time takes much 
work. Since the beginning of software, that is, the requirement 
phase, it has been indicated to implement security features [10].  

There are many requirements prioritisation algorithms used 
by stakeholders like Analytic Hierarchy Process (AHP), Must 
have, Should have, Could have, Won’t have (MoScoW), Bubble 
sort, Binary Search Tree, Hundred Dollar and Priority group 
[12]. Recently researchers have proposed different prioritisation 
techniques such as Adaptive Fuzzy Hierarchical Cumulative 
Voting [13], Gradient Descent Rank [14], Apriori [15] and 
DRank [16]. The study by Talele and Phalnikar [17] shows that 
existing prioritisation techniques have limitations in terms of 
complexity and scalability. 

This work makes three primary contributions. Initially, it 
employs a method for classifying software requirements by type. 
Secondly, it utilizes an automated procedure to prioritize these 

requirements. Thirdly, the study assesses the effectiveness of the 
proposed method by comparing existing machine learning 
algorithms in terms of their accuracy and mean squared error for 
identifying requirement types and priorities. The paper is 
structured as follows: Section II presents the literature survey, 
Section III outlines the framework, Section IV presents the 
results, and Section V concludes the study and suggests avenues 
for future research. 

 

II. LITERATURE SURVEY 

Requirement Engineering is an important Software 
Development Life Cycle (SDLC) step. Significant research and 
empirical studies have been conducted on the first two phases of 
requirement engineering: requirements classification [18] and 
requirements prioritization [19]. 

Several attempts have been made to automate the process of 
identifying requirements [18] [20] and designating requirements' 
priorities using machine learning algorithms [14] and various 
prioritisation techniques [19]. Natural Language Processing 
(NLP) techniques prepare the text, which is the initial phase in 
identifying requirement types. The second stage uses ML 
algorithms to determine the types of requirements. Prioritisation 
strategies can be used to assign priority values to requirements 
once they have been categorised. 

 

A. Text Preparation 

A text-based requirement document is provided as input for 
the text preparation step. Various NLP techniques are used to 
pre-process the text of these documents. The most popular NLP 
pre-processing techniques include stop word removal, part of 
speech, tokenization, N-grams, lemmatization and stemming. 
When the input is text, tokenization is an important step. 
Tokenization breaks down a sentence into tokens [19] [21] [22]. 
The Stemming phase reduces terms to their stem, base, or root 
form. For instance, provided and providing have the same root 
word, "provide" [19] [22] [23]. The Part of Speech (POS) system 
allocates tags to nouns, verbs, etc. [24] [16]. This technique 
eliminates conjunctions, auxiliary verbs and articles from 
sentences. For instance, a, an, the, and, be, etc. It is the most 
prevalent method. [19] [22] [23] [24] [25]. Lemmatization 
identifies the lemma word, the infinitive form of verbs, and the 
singular noun and adjective forms for each term. For instance, 
saves, 'saved' and 'saving' correspond to 'save'. This method is 
employed in [23] [24]. 

The model can be trained using features as inputs. This phase 
converts a previously processed requirements document into 
features. Feature selection techniques include Term Frequency-
Inverse Document Frequency (TF-IDF) and Bag of Words 
(BoW), which are two-word frequency analysis techniques. The 
BoW technique calculates the frequency of each word in a 
sentence or document [23] [24]. The Term Frequency-Inverse 
Document Frequency (TF-IDF) technique is used to calculate 
the frequency with which a word appears in a document or 
sentence by calculating the inverse of the number of times the 
word appears in the corpus [19] [23] [26]. 

 

B. Identification of Type of Requirements Methods 

Various studies have classified software requirements using 
machine learning algorithms. Following feature selection, the 
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model's learning phase begins. Supervised, unsupervised, and 
semi-supervised learning techniques are employed to identify 
Functional Requirements (FR) and Non- Functional 
Requirements (NFR).  

Supervised learning algorithms require a set of requirements 
that have been correctly identified into FRs and NFRs. The 
number of requirements used to train datasets varies in the 
selected studies. 58 requirements are used to train its data, 
focusing on security NFRs [19]. In this area of research, 
numerous supervised learning algorithms have been applied, 
including Support Vector Machine (SVM) [24] [26] [27], Naïve 
Bayes (NB) [23] [26] [28], Adaptive Boost and Random Forest 
[24], Decision Tree (DT) [22] [23] [24] [26] [29] and K-Nearest 
Neighbour (KNN) [26] [27].  

Researchers have also applied unsupervised learning 
algorithms such as LDA [28] [29] [30] [31], Hierarchical 
Agglomerative Clustering algorithm [28] [32], singlelink 
clustering algorithm [25], K-means [28] [32] and Bi-term [29]. 
The accuracy performance of these algorithms could be 
enhanced [20]. 

Self-training, RAndom Subspace Method for Co-training 
(RASCO), Relevant RAndom Subspace Method for Co-training 
(Rel-RASCO) [26] and active learning [27] are semi-supervised 
learning algorithms used in this research domain. RASCO, Rel-
RASCO and Self-training algorithms are combined with 
supervised learning algorithms such as KNN, DT, NB and SVM 
to identify the types of requirements. When classifying 
requirements using these algorithms, not all NFR categories are 
evaluated. Only three SRS are considered as a dataset [27] and 
app store user evaluations are used as a dataset [26]. Using these 
algorithms, labelling training instances requires less human 
effort. But recall levels ranged between 54.6% and 81.9%, 
precision levels ranged between 73.9% and 92.4% on average 
for distinct categories of NFRs from three projects [27], and 
transductive and inductive accuracy levels were below 70% 
[26]. 

Numerous additional ML algorithms, such as Stochastic 
Gradient Descent (SGD) [25] and Goal Oriented Requirements 
Elicitation (GORE) [33] [34] are also utilised. CNN is also 
utilised to categorise the requirements [25]. Applying CNN and 
SGD to various documents to test the learned model yields 
inferior results [25]. 

 

C. Requirements Prioritisation Methods 

Research and empirical studies are conducted in the domain 
of requirements prioritisation [19]. There are two types of 
approaches to prioritising requirements. The first set of 
fundamental methods includes priority classification, numerical 
assignment, Cost-Value approach, Analytic Hierarchy Process 
(AHP) and cumulative voting, while the second group 
incorporates the fundamental methods. It is challenging to 
determine if the second group has been validated and applied in 
practice. Applying a specific set of approaches to similar criteria 
that have been pretty well studied and are at the same level of 
abstraction has been a challenging step in research. 

Prioritising software requirements, AHP is a methodical 
statistical technique utilized [14] [16] [33] [35] in the software 
community that focuses on relative evaluation. When qualitative 
and quantitative factors must be considered in the decision-
making process, the AHP proves to be a resilient and flexible 
method that aids individuals in establishing priorities and 

selecting the optimal option. AHP facilitates the selection of the 
most advantageous option by simplifying difficult decisions into 
a sequence of direct comparisons. AHP facilitates the synthesis 
of results, thereby offering a justification for selecting 
prospective requirements. Based on n requirements, n (n – 1) / 2 
comparisons must be performed at each hierarchy level 
throughout the procedure. This is the disadvantage of this 
procedure, as the number of comparisons increases by a factor 
of O(n2) as the number of requirements increases. 

100-Dollar Test or Cumulative Voting (CV) is a simple 
method in which each stakeholder is given 100 fictitious units. 
This method utilises the ratio scale. The sophistication and 
granularity of this prioritisation method are both high. These 
fictitious units could represent various aspects (for example 

, hours, penalty, importance, implementation cost, etc.). 
Adaptive Fuzzy Hierarchical Cumulative Voting (AFHCV) [13] 
is a novel prioritisation technique that is built using the 
foundational algorithm Fuzzy Hierarchical Cumulatives 
(FHCV). AFHCV is of the opinion that requirements are subject 
to change throughout the software development process. As a 
result, modifications to requirements are incorporated at 
runtime. These requirements are reassessed and new priorities 
are assigned. The system's efficiency decreases with each 
iteration of the analysis and prioritisation of requirements, 
particularly with regard to time complexity and scalability. 

Similar prioritisation techniques employ machine learning 
algorithms such as Gradient Descent Rank (GDRank) [14] and 
apriori [15]. Case Base Rank (CBRank) [14] algorithm is 
evaluated to compare these new prioritisation techniques. The 
MoSCoW (Must have, Should have, Could have, and Won't) 
method is an approach to prioritisation utilised to ascertain 
which requirements are essential, desirable, feasible, and not 
worthy of consideration. The fuzzy-based MoSCoW method 
[34] utilises the fundamental MoSCoW prioritisation algorithm. 
This method is not evaluated. It is necessary to validate it against 
an extensive range of requirements. 

Continuous domain adaptation is necessary [36]. Novel 
approaches that were developed were not assessed on datasets 
encompassing diverse domains. Furthermore, the classification 
process relied solely on a restricted set of software requirements 
rather than sub-classes of non-functional requirements [37]. 
Prioritisation approaches require professional participation and 
are time-consuming and complex. To overcome such challenges, 
existing machine learning algorithms must be evaluated for 
scalability and accuracy. 

 

III. METHODOLOGY 

The software development life cycle (SDLC) refers to the 
systematic approach employed in planning, modifying, and 
maintaining software. Software quality ensures that software 
products are engineered to meet the user requirements. An 
important aspect is developing a framework that defines the 
requirements. The requirements are gathered, classified and 
prioritised in the RE process. Based on the research gap 
identified, a new framework is proposed for identifying the types 
of requirements and prioritising requirements, as shown in Fig. 
1. The function for each module –  

Module 1 – The text preparation 
Module 2 – Identification of types of requirements  
Module 3 – Prioritising requirements 
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Figure 1.  A Framework 

A.  The Text Preparation 

Natural Language Processing is a part of ML technologies 
that trains computers to process a large amount of data specified 
in natural language. It provides the facility to understand human 
language. The text preprocessing and feature extraction methods 
clean the raw text and provide the features as input to the ML 
algorithms. It will be easy to train models using supervised 
learning algorithms after the raw text is preprocessed using 
natural language processing methods. Based on the literature 
survey, text preprocessing methods such as lowercase, removal 
of white space, removal of stop words, tokenization, and 
lemmatization are used, and the Term Frequency-Inverse 
Document Frequency (TF-IDF) method is used to extract the 
features [38] as shown in Fig. 2. 

 

Figure 2.  Text Preparation Module 

B. Identification of Types of Requirements 

As the requirements are stated in a natural language, the 
extracted features are words. The relationship between these 
words must be considered during the type identification of 
requirements. Multiple Correlation Coefficient (MCC) [39] 
considers the relationship between two features and a class. To 
consider more features at a time to split on and should be mapped 
to a class, MCC based decision tree algorithm is used in this 
study [8] as shown in Fig. 3. 

 

Figure 3.  MCC based Decision Tree Algorithm 

C. Prioritising Requirements 

Prioritising software requirements is an essential phase in 
requirement engineering. Many researchers have presented 
various approaches for prioritising requirements. Prioritising 
requirements is an iterative process that identifies the most 
significant requirements for effective software or system 
deployment.  

Based on the literature study, various ML algorithms, such 
as GDRank and CBRank, are presented for prioritising 
requirements. Existing optimization algorithms such as 
stochastic gradient descent (SGD), mini-batch SGD, SGD with 
Momentum, and Root Mean Squared Propagation (RMSProp) 
[40] [41] [42] are used to compare with updated Adaptive 
Movement Estimation (Adam), which finds the priority for 
requirements.  

To find the priority, the Automatic Requirement 
Prioritisation Technique (ARPT) uses the Updated Adaptive 
Movement Estimation (Updated Adam SGD) optimisation 
algorithm [43] as shown in Fig. 4, which is compared to the 
SGD, mini-batch SGD, SGD with Momentum, and RMSProp 
algorithms. 

 

Figure 4.  ARPT 
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IV. RESULTS 

To execute the proposed approach, we employed the user-
friendly Python 3.8.5 programming language and tkinter, which 
offers support for various dataset file formats, including CSV. 
Additionally, we opted for Scikit-learn due to its array of 
modules facilitating the creation of machine learning classifiers 
and computation of evaluation metrics. The computational 
infrastructure consisted of a DELL Laptop featuring an Intel(R) 
Core(TM) i5-10300H processor clocked at 2.50GHz, 8 GB of 
RAM, and a 64-bit Windows operating system. 

The dataset underwent a split, dividing it into two parts using 
an 8:2 ratio. Specifically, 80% of the dataset was allocated for 
training the model, while the remaining 20% originating from 
the same domain was designated for model testing purposes. 
This study compares the existing machine learning algorithms to 
identify the type of software requirements in terms of accuracy, 
as shown in Table 1 and Fig. 5. 

TABLE I.  COMPARISON OF ALGORITHMS USED TO IDENTIFY THE TYPES 

OF REQUIREMENTS 

Algorithm 561 701 912 1670 2153 

Decision Tree 95.24 96.43 79.49 95.06 91.21 

Random Forest 95.24 92.86 84.62 91.97 87.91 

Multinomial Naive 

Bayes 
95.24 89.29 79.49 89.51 87.36 

Logistic Regression 95.24 89.29 79.49 90.12 87.36 

Neural Network 95.24 92.86 82.05 88.27 78.57 

KNN 90.48 100 82.05 90.74 88.46 

SVM 95.24 92.86 82.05 90.12 89.56 

MCC based Decision 

Tree 
95.24 96.43 94.87 96.3 96.7 

 

 

Figure 5.  Comparison of Identification of Types of Requirements using ML Algorithms

From Table 1 and Fig. 5 it is observed that MCC based 
Decision Tree consistently outperforms the other existing 
machine learning algorithms even if the number of features are 
changed. 

Stakeholders frame the same type of requirement using 
different terms. Because of the high level of variance in 
requirements elicitation, automated classification or type 
identification is more prone to errors. Therefore, the challenge is 
to determine the best classification algorithm. Furthermore, such 
classification is required since manually identifying types of 
software requirements takes time, particularly for large projects 
with a significant number of requirements in the industry [28].  

A comparison of existing optimization algorithms to assign 
priority to software requirements Gradient Descent (GD), 
Stochastic Gradient Descent (SGD), Mini-batch SGD, SGD with 

momentum, RMSProp, Adam with the updated Adam algorithm 
is shown in Fig. 6 and 7 in terms of error cost vs epochs and 
mean squared error respectively. 

It is observed that error cost reduces as the number of epochs 
increases in the case of GD, Mini-batch SGD, SGD with 
momentum, RMSProp, Updated Adam as shown in Fig. 6 (a, c, 
d, e, g). At the commencement of the iteration, the error cost for 
GD is 5.94, while for SGD it is 3. The distorted waveform is 
formed in the case of the Adam algorithm, as the huge sparse 
data is created for the text requirements. Hence, the Adam 
algorithm necessitates an extended duration to mitigate the error 
cost. The convergence rate of the ARPT is greater than that of 
the Adam algorithm. 

The results presented in Figure 6 indicate that the mean 
squared error, which represents the discrepancy between the 
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predicted and original priorities, is significantly smaller when 
utilising Updated Adam compared to other optimisation 
algorithms currently in use. Adam was ultimately outperformed 
by 84.44% by ARPT. The proposed method can be used in 
industry to identify the type of requirements and assign priority 

to requirements automatically, so manual efforts and time can be 
reduced, as well as errors that occurred during the type 
identification of requirements and finding the priority of 
requirements manually. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

  

(e) 
 

(f) 

 

(g) 

Figure 6.  Training cost of Optimization Algorithms 
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Figure 7.  Comparison of Optimization Algorithms 

V. CONCLUSION AND FUTURE SCOPE 

This study discusses the framework for identification of 
types of requirements and prioritisation of requirements. This 
framework can bridge the gap between the research and practice. 

The experimental findings so conducted showed that the 
Multiple Correlation Coefficient based decision tree algorithm 
increased the type identification performance, outperformed the 
decision tree algorithm by 4.42%, and achieved 96.7% accuracy 
for identifying the requirements. The Adam Algorithm exhibits 
a lack of convergence in the context of text features, specifically 
when the feature frequency within the dataset is excessively low. 
In order to circumvent this constraint, the Automated 
Requirement Prioritisation Technique is suggested as a means of 
prioritising software requirements. One notable benefit of the 
Automated Requirement Prioritisation Technique is its superior 
performance on text datasets compared to Adam. In terms of 
error cost and mean squared error, this study also systematically 
contrasts different optimisation methods with the proposed 
method for prioritising requirements. On 43 projects dataset 
containing functional and non-functional requirements for 
software projects, including usability, performance, and so forth, 
the Automated Requirement Prioritisation Technique is 
evaluated. The experimental findings revealed that the 
Automated Requirement Prioritisation Technique exhibited 
superior performance compared to the Adam algorithms. At 
epoch 1000, requirement prioritisation was executed with a 
mean square error of 2.93 and a cost error of 0.0001. One 
drawback of the proposed algorithm is its failure to consider the 
interdependencies among requirements. This study proves that 
MCC based decision tree and ARPT algorithms performs better 
than the existing methods used to identify the types of 
requirements and assign the priorities to requirements 
respectively. 

Future evaluations of the proposed method will utilise a wide 
range of datasets from various domains in order to circumvent 
this limitation. Future work will also involve designing and 
developing an improved algorithm to consider requirement 
dependencies and conflicts. 
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