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Abstract— The task of identifying contextual similar sentences plays a crucial role in various natural language processing 

applications such as information retrieval, paraphrase detection, and question answering systems. This paper presents a 

comprehensive review of the methodologies, techniques, and advancements in the identification of contextual similar sentences. 

Beginning with an overview of the importance and challenges associated with this task, the paper delves into the various 

approaches employed, including traditional similarity metrics, deep learning architectures, and transformer-based models. 

Furthermore, the review explores different datasets and evaluation metrics used to assess the performance of these methods. 

Additionally, the paper discusses recent trends, emerging research directions, and potential applications in the field. By 

synthesizing existing literature, this review aims to provide researchers and practitioners with insights into the state-of-the-art 

techniques and future avenues for advancing the identification of contextual similar sentences. 
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I.  INTRODUCTION 

Sentence similarity is important in NLP and has been used for 

a variety of tasks, including question answering, text 

categorization, paraphrase recognition, and information 

retrieval. [5] sentence or short text similarity has come to be a 

popular topic in NLP due to the growing demand for these 

applications. The brief text, on the other hand, is distinct from 

conventional long text, such as news and periodicals. Because 

the brief text's information is so minimal, typical string-based 

measurements are no longer appropriate. As a result, 

determining the similarity of short texts necessitates certain 

solutions, and study in this area has extensive potential and 

research significance. 

To cope with a variety of brief text similarity and other NLP 

difficulties, string-based similarity metrics such as Lowenstein 

Distance, Euclidean Distance, Cosine, Jaccard, and Hash were 

proposed early in the study. String-based similarity tests, on the 

other hand, are unable to account for semantic difficulties like 

polysemous and synonyms. Furthermore, because the most 

noticeable feature of phrases is a lack of string-based similarity, 

context metrics are difficult to calculate correctly. As a result, 

one of the most difficult problems in similarity computation is 

getting the machine to comprehend the meaning provided by a 

brief sentence. We've found that relying solely on string 

measures isn't always reliable. By recognizing the semantic 

information of the text, semantic similarity compensates for the 

inadequacies of older approaches and calculates the similarity 

more correctly. In fact, a sound theoretical basis and application 

requirements for similarity computation can be laid by a correct 

grasp of semantic information. Because the meaning of the text 

will be better recognised, the similarity can be assessed more 

accurately than traditional string-based assessments by 

recognising the context information. As a result, semantic 

similarity has emerged as a fundamental NLP technology. 

Many applications currently utilize semantic similarity 

technologies and have produced positive outcomes. Text 

classification, attitude analysis, [10-12] social network and 

information retrieval, are just a few examples. [14-16] 

 

The extraction technique of semantic information has improved 

because of the growing interest in neural networks, particularly 

the emergence of deep learning models. [17-19]  

Semantic similarity measurements are separated into non-deep 

learning and deep learning measures in the following sections. 

There are two types of non-DL measurements: corpus-based 

and knowledge-based.. In addition, we use popular DL methods 

to summarise the DL similarity data. General model, [20,21] 
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attention model, [22,23], and hybrid model are the three forms 

of DL similarity measures. [24,25] 

 

The following is how the rest of the article is structured. In 

Section 2, the approaches for non-deep learning and deep 

learning measures are discussed. The applications of semantic 

similarity are discussed in Section 3. Section 4 wraps up our 

research and makes recommendations for future work. 

 

II. SEMANTIC SIMILARITY MEASURES 

Sentence similarity has gotten a lot of attention in NLP, because 

accurately comprehending semantics is a significant challenge 

in understanding ambiguity and lexical diversity. This is 

likewise the case with most effective method for dealing with 

the intricacy of brief texts. Short text similarity faces the 

following issues. 

 

1. Short texts lack sufficient context and semantic 

content, resulting in sparsity. Because short sentences 

have fewer significant words, it's more difficult to 

extract useful feature words. "How are you?" for 

example, has far too few keywords. As a result, the 

initial challenge of semantic similarity is to improve 

the machine's ability to discern the proper meaning of 

short sentences. 

2. Textual noise is increased using irregular and Internet 

keywords in brief sentences. Text communications 

frequently contain polysemous terms and synonyms. 

It's possible that the same word can have several 

meanings. It's possible that different terms have the 

same meaning. Information identification becomes 

more challenging because of these complex properties. 

 

As a result, for these two objectives, we’ll focus on assessing 

semantic similarity measurements. As previously stated, 

semantic similarity measurements are classified as either non-

DL or DL. Based on these metrics, In Figure 1, the classification 

system is broadened and subdivided. 

 

 
Fig 1 Classification of Semantic Similarity Measures 

Non-Deep learning Measures: - knowledge-based and 

Corpus-based measures are examples of non-DL measures. The 

resemblance between two or more texts retrieved from the 

corpus is calculated using corpus-based methods. Domain 

specialists build a knowledge base based on their experience. In 

knowledge-based measurements, the semantic network's 

information is employed to determine the similarity between 

two words. Table 1 also contains a summary of the full 

information about semantic similarity metrics based on non-DL 

measure. 

 

Table 1 

 

2.1 DL Measures: - To overcome some of the problems 

associated with non-deep learning measures, deep 

learning is utilized to sentence pairings. Deep learning 

technology has made significant advances in the fields 

of speech recognition and image processing, as well as 

in NLP. DL is now being used by an increasing 

number of research institutions to address more 

difficult and abstract NLP jobs. 

 

Other DL similarity measures have been devised, in 

fact. The following are the most common and popular 

models among them: 

 

1. Measures based on Convolutional Natural Networks 

(CNNs) To get a vector representation of question pairs, 

[43,44] The retrieved data characteristics should be fed 

into the fully connected layer. The classic similarity 

measurement is used to determine the similarity of the 

question pairings. 

2. The RNN model can be considered as a collection of 

clones of the similar neural network, each transmitting a 

message to the next. [45] Because of the model, the 

gradients may vanish and burst. As a result, the concept of 

LSTM [40] was established. LSTM-based measures 

Model Method Year Published 

 

 

 

 

 

 

Corpus 

based  

VSM [28] 1975 ACM 

LSA [29] 1990 JASIS 

LDA [30] 2003 JMLR 

Word2Vec 

[31] 

2013 ICLR 

Doc2Vec 

[32] 

2014 ICML 

NGD [33] 2007 IEEE 

Transactions  

SH [34] 2006 IWWW 

CODC 

[35] 

2006 COLING 

 

 

 

 

Knowled

ge 

based  

Shortest 

Path [36] 

1989 IEEE 

Transaction  

Resnik 

[37] 

1995 IJCAI 

Resk [26] 1998 ICML 

Li [38] 2013 IEEE 

Transaction  

WikiRelate 

[39] 

2006 Artificial 

Intelligence 

ESA [40] 2007 IJCAI 
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[18,23,46] prevent the gradient trouble that RNNs have, 

have a higher "memory ability," and extract context 

information more effectively. 

 

2.1.1 CNN based metric: - Kalchbrenner et al [20] proposed a 

dynamic CNN that extracts crucial semantic information 

from words via dynamic k-max pooling. He et al [21] 

introduced a CNN-based model for model sentences, in 

the network captures features at different levels of 

granularity and uses multiple types of pooling to make 

future similarity computations easier. To capture all 

semantic information, Wang et al [48] focus on the 

relevance of dissimilar sections of two phrases and utilize 

a two-channel CNN to separate comparable and different 

components. 

 

2.1.2 RNN-based metric: The problem of gradient vanishing 

and gradient ballooning is, however, one of RNN's most 

fundamental flaws. Because of this, RNN has a hard time 

training in long texts. As a result, LSTM and its 

derivatives were proposed. Not only did the LSTM model 

overcome flaws, but it also excelled in NLP-related tasks. 

[42] Mueller and Thyagarajan [50] proposed comparing 

the similarity of two texts of varied lengths using Siamese 

Recurrent Architectures. To encode the embedding of the 

pre-processed phrases, the Siamese architecture employs 

two shared weighted LSTM. The bidirectional LSTM 

(BiLSTM) model, which consists of a forward and 

backward calculation, was introduced by Neculoiu et al 

[51]. This allows it to acquire bidirectional semantic 

information from two sources of incoming text. 

 

2.1.3 CNN and RNN-based hybrid measurement: - The most 

utilized semantic synthesis models for sentence similarity 

are CNN and LSTM. For concise text representation, the 

hybrid model can capture many levels of feature 

information. To obtain fine-grained features, semantic 

representation, and important contextual and grammatical 

characteristics, Zheng et al [25] developed BiLSTM, a 

hybrid bidirectional recurrent convolutional neural 

network that captures contextual and lengthy text 

information. Furthermore, the model made advantage of 

CNN's maximum pool layer, which uses context 

information to identify which words are important in the 

text. The hybrid model beats not just standard machine 

learning models, but also CNN and RNN, according to all 

the results. 

 

2.1.4 Attention mechanism-based measurement: - In recent 

years, the attention mechanism has been widely applied to 

a variety of NLP applications based on DL. [49-54] 

Researchers have offered numerous attentions based on 

their in-depth examination of the attention mechanism. 

Keywords are frequently weighted using the attention 

mechanism. Attention weights were computed directly on 

the input representation, the output of convolution, and 

both directions by Yin and Schütze [22] to analyse 

experiment effects. Three corpora and three linguistic 

tasks were used to demonstrate the method's effectiveness. 

Google made extensive use of the self-attention 

mechanism [47] to learn text representation in 2017. The 

self-attention mechanism pays extra attention to the 

sequence and looks for a link. It has been proven to work 

with text summaries, machine reading, and image 

description generation. Cheng et colleagues [55] coupled 

an LSTM model with a self-attention mechanism to 

outperform previous models in machine reading. 

  

2.1.5 BERT-based computation: - BERT performs NLP tasks 

in two steps: fine-tuning and pre-training. Word 

embedding is akin to pre-training. It trains a language 

model using an existing unlabeled corpus. To fulfil 

sentence similarity challenges, fine-tuning use pre-trained 

language models. A new structured language model was 

proposed by Zhang et al [56]. The model contains 

structured semantic information in addition to a simple 

context, resulting in rich semantics for language 

representation. Using the BERT model, Sakata et al [57] 

Identify the degree of similarity among the client's query 

and the response. In terms of retrieval, their strategy is 

both dependable and effective. Many more BERT-based 

NLP tasks have been proposed [58,59], with promising 

results. 

 

Table 2 also contains a summary of the deep learning 

models results of state of the arts method till now.  

 

 

               Table 2 

 

DL 

Model  

Method  Year  ACC Precision  Recall  F1 

CNN ABCNN [22] 2017 86.2   84.7 

 Two-channel [48] 2017 78.4   82.3 

 CNN [43] 2018 74.2    

RNN Siamese LSTM [50] 2016 84.2    

 AttSiaLSTM 

[23] 

2018  65.68   
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III. APPLICATION  

Semantic similarity is used in a variety of applications, 

including text classification and clustering, information 

retrieval, social networks, sentiment analysis, academic 

plagiarism detection, and specific domain detection. Table 3 

summarizes each application area. 

                   Table 3 

 

 

 

 

S.No.  Application Domain Year  Published  Method used  

1.  Text Classification 2014 EMNLP [60] CNN 

2016 ACL [61] BiLSTM 

2017 King University-Computer 

and Information Science [9] 

LSI 

2019 IEEE Access [25] BRCAN 

2.  Text clustering 2014 Information Sciences [62] GA 

2019 IEEE Access [63] WVDD 

2019 Knowledge and Information 

Systems [64] 

FGTM 

3.  Sentiment analysis 2016 IJCNN [11] LDA 

  2019 Knowledge-Based Systems 

[12] 

word embeddings 

4.  Information retrieval 2009 Expert Systems with 

Applications [13] 

Ontology 

2012 World Congress on Intelligent 

Control and Automation [5] 

Ontology 

2013 Expert Systems with 

Applications [65] 

WordNet 

2015 ICLR [66] LSTM 

2017 J Intell Inf Syst [67] LSTM 

5.  Academic plagiarism 

detection 

2016 MIPRO [67] WordNet 

2018 COLING [68] CNN 

6.  Specific Domain 2012 BMC Bioinformatics [69] Ontology 

2019 BioMed Research 

International [70] 

Ontology 

2019 International Joint Conference 

on Artificial Intelligence [37] 

Resnik 

IV. CONCLUSION AND FUTURE WORK  

The methodologies and applications of sentence semantic 

similarity measurements are presented in this study. In the field, 

a variety of approaches for determining the similarity of 

sentences or short texts are proposed. HAN et al. [13-16] 

Knowledge-based, corpus-based, and DL-based measures are 

the three types of metrics. The fundamentals of these measures 

are described. 

 

 AttSiaBiLSTM[23] 2018  63.19   

Hybrid  CNN-LSTM [52]  2018  74.8 60.4 72 
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We think there are dual important study avenues in the realm of 

semantic similarity: application in professional sectors and 

cross-linguistic information. 

 

Monolingualism accounts for most of the cross-linguistic 

information in the present work on semantic similarity. 

However, as the degree of economic globalization has 

increased, cross-national interactions and cooperation have 

grown increasingly common. Semantic similarity between 

languages could be beneficial. 

 

Application in professional fields: Most current semantic 

similarity studies or contests are focused on people's daily lives. 

Most of the datasets come from Google News. However, many 

other subjects, such as geology, medicine, astronomy, and other 

specialized fields, apply to text similarity.  
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