
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2839

IJRITCC | October 2023, Available @ http://www.ijritcc.org

A Framework to Automate Requirements

Specification Task

Pratvina Talele
Department of Computer Engineering and Technology,

Dr. Vishwanath Karad MIT World Peace University,

Pune, India
pratvina.talele@mitwpu.edu.in

Rashmi Phalnikar
Department of Computer Engineering and Technology,

Dr. Vishwanath Karad MIT World Peace University,

Pune, India
rashmi.phalnikar@mitwpu.edu.in

Abstract— Requirement identification and prioritisation are two principal activities of the requirement engineering process in the Software

Development Life cycle. There are several approaches to prioritization of requirements identified by the stakeholders. However, there is a need
for a deeper understanding of the optimal approach. Much study has been done and machine learning has proven to help automate requirement

engineering tasks. A framework that identifies the types of requirements and assigns the priority to requirements does not exist. This study

examines the behaviour of the different machine learning algorithms used for software requirements identification and prioritisation. Due to

variations in research methodologies and datasets, the results of various studies are inherently contradictory. A framework that identifies the
types of requirements and assigns the priority to requirements does not exist. This paper further discusses a framework for text preparation of

requirements stated in natural language, type identification and requirements prioritisation has been proposed and implemented. After analysing

the ML algorithms that are now in use, it can be concluded that it is necessary to take into account the various types of requirements when

dealing with the identification and classification of requirements. A Multiple Correlation Coefficient-based Decision Tree (MCC-based DT)
algorithm considers multiple features to map to a requirement and hence overcomes the limitations of the existing machine learning algorithms.

The results demonstrated that the MCC-based DT algorithm has enhanced type identification performance compared to existing ML methods.

The MCC-based DT algorithm is 4.42% more accurate than the Decision Tree algorithm. This study also tries to determine an optimisation

algorithm that is likely to prioritise software requirements and further evaluate the performance. The sparse matrix produced for the text dataset
indicates that Adam optimisation method must be modified to assign the requirement a more precise priority. To address the limitations of the

Adam Algorithm, the Automated Requirement Prioritisation Technique, an innovative algorithm, is implemented in this work. Testing the

ARPT on 43 projects reveals that the mean squared error is reduced to 1.34 and the error cost is reduced to 0.0001. The results indicate an 84%

improvement in the prioritisation of requirements compared to the Adam algorithm.

Keywords- Requirements Classification, Requirements Prioritisation, Optimisation Algorithm, Machine Learning

I. INTRODUCTION

Understanding the customer requirements, analysing them,
determining feasibility, checking for the practical solution,
clearly specifying the needs and a solution, validating the
documents and managing the requirements as they are
transformed into a working system are all covered by
Requirement Engineering (RE). Requirement engineering is the
systematic use of well-established ideas, methodologies, tools,
and notation to specify a proposed system's expected behaviour
and restrictions [1]. This phase mainly elicits, specifies, validates
and manages requirements activities to be followed sequentially.
The perspective to interpret the user’s requirement changes from
developer to developer due to the ambiguous nature of the
requirements. This creates several flaws that are considered
during the software development process. For this purpose,
identifying types of software requirements specified in a natural
language plays a vital role in the success or failure of a software
product [2]. Classification of software requirements should be
done systematically, so that developers can make decisions
about the sequence of software attributes to be implemented.

However, there are many stakeholders with different
requirements involved in the development process of a software
product. For this reason, the software requirements are to be
automatically classified into functional and non-functional
requirements.

Recent research work has shown that these requirements
described in software requirements specification (SRS) can be
classified automatically using Natural Language Processing
(NLP) techniques and Machine Learning (ML) algorithms [3].
The first step of the classification of requirements stated in a
natural language is the text preparation and the second step is to
apply classification ML algorithms. The text preparation
involves two stages, that is, text preprocessing and feature
extraction. Text preprocessing involves text segmentation that
describes the frontiers for a word by removing stop words,
punctuations and white spaces and converting the text into
tokens [4]. Text preprocessing also involves text normalization,
which uses stemming or lemmatization steps. Feature extraction
can be done by converting words into vectors as a machine
circuitry that only understands 0s and 1s [5]. Different

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2840

IJRITCC | October 2023, Available @ http://www.ijritcc.org

classification ML algorithms include Decision Tree, Support
Vector Machine, Neural Network, Naïve Bayes, Logistic
Regression, K-Nearest Neighbor and Random Forest. Decision
Tree and Support Vector Machine are the most popular
algorithms for classifying software requirements [6]. Decision
tree uses criteria such as Information Gain, Gini Index, chi-
square and gain ratio to split an attribute [7]. Using these criteria,
the attribute will be selected to split on that has a significant
number of dissimilar values. For example, a dataset has an
attribute with a maximum number of unique values. As this
attribute will be considered to split, the number of levels in the
tree will be increased. This increases the biasness.

Because of this reason, these criteria are unable to provide
satisfactory accuracy for some datasets where the dependency
should be considered. To overcome this drawback, a new
method is proposed in [8] that uses the concept of multiple
correlation coefficient as a splitting criterion. This approach
considers two attributes for classification mapped to a single
target value.

There are a few constraints during software development,
such as cost and time, due to which different software versions
can be released in succession. Hence, it is important to decide
which requirements should be considered in the first release of
the software. Requirement Prioritisation (RP) is the process
where the stakeholders prioritise the requirements [9]. The
prioritisation of requirements to be implemented in successive
software releases is determined by stakeholders.

Requirements Prioritisation has proven incredibly difficult,
with scalability being one of the most significant challenges [10]
[11]. The number of stakeholders in the case of large-scale
projects is enormous. These stakeholders may have different
requirements, resulting in disagreements over which criteria
should be prioritised. The major problem facing today's
companies is meeting stakeholder's requirements and raising
potential expectations in a timely, secure, cost-effective and
relevant manner. Due to budget constraints and production time
constraints, it may be difficult for requirements analysts to
decide which requirements should be prioritised, resulting in
excellent user satisfaction. Inaccuracy in prioritising
requirements can lead to the software being rejected by end-
users due to a lack of standards and the product being declared a
failure sooner or later. To increase the cost advantages and fulfill
the timeframes of software, high-priority requirements must be
considered first, followed by low-priority requirements.
Methods that prioritise requirements are becoming increasingly
necessary. Most research is done in this area, but finding the
correct technique or framework at the right time takes much
work. Since the beginning of software, that is, the requirement
phase, it has been indicated to implement security features [10].

There are many requirements prioritisation algorithms used
by stakeholders like Analytic Hierarchy Process (AHP), Must
have, Should have, Could have, Won’t have (MoScoW), Bubble
sort, Binary Search Tree, Hundred Dollar and Priority group
[12]. Recently researchers have proposed different prioritisation
techniques such as Adaptive Fuzzy Hierarchical Cumulative
Voting [13], Gradient Descent Rank [14], Apriori [15] and
DRank [16]. The study by Talele and Phalnikar [17] shows that
existing prioritisation techniques have limitations in terms of
complexity and scalability.

This work makes three primary contributions. Initially, it
employs a method for classifying software requirements by type.
Secondly, it utilizes an automated procedure to prioritize these

requirements. Thirdly, the study assesses the effectiveness of the
proposed method by comparing existing machine learning
algorithms in terms of their accuracy and mean squared error for
identifying requirement types and priorities. The paper is
structured as follows: Section II presents the literature survey,
Section III outlines the framework, Section IV presents the
results, and Section V concludes the study and suggests avenues
for future research.

II. LITERATURE SURVEY

Requirement Engineering is an important Software
Development Life Cycle (SDLC) step. Significant research and
empirical studies have been conducted on the first two phases of
requirement engineering: requirements classification [18] and
requirements prioritization [19].

Several attempts have been made to automate the process of
identifying requirements [18] [20] and designating requirements'
priorities using machine learning algorithms [14] and various
prioritisation techniques [19]. Natural Language Processing
(NLP) techniques prepare the text, which is the initial phase in
identifying requirement types. The second stage uses ML
algorithms to determine the types of requirements. Prioritisation
strategies can be used to assign priority values to requirements
once they have been categorised.

A. Text Preparation

A text-based requirement document is provided as input for
the text preparation step. Various NLP techniques are used to
pre-process the text of these documents. The most popular NLP
pre-processing techniques include stop word removal, part of
speech, tokenization, N-grams, lemmatization and stemming.
When the input is text, tokenization is an important step.
Tokenization breaks down a sentence into tokens [19] [21] [22].
The Stemming phase reduces terms to their stem, base, or root
form. For instance, provided and providing have the same root
word, "provide" [19] [22] [23]. The Part of Speech (POS) system
allocates tags to nouns, verbs, etc. [24] [16]. This technique
eliminates conjunctions, auxiliary verbs and articles from
sentences. For instance, a, an, the, and, be, etc. It is the most
prevalent method. [19] [22] [23] [24] [25]. Lemmatization
identifies the lemma word, the infinitive form of verbs, and the
singular noun and adjective forms for each term. For instance,
saves, 'saved' and 'saving' correspond to 'save'. This method is
employed in [23] [24].

The model can be trained using features as inputs. This phase
converts a previously processed requirements document into
features. Feature selection techniques include Term Frequency-
Inverse Document Frequency (TF-IDF) and Bag of Words
(BoW), which are two-word frequency analysis techniques. The
BoW technique calculates the frequency of each word in a
sentence or document [23] [24]. The Term Frequency-Inverse
Document Frequency (TF-IDF) technique is used to calculate
the frequency with which a word appears in a document or
sentence by calculating the inverse of the number of times the
word appears in the corpus [19] [23] [26].

B. Identification of Type of Requirements Methods

Various studies have classified software requirements using
machine learning algorithms. Following feature selection, the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2841

IJRITCC | October 2023, Available @ http://www.ijritcc.org

model's learning phase begins. Supervised, unsupervised, and
semi-supervised learning techniques are employed to identify
Functional Requirements (FR) and Non- Functional
Requirements (NFR).

Supervised learning algorithms require a set of requirements
that have been correctly identified into FRs and NFRs. The
number of requirements used to train datasets varies in the
selected studies. 58 requirements are used to train its data,
focusing on security NFRs [19]. In this area of research,
numerous supervised learning algorithms have been applied,
including Support Vector Machine (SVM) [24] [26] [27], Naïve
Bayes (NB) [23] [26] [28], Adaptive Boost and Random Forest
[24], Decision Tree (DT) [22] [23] [24] [26] [29] and K-Nearest
Neighbour (KNN) [26] [27].

Researchers have also applied unsupervised learning
algorithms such as LDA [28] [29] [30] [31], Hierarchical
Agglomerative Clustering algorithm [28] [32], singlelink
clustering algorithm [25], K-means [28] [32] and Bi-term [29].
The accuracy performance of these algorithms could be
enhanced [20].

Self-training, RAndom Subspace Method for Co-training
(RASCO), Relevant RAndom Subspace Method for Co-training
(Rel-RASCO) [26] and active learning [27] are semi-supervised
learning algorithms used in this research domain. RASCO, Rel-
RASCO and Self-training algorithms are combined with
supervised learning algorithms such as KNN, DT, NB and SVM
to identify the types of requirements. When classifying
requirements using these algorithms, not all NFR categories are
evaluated. Only three SRS are considered as a dataset [27] and
app store user evaluations are used as a dataset [26]. Using these
algorithms, labelling training instances requires less human
effort. But recall levels ranged between 54.6% and 81.9%,
precision levels ranged between 73.9% and 92.4% on average
for distinct categories of NFRs from three projects [27], and
transductive and inductive accuracy levels were below 70%
[26].

Numerous additional ML algorithms, such as Stochastic
Gradient Descent (SGD) [25] and Goal Oriented Requirements
Elicitation (GORE) [33] [34] are also utilised. CNN is also
utilised to categorise the requirements [25]. Applying CNN and
SGD to various documents to test the learned model yields
inferior results [25].

C. Requirements Prioritisation Methods

Research and empirical studies are conducted in the domain
of requirements prioritisation [19]. There are two types of
approaches to prioritising requirements. The first set of
fundamental methods includes priority classification, numerical
assignment, Cost-Value approach, Analytic Hierarchy Process
(AHP) and cumulative voting, while the second group
incorporates the fundamental methods. It is challenging to
determine if the second group has been validated and applied in
practice. Applying a specific set of approaches to similar criteria
that have been pretty well studied and are at the same level of
abstraction has been a challenging step in research.

Prioritising software requirements, AHP is a methodical
statistical technique utilized [14] [16] [33] [35] in the software
community that focuses on relative evaluation. When qualitative
and quantitative factors must be considered in the decision-
making process, the AHP proves to be a resilient and flexible
method that aids individuals in establishing priorities and

selecting the optimal option. AHP facilitates the selection of the
most advantageous option by simplifying difficult decisions into
a sequence of direct comparisons. AHP facilitates the synthesis
of results, thereby offering a justification for selecting
prospective requirements. Based on n requirements, n (n – 1) / 2
comparisons must be performed at each hierarchy level
throughout the procedure. This is the disadvantage of this
procedure, as the number of comparisons increases by a factor
of O(n2) as the number of requirements increases.

100-Dollar Test or Cumulative Voting (CV) is a simple
method in which each stakeholder is given 100 fictitious units.
This method utilises the ratio scale. The sophistication and
granularity of this prioritisation method are both high. These
fictitious units could represent various aspects (for example

, hours, penalty, importance, implementation cost, etc.).
Adaptive Fuzzy Hierarchical Cumulative Voting (AFHCV) [13]
is a novel prioritisation technique that is built using the
foundational algorithm Fuzzy Hierarchical Cumulatives
(FHCV). AFHCV is of the opinion that requirements are subject
to change throughout the software development process. As a
result, modifications to requirements are incorporated at
runtime. These requirements are reassessed and new priorities
are assigned. The system's efficiency decreases with each
iteration of the analysis and prioritisation of requirements,
particularly with regard to time complexity and scalability.

Similar prioritisation techniques employ machine learning
algorithms such as Gradient Descent Rank (GDRank) [14] and
apriori [15]. Case Base Rank (CBRank) [14] algorithm is
evaluated to compare these new prioritisation techniques. The
MoSCoW (Must have, Should have, Could have, and Won't)
method is an approach to prioritisation utilised to ascertain
which requirements are essential, desirable, feasible, and not
worthy of consideration. The fuzzy-based MoSCoW method
[34] utilises the fundamental MoSCoW prioritisation algorithm.
This method is not evaluated. It is necessary to validate it against
an extensive range of requirements.

Continuous domain adaptation is necessary [36]. Novel
approaches that were developed were not assessed on datasets
encompassing diverse domains. Furthermore, the classification
process relied solely on a restricted set of software requirements
rather than sub-classes of non-functional requirements [37].
Prioritisation approaches require professional participation and
are time-consuming and complex. To overcome such challenges,
existing machine learning algorithms must be evaluated for
scalability and accuracy.

III. METHODOLOGY

The software development life cycle (SDLC) refers to the
systematic approach employed in planning, modifying, and
maintaining software. Software quality ensures that software
products are engineered to meet the user requirements. An
important aspect is developing a framework that defines the
requirements. The requirements are gathered, classified and
prioritised in the RE process. Based on the research gap
identified, a new framework is proposed for identifying the types
of requirements and prioritising requirements, as shown in Fig.
1. The function for each module –

Module 1 – The text preparation
Module 2 – Identification of types of requirements
Module 3 – Prioritising requirements

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2842

IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 1. A Framework

A. The Text Preparation

Natural Language Processing is a part of ML technologies
that trains computers to process a large amount of data specified
in natural language. It provides the facility to understand human
language. The text preprocessing and feature extraction methods
clean the raw text and provide the features as input to the ML
algorithms. It will be easy to train models using supervised
learning algorithms after the raw text is preprocessed using
natural language processing methods. Based on the literature
survey, text preprocessing methods such as lowercase, removal
of white space, removal of stop words, tokenization, and
lemmatization are used, and the Term Frequency-Inverse
Document Frequency (TF-IDF) method is used to extract the
features [38] as shown in Fig. 2.

Figure 2. Text Preparation Module

B. Identification of Types of Requirements

As the requirements are stated in a natural language, the
extracted features are words. The relationship between these
words must be considered during the type identification of
requirements. Multiple Correlation Coefficient (MCC) [39]
considers the relationship between two features and a class. To
consider more features at a time to split on and should be mapped
to a class, MCC based decision tree algorithm is used in this
study [8] as shown in Fig. 3.

Figure 3. MCC based Decision Tree Algorithm

C. Prioritising Requirements

Prioritising software requirements is an essential phase in
requirement engineering. Many researchers have presented
various approaches for prioritising requirements. Prioritising
requirements is an iterative process that identifies the most
significant requirements for effective software or system
deployment.

Based on the literature study, various ML algorithms, such
as GDRank and CBRank, are presented for prioritising
requirements. Existing optimization algorithms such as
stochastic gradient descent (SGD), mini-batch SGD, SGD with
Momentum, and Root Mean Squared Propagation (RMSProp)
[40] [41] [42] are used to compare with updated Adaptive
Movement Estimation (Adam), which finds the priority for
requirements.

To find the priority, the Automatic Requirement
Prioritisation Technique (ARPT) uses the Updated Adaptive
Movement Estimation (Updated Adam SGD) optimisation
algorithm [43] as shown in Fig. 4, which is compared to the
SGD, mini-batch SGD, SGD with Momentum, and RMSProp
algorithms.

Figure 4. ARPT

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2843

IJRITCC | October 2023, Available @ http://www.ijritcc.org

IV. RESULTS

To execute the proposed approach, we employed the user-
friendly Python 3.8.5 programming language and tkinter, which
offers support for various dataset file formats, including CSV.
Additionally, we opted for Scikit-learn due to its array of
modules facilitating the creation of machine learning classifiers
and computation of evaluation metrics. The computational
infrastructure consisted of a DELL Laptop featuring an Intel(R)
Core(TM) i5-10300H processor clocked at 2.50GHz, 8 GB of
RAM, and a 64-bit Windows operating system.

The dataset underwent a split, dividing it into two parts using
an 8:2 ratio. Specifically, 80% of the dataset was allocated for
training the model, while the remaining 20% originating from
the same domain was designated for model testing purposes.
This study compares the existing machine learning algorithms to
identify the type of software requirements in terms of accuracy,
as shown in Table 1 and Fig. 5.

TABLE I. COMPARISON OF ALGORITHMS USED TO IDENTIFY THE TYPES

OF REQUIREMENTS

Algorithm 561 701 912 1670 2153

Decision Tree 95.24 96.43 79.49 95.06 91.21

Random Forest 95.24 92.86 84.62 91.97 87.91

Multinomial Naive

Bayes
95.24 89.29 79.49 89.51 87.36

Logistic Regression 95.24 89.29 79.49 90.12 87.36

Neural Network 95.24 92.86 82.05 88.27 78.57

KNN 90.48 100 82.05 90.74 88.46

SVM 95.24 92.86 82.05 90.12 89.56

MCC based Decision

Tree
95.24 96.43 94.87 96.3 96.7

Figure 5. Comparison of Identification of Types of Requirements using ML Algorithms

From Table 1 and Fig. 5 it is observed that MCC based
Decision Tree consistently outperforms the other existing
machine learning algorithms even if the number of features are
changed.

Stakeholders frame the same type of requirement using
different terms. Because of the high level of variance in
requirements elicitation, automated classification or type
identification is more prone to errors. Therefore, the challenge is
to determine the best classification algorithm. Furthermore, such
classification is required since manually identifying types of
software requirements takes time, particularly for large projects
with a significant number of requirements in the industry [28].

A comparison of existing optimization algorithms to assign
priority to software requirements Gradient Descent (GD),
Stochastic Gradient Descent (SGD), Mini-batch SGD, SGD with

momentum, RMSProp, Adam with the updated Adam algorithm
is shown in Fig. 6 and 7 in terms of error cost vs epochs and
mean squared error respectively.

It is observed that error cost reduces as the number of epochs
increases in the case of GD, Mini-batch SGD, SGD with
momentum, RMSProp, Updated Adam as shown in Fig. 6 (a, c,
d, e, g). At the commencement of the iteration, the error cost for
GD is 5.94, while for SGD it is 3. The distorted waveform is
formed in the case of the Adam algorithm, as the huge sparse
data is created for the text requirements. Hence, the Adam
algorithm necessitates an extended duration to mitigate the error
cost. The convergence rate of the ARPT is greater than that of
the Adam algorithm.

The results presented in Figure 6 indicate that the mean
squared error, which represents the discrepancy between the

95.24
96.43

94.87
96.3 96.7

60

65

70

75

80

85

90

95

100

561 701 912 1670 2153

A
cc

u
ra

cy
 (

%
)

No of Features

Identification of Types of Requirements using ML Algorithms

Decision Tree Random Forest Multinomial Naive Bayes

Logistic Regression Neural Network KNN

SVM MCC based Decision Tree

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2844

IJRITCC | October 2023, Available @ http://www.ijritcc.org

predicted and original priorities, is significantly smaller when
utilising Updated Adam compared to other optimisation
algorithms currently in use. Adam was ultimately outperformed
by 84.44% by ARPT. The proposed method can be used in
industry to identify the type of requirements and assign priority

to requirements automatically, so manual efforts and time can be
reduced, as well as errors that occurred during the type
identification of requirements and finding the priority of
requirements manually.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6. Training cost of Optimization Algorithms

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2845

IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 7. Comparison of Optimization Algorithms

V. CONCLUSION AND FUTURE SCOPE

This study discusses the framework for identification of
types of requirements and prioritisation of requirements. This
framework can bridge the gap between the research and practice.

The experimental findings so conducted showed that the
Multiple Correlation Coefficient based decision tree algorithm
increased the type identification performance, outperformed the
decision tree algorithm by 4.42%, and achieved 96.7% accuracy
for identifying the requirements. The Adam Algorithm exhibits
a lack of convergence in the context of text features, specifically
when the feature frequency within the dataset is excessively low.
In order to circumvent this constraint, the Automated
Requirement Prioritisation Technique is suggested as a means of
prioritising software requirements. One notable benefit of the
Automated Requirement Prioritisation Technique is its superior
performance on text datasets compared to Adam. In terms of
error cost and mean squared error, this study also systematically
contrasts different optimisation methods with the proposed
method for prioritising requirements. On 43 projects dataset
containing functional and non-functional requirements for
software projects, including usability, performance, and so forth,
the Automated Requirement Prioritisation Technique is
evaluated. The experimental findings revealed that the
Automated Requirement Prioritisation Technique exhibited
superior performance compared to the Adam algorithms. At
epoch 1000, requirement prioritisation was executed with a
mean square error of 2.93 and a cost error of 0.0001. One
drawback of the proposed algorithm is its failure to consider the
interdependencies among requirements. This study proves that
MCC based decision tree and ARPT algorithms performs better
than the existing methods used to identify the types of
requirements and assign the priorities to requirements
respectively.

Future evaluations of the proposed method will utilise a wide
range of datasets from various domains in order to circumvent
this limitation. Future work will also involve designing and
developing an improved algorithm to consider requirement
dependencies and conflicts.

REFERENCES

[1] J. Dick, E. Hull and K. Jackson, "Introduction," in Requirements
Engineering, Springer Cham, 2017.

[2] A. Khelifa, M. Haoues and A. Sellami, "Towards a Software
Requirements Change Classification using Support Vector Machine," in
CEUR Workshop Proceedings, 2018.

[3] L. V. Rooijen, F. S. Bäumer, M. C. Platenius, M. Geierhos, H. Hamann
and G. Engels, "From user demand to software service: using machine
learning to automate the requirements specification process," in IEEE
25Th international requirements engineering conference workshops
(REW), 2017.

[4] V. Fong, "Software requirements classification using word embeddings
and convolutional neural networks," California Polytechnic State
University, 2018.

[5] K. A. Memon and X. Xiaoling, "Deciphering and analyzing software
requirements employing the techniques of natural language processing,"
in 4th International Conference on Mathematics and Artificial
Intelligence, 2019.

[6] P. Talele and R. Phalnikar, "Software requirements classification and
prioritisation using machine learning," in Machine Learning for Predictive
Analysis: Proceedings of ICTIS 2020, 2021.

[7] B. Lantz, "Divide and Conquer-Classification Using Decision Trees and
Rules," Machine Learning with R, 2015.

[8] P. Talele and R. Phalnikar, "Multiple correlation based decision tree
model for classification of software requirements," International Journal
of Computational Science and Engineering, vol. 26, no. 3, pp. 305-315,
2023.

[9] B. NUSEIBEH and S. EASTERBROOK, "Requirements engineering: a
roadmap," in The Future of Software Engineering, Ireland, 2000.

[10] M. Batra and A. Bhatnagar, "Requirements Prioritization: A Review,"
International Journal of Advanced Research in Science, Engineering and
Technology, vol. 3, no. 11, pp. 2899-2904, 2016.

[11] R. Devadas and N. G. Cholli, "Multi aspects based requirements
prioritization for large scale software using deep neural lagrange
multiplier," in International Conference on Smart Technologies and
Systems for Next Generation Computing (ICSTSN), 2022.

[12] A. Hudaib, R. Masadeh, M. H. Qasem and A. Alzaqebah, "Requirements
prioritization techniques comparison," Modern Applied Science, vol. 12,
no. 2, 2018.

[13] B. B. Jawale, G. K. Patnaik and A. T. Bhole, "Requirement prioritization
using adaptive fuzzy hierarchical cumulative voting," in IEEE 7th
International Advance Computing Conference (IACC), 2017.

11.54

3.82 3.87 3.87
3.13

3.47
2.93

0

2

4

6

8

10

12

14

GD SGD Mini-batch

SGD

SGD with

Momentum

RMSProp Adam ARPT

M
ea

n
 S

q
u
ar

ed
 E

rr
o
r

MSE

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2846

IJRITCC | October 2023, Available @ http://www.ijritcc.org

[14] D. Singh and A. Sharma, "Software Requirement Prioritization using
Machine Learning," in Software Engineering and Knowledge
Engineering, SEKE, 2014.

[15] R. V. Anand and M. Dinakaran, "Handling stakeholder conflict by agile
requirement prioritization using Apriori technique," Computers &
Electrical Engineering, vol. 61, pp. 126--136, 2017.

[16] F. Shao, R. Peng, H. Lai and B. Wang, "DRank: A semi-automated
requirements prioritization method based on preferences and
dependencies," Journal of Systems and Software, vol. 126, pp. 141--156,
2017.

[17] P. Talele and R. Phalnikar, "Classification and prioritisation of software
requirements using machine learning--A systematic review," in 11th
International Conference on Cloud Computing, Data Science \&
Engineering (Confluence), 2021.

[18] T. Iqbal, P. Elahidoost and L. Lucio, "A bird's eye view on requirements
engineering and machine learning," in 25th Asia-Pacific Software
Engineering Conference (APSEC), 2018.

[19] F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber and K. Z. Zamli,
"Software requirements prioritisation: a systematic literature review on
significance, stakeholders, techniques and challenges," IEEE Access, vol.
6, pp. 71497--71523, 2018.

[20] M. Binkhonain and L. Zhao, "A review of machine learning algorithms
for identification and classification of non-functional requirements,"
Expert Systems with Applications: X, vol. 1, p. 100001, 2019.

[21] A. Khan, B. Baharudin, L. H. Lee and K. Khan, "A review of machine
learning algorithms for text-documents classification," Journal of
advances in information technology, vol. 1, no. 1, pp. 4-20, 2010.

[22] R. Malhotra, A. Chug, A. Hayrapetian and R. Raje, "Analyzing and
evaluating security features in software requirements," in International
Conference on Innovation and Challenges in Cyber Security (ICICCS-
INBUSH), 2016.

[23] M. Lu and P. Liang, "Automatic classification of non-functional
requirements from augmented app user reviews," in 21st International
Conference on Evaluation and Assessment in Software Engineering,
2017.

[24] Z. Kurtanović and W. Maalej, "Automatically classifying functional and
non-functional requirements using supervised machine learning," in 25th
International Requirements Engineering Conference (RE), 2017.

[25] J. Winkler and A. Vogelsang, "Automatic classification of requirements
based on convolutional neural networks," in 24th International
Requirements Engineering Conference Workshops (REW), 2016.

[26] R. Deocadez, R. Harrison and D. Rodriguez, "Automatically classifying
requirements from app stores: A preliminary study," in 25th international
requirements engineering conference workshops (REW), 2017.

[27] C. Li, L. Huang, J. Ge, B. Luo and V. Ng, "Automatically classifying user
requests in crowdsourcing requirements engineering," Journal of Systems
and Software, vol. 138, pp. 108-123, 2018.

[28] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe and K. Schneider,
"What works better? a study of classifying requirements," in 25th
International Requirements Engineering Conference (RE), 2017.

[29] R. Jindal, R. Malhotra and A. Jain, "Automated classification of security
requirements," in International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2016.

[30] J. Zou, L. Xu, M. Yang, X. Zhang and D. Yang, "Towards comprehending
the non-functional requirements through developers’ eyes: An exploration
of stack overflow using topic analysis," Information and Software
Technology, vol. 84, pp. 19-32, 2017.

[31] I. Morales-Ramirez, D. Munante, F. Kifetew, A. Perini, A. Susi and A.
Siena, "Exploiting user feedback in tool-supported multi-criteria
requirements prioritization," in 25th International Requirements
Engineering Conference (RE), 2017.

[32] A. Mahmoud and G. Williams, "Detecting, classifying, and tracing non-
functional software requirements," Requirements Engineering, vol. 21,
pp. 357-381, 2016.

[33] M. Sadiq, T. Hassan and S. Nazneen, "AHP_GORE_PSR: Applying
analytic hierarchy process in goal oriented requirements elicitation
method for the prioritization of software requirements," in 3rd
International Conference on Computational Intelligence &
Communication Technology (CICT), 2017.

[34] K. S. Ahmad, N. Ahmad, H. Tahir and S. Khan, "Fuzzy_MoSCoW: A
fuzzy based MoSCoW method for the prioritization of software
requirements," in International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT), 2017.

[35] L. Alawneh, "Requirements prioritization using hierarchical
dependencies," in Information Technology-New Generations: 14th
International Conference on Information Technolog, 2018.

[36] F. Dalpiaz, D. Davide, A. F. Basak and Ç. Sercan, "Requirements
classification with interpretable machine learning and dependency
parsing," in 27th International Requirements Engineering Conference
(RE), 2019.

[37] C. S. R. K. Surana, D. B. Gupta and S. P. Shankar, "Intelligent chatbot for
requirements elicitation and classification," in 4th International
Conference on Recent Trends on Electronics, Information,
Communication & Technology (RTEICT), 2019.

[38] P. Talele, S. Apte, R. Phalnikar and H. Talele, "Semi-automated Software
Requirements Categorisation using Machine Learning Algorithms,"
International Journal of Electrical and Computer Engineering Systems,
vol. 14, no. 10, pp. 1107--1114, 2023.

[39] [Online]. Available: https://real-statistics.com/correlation/multiple-
correlation/.

[40] "PURE dataset," [Online]. Available: http://nlreqdataset.isti.cnr.it/.

[41] "RMSProp," [Online]. Available: https://www.coursera.org/lecture/deep-
neural-network/rmsprop-BhJlm.

[42] P. Talele and R. Phalnikar, "Machine learning-based software
requirements identification for a large number of features," International
Journal of Computational Systems Engineering, vol. 6, no. 6, pp. 255--
260, 2021.

[43] P. Talele and R. Phalnikar, "Automated Requirement Prioritisation
Technique Using an Updated Adam Optimisation Algorithm,"
International Journal of Intelligent Systems and Applications in
Engineering, vol. 11, no. 3, pp. 1211-1221, 2023.

[44] P. Talele and R. Phalnikar. [Online]. Available: https://ieee-
dataport.org/documents/requirements-classification-and-prioritisation.

[45] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in
International Conference on Learning Representations, 2014.

[46] [Online]. Available: https://www.opendoorerp.com/the-standish-group-
report-83-9-of-it-projects-partially-or-completely-fail/

http://www.ijritcc.org/

