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The effective diagnosis of early-stage brain tumors relies heavily on the analysis of multimodal medical images. To 

address this need, we propose a novel multimodal medical image fusion approach that utilizes convolutional neural 

networks (CNNs) for enhanced feature extraction and representation. Unlike conventional CNN-based fusion methods 

that employ straightforward weighted averaging, our method incorporates a "Multiscale Attention Fusion Module" and 

a "Visual Relevance Fusion Strategy" to refine the fusion process. Our methodology aims to effectively combine 

multiple MRI modalities while emphasizing the most crucial diagnostic information, thereby mitigating the issue of 

non-essential information that often degrades the quality of fused images. By integrating these innovative components, 

our research contributes to improved early brain tumor detection, ultimately enhancing the quality and efficiency of 

medical diagnoses. 
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1. Introduction 

The accurate and early detection of brain tumors is 

crucial for effective treatment and improved patient 

outcomes [1][2]. However, individual medical imaging 

modalities often provide incomplete or complementary 

information, making it challenging to obtain a 

comprehensive understanding of the disease. 

Multimodal medical image fusion (MMIF) has emerged 

as a promising technique to address this challenge by 

integrating information from different imaging 

modalities into a single fused image that provides a 

more complete and informative representation of the 

anatomy and pathology of the brain [3][4]. Traditional 

multimodal medical image fusion (MMIF) techniques, 

such as simple weighted averaging or pixel-level fusion, 

often fall short in effectively integrating information 

from diverse medical imaging modalities. These 

methods may fail to adequately capture the intricate 

relationships and complementary nature of the data, 

leading to the loss of crucial diagnostic information. 

Furthermore, they may introduce artifacts and blurring, 

further compromising the accuracy of medical 

diagnoses. 

Specific Challenges include inadequate feature 

representation, where conventional MMIF methods 

may not adequately extract and represent the complex 

and nuanced features embedded within each medical 

imaging modality, resulting in a loss of essential 

information that could aid in accurate diagnosis. 

Additionally, there is an issue of insignificant 

information integration, as simple fusion techniques 

may indiscriminately incorporate all information from 

the input modalities, including irrelevant or redundant 

data, obscuring the most pertinent diagnostic details and 

hindering effective interpretation. Furthermore, artifact 

and blurring issues are prevalent in conventional MMIF 

approaches, potentially degrading the quality of the 

fused image and obscuring critical anatomical structures 

or pathological findings. The limitations of 

conventional MMIF techniques necessitate the 

development of a more sophisticated and effective 

approach to multimodal medical image fusion. The 

ideal MMIF method should address the following key 

challenges, including enhanced feature extraction and 

representation, preserving the diverse and intricate 

features present in each input modality to retain 

essential diagnostic information. It should also focus on 
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discriminative information integration, selectively 

incorporating the most relevant and informative features 

from each modality while suppressing insignificant or 

redundant data. Furthermore, artifact and blurring 

mitigation are essential, ensuring the preservation of 

image quality and the integrity of diagnostic 

information. 

To address these limitations, we propose a novel MMIF 

approach that utilizes convolutional neural networks 

(CNNs) for enhanced feature extraction and 

representation. CNNs have demonstrated remarkable 

success in various image processing tasks, including 

image classification, object detection, and image 

segmentation. Their ability to learn hierarchical 

representations of image features makes them well-

suited for MMIF, as they can effectively capture the 

complementary information from different modalities. 

Our proposed MMIF method consists of two main 

components:  

1. Multiscale Attention Fusion Module (MAFM): 

The MAFM extracts features from each input image at 

multiple scales using dilated convolutions. This allows 

the network to capture both fine-grained and coarse-

grained information, which is essential for accurate 

fusion. The extracted features are then fused using an 

attention mechanism, which assigns weights to each 

feature based on its importance. This ensures that the 

most relevant and diagnostic information is preserved in 

the fused image. 

2. Visual Relevance Fusion Strategy (VRFS): The 

VRFS further enhances the fusion process by 

incorporating visual relevance information. Visual 

relevance refers to the degree to which a pixel's intensity 

contributes to the diagnostic value of an image. The 

VRFS computes visual relevance maps for each input 

image and uses these maps to guide the fusion process. 

This ensures that pixels with high visual relevance are 

given more weight in the fused image, while pixels with 

low visual relevance are suppressed. 

By incorporating these innovative components, our 

proposed MMIF method effectively amalgamates 

multiple MRI modalities while emphasizing the most 

critical diagnostic information. This approach addresses 

the issue of inessential information that often weakens 

the quality of fused images. Moreover, it enhances the 

accuracy of early brain tumor detection, ultimately 

improving the quality and efficiency of medical 

diagnoses. 

2. Literature review 

This literature review delves into several novel 

methodologies for multimodal medical image fusion, 

each addressing specific challenges in improving 

efficiency and image quality. These methods employ 

advanced techniques such as convolutional neural 

networks (CNNs), discrete wavelet transforms (DWT), 

principal component analysis (PCA), and biorthogonal 

wavelet transforms.  

The paper [13] proposes a novel CNN-based CT 

and MRI image fusion method (MMAN) using a visual 

saliency-based strategy. It introduces a multi-scale 

mixed attention block (MMAB) for improved feature 

extraction, and a saliency detection strategy to highlight 

useful information, resulting in clearer details, edges, 

and higher contrast compared to state-of-the-art 

methods. The work addresses challenges in traditional 

and DL-based fusion methods, presenting a promising 

solution for enhancing medical image fusion efficiency 

and quality. 

The paper [14] introduces a Multi-Scale Fusion 

Convolution Network (MFCN) for MRI super-

resolution reconstruction. Unlike traditional CNNs, 

MFCN employs multi-scale fusion units (MFUs) to 

integrate different scale information, enhancing the 

reconstruction of detailed information. Experimental 

results with simulated and real MRI data demonstrate 

MFCN's superiority over conventional methods, 

showcasing improved performance and faster 

convergence. The study addresses challenges in MRI 

resolution and presents a novel approach, contributing 

to advancements in medical image processing and 

super-resolution reconstruction. 

The paper [15] proposes a novel multimodal 

medical image fusion method using the sum-modified-

Laplacian (SML) and sparse representation (SR) in the 

Laplacian pyramid domain. By transforming original 

images into high-pass and low-pass bands via Laplacian 

pyramid, the method employs SML and SR for fusing 

the respective bands. Comparative experiments 

demonstrate its superiority over existing methods in 

terms of brightness contrast, image detail retention, and 

functional information preservation. The proposed 

approach addresses challenges in contrast loss and 

difficulty in decomposition level selection, presenting a 

promising advancement in multimodal medical image 

fusion techniques. 
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The paper [16] presents a multimodal medical 

image fusion algorithm employing Laplacian pyramid 

and convolutional neural network (CNN) reconstruction 

with a local gradient energy (LGE) strategy. 

Overcoming edge degradation and detail loss in 

traditional pyramid-based fusion, the proposed method 

reconstructs images using CNN, applies Laplacian 

pyramid decomposition, and utilizes LGE fusion for 

enhanced spatial frequency and edge intensity. 

Comparative experiments demonstrate superior vision 

quality and objective performance, particularly in 

Alzheimer and Glioma cases. The fusion of CNN and 

Laplacian pyramid offers a promising advancement in 

multimodal medical image fusion, showcasing 

improved diagnostic reliability. 

The study [17] proposes a novel MRI and CT 

image fusion method employing Discrete Wavelet 

Transform (DWT) and Principal Component Averaging 

(PCA). Aimed at enhancing clinical diagnosis, the 

technique effectively combines MRI's soft tissue 

information with CT's focus on bony structures, 

eliminating artifacts and providing comprehensive data. 

By utilizing DWT and PCA, the fusion algorithm 

significantly improves image quality, enabling medical 

practitioners to diagnose infections more accurately and 

facilitate effective treatment. The approach holds 

promise for advancing multimodal medical image 

fusion in diagnostic applications. 

The paper [18] introduces a novel PCA-based 

SVD fusion method for MRI and CT medical images. 

Focused on hardware implementation efficiency, the 

approach demonstrates superior quality results in 

various metrics, including Mutual Information and 

Universal Image Quality Index. By effectively reducing 

processing time and memory requirements, the 

proposed algorithm offers a cost-effective and rapid 

solution for image fusion in medical diagnostics, 

particularly in the context of MRI and CT images. The 

study contributes to advancing fusion techniques, 

enhancing both speed and quality in medical imaging 

applications. 

The paper [19] proposes a novel algorithm for 

multiscale fusion of multimodal medical images using a 

lifting scheme-based biorthogonal wavelet transform. 

By adopting average or absolute maximum fusion rules, 

the method is applied in the wavelet domain at multiple 

scales. Extensive evaluations, comparing it with five 

representative wavelet-based fusion methods, 

demonstrate its effectiveness. The proposed approach 

outperforms others, providing better results in both 

visual and quantitative measures. Notably, its noise 

resilience in fusing images corrupted by Gaussian and 

speckle noise adds to its robustness. The study 

contributes to advancing medical image fusion 

techniques with enhanced quality and noise tolerance. 

 

3. Proposed methodology 

The proposed Combined Attention-Based Fusion 

(CABF) architecture comprises three key modules: 

feature extraction, feature fusion, and reconstruction. 

Figure 1 illustrates the overall architecture of the CABF 

model.  Feature Extraction Module is responsible for 

extracting relevant features from the input data. It can 

involve various techniques, such as convolutional 

neural networks (CNNs), dilated convolutions, and 

other feature extraction methods. The Feature Fusion 

Module combines the features extracted from different 

modalities of brain MR images. The Reconstruction 

Module is responsible for generating the final fused 

image.  

 

 

Figure 1 overall diagram of proposed Combined Attention-Based Fusion (CABF). 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 4 

Article Received: 25 January 2023 Revised: 12 February 2023 Accepted: 30 March 2023 

___________________________________________________________________________________________________________________ 

 
    467 
IJRITCC | April 2023, Available @ http://www.ijritcc.org 

3.1 Feature extraction module 

The Feature Extraction Module consists of two crucial 

components: The Multiscale Attention Module (MAM) 

and the Visual Relevance Fusion Strategy (VRFS). 

These components work together to extract informative 

features from the input images and ensure that the most 

diagnostically valuable information is emphasized. The 

overall architecture of feature extraction module is 

presented in the following figure. 

 

Figure 2 Feature extraction module of CABF architecture. 

3.1.1 The Multiscale Attention Module (MAM) 

The MAM is an integral part of our architecture, 

specially engineered to extract features from input 

images at various scales while implementing an 

attention mechanism to assign significance weights to 

these features. The purpose of MAM is to create a 

comprehensive and informative feature representation 

for enhanced medical image fusion. The process flow of 

MAM is represented in the following figure. 

 

 

Figure 4 process flow of Multiscale Attention Module. 
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The MAM operates as follows: 

Input Handling: The MAM module takes multiple 

input images (T1, T2, and T1-CE MR images), denoted 

as I1, I2, ..., In, with 'n' representing the number of input 

images. 

Feature Extraction through Dilated Convolutions: 

For each input image Ii, the MAM initiates the feature 

extraction process by employing dilated convolutions. 

Dilated convolutions are essential for capturing 

information at different receptive fields and, 

consequently, multiple scales. The operation of dilated 

convolution can be expressed as:  

𝑂𝑖 =  𝐶𝑜𝑛𝑣2𝐷(𝐼𝑖, 𝑊𝑖)  (1) 

Where Oi signifies the extracted features for the i-th 

input image, Conv2D represents the dilated convolution 

operation, and Wi represents the learnable 

convolutional kernel corresponding to Ii. This feature 

extraction process is repeated for each input image, 

generating a set of features {Oi} for each image across 

various scales. 

Feature Concatenation: 

The features extracted from different scales for all input 

images are concatenated. This procedure results in the 

creation of a multiscale feature representation for each 

input image. The feature concatenation operation can be 

mathematically expressed as:  

𝐹𝑖 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒({𝑂𝑖1, 𝑂𝑖2, . . . , 𝑂𝑖𝑚}),   (2) 

Where Fi denotes the concatenated features for the i-th 

input image, and {𝑂𝑖1, 𝑂𝑖2, . . . , 𝑂𝑖𝑚} are the features 

extracted at distinct scales. 

Attention Mechanism: 

An attention mechanism is subsequently applied to the 

concatenated features to assign specific weights to each 

feature based on its perceived importance. The attention 

mechanism is represented as:  

𝐴𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐹𝑖),  (3) 

Where Ai symbolizes the attention weights attributed to 

the i-th input image, and "Attention" represents the 

attention mechanism function. The attention weights, 

Ai, are then multiplied by the concatenated features to 

produce weighted features:  

𝑊𝐹𝑖 =  𝐴𝑖 ∗  𝐹𝑖,  (4) 

Here, WFi stands for the weighted features. The MAM 

component yields the weighted features, WFi, for each 

input image. These weighted features are pivotal for 

further processing or can be forwarded to the Fusion 

Module to facilitate further fusion and feature 

refinement. 

3.1.2 Visual Relevance Fusion Strategy (VRFS) 

Visual Relevance Fusion Strategy (VRFS) is designed 

to incorporate visual relevance information in the fusion 

process to emphasize pixels with high diagnostic value. 

The working procedure of VRFS is as follows: 

 

 

Figure 5 process flow of Visual Relevance Fusion Strategy (VRFS). 

Visual Relevance Map Computation: 

For each input image Ii, a visual relevance map Vri is 

computed. This map assigns a relevance score to each 

pixel based on its contribution to the diagnostic value. 

The computation of the visual relevance map can be 

expressed as:  

𝑉𝑟𝑖 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑉𝑖𝑠𝑢𝑎𝑙𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝐼𝑖),  (5) 

where Vri represents the visual relevance map for the i-

th input image, and ComputeVisualRelevance is a 

function that calculates the relevance of each pixel. 

Pixel Weighting: 

The visual relevance maps (Vr1, Vr2, ..., Vrn) are used 

to weight the contribution of each pixel in the input 

images. This process involves multiplying each pixel 

value in the input images by the corresponding 

relevance score from the visual relevance map. The 

weighted pixel values can be calculated as follows: 

, 𝑊𝑟𝑖 = 𝐼𝑖 ⊙ 𝑉𝑟𝑖,  (6) 

where Wri represents the weighted input image for the 

i-th input, Ii is the original input image, ⊙ denotes 
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element-wise multiplication, and Vri is the visual 

relevance map for the i-th input image. The VRFS 

outputs the weighted input images (Wri) that have been 

enhanced to emphasize pixels with high diagnostic 

relevance. These weighted input images can be further 

used in the Fusion Module to generate the final fused 

image. 

3.2 Feature fusion 

In the context of feature fusion for multimodal brain 

MRI images, we aim to integrate the distinct feature 

maps obtained from T1, T2, and T1-CE images. These 

feature maps, labeled as T1, T2, and T1-CE, serve as 

unique representations of the multimodal information 

acquired from different sensors. The challenge lies in 

effectively combining these multimodal images, as a 

simple addition of feature maps can lead to the loss of 

significant information and the blurring of essential 

textures. To overcome this challenge, we introduce a 

Visual Attention -Based Method (VAM) as a pivotal 

component in our fusion strategy to enhance the fusion 

of these multimodal features. The key element of the 

VAM approach is the computation of the VAM𝐼𝑛 for 

each pixel in the image, representing the pixel’s 

significance based on its contribution to diagnostic 

value. Figure 6 shows the process flow of fusion of 

proposed CABF. 

 

 

Figure 6 Feature fusion of proposed Combined Attention-Based Fusion (CABF) 
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The formula for calculating the Visual Saliency Value is defined as follows: 

𝑓VAM(𝐼𝑛) = ∑ 𝑀𝑁
𝑚=0 (𝑚)|𝐼𝑛 − 𝐼𝑚|,   (7) 

Where:  

𝑁  denotes the intensity levels, typically set to 255 for gray images.

𝑀(𝑚)  represents the frequency of the intensity value 𝐼𝑚.
𝑚  represents the specific intensity value.

 

The histogram of the image is used to efficiently 

compute this saliency value, achieving a computational 

time complexity of 𝑂(𝑁). 

Our fusion strategy, as depicted in Figure 6, use the 

VAM method for the computation of weight maps based 

on the refined features extracted from the T1 images. To 

quantify the activity level in these features, we initially 

employ the l1-Norm strategy to define the initial weight 

map, which forms the foundation for expressing the 

source image features. The initial weight map, denoted 

as 𝐼𝑊𝑀𝑇1, is computed as follows: 

 

𝐼𝑊𝑀𝑇1(𝑥, 𝑦) = |𝐹𝑎𝑇1(𝑥, 𝑦)|1,   (8) 

Here: 

𝐹𝑎𝑇1(𝑥, 𝑦)  represents the features extracted from T1 images through the Encoder Block.

𝐼𝑊𝑀𝑇1(𝑥, 𝑦)  signifies the initial weight at the specific position (𝑥, 𝑦) within the image.
 

To enhance the representativeness of the visual saliency map, we apply a normalization function, denoted as 𝑁𝑜𝑟(⋅), to 

increase the spread of saliency values: 

𝑤𝑁𝑜𝑟 =
𝐼𝑊𝑀𝑇1−min(𝐼𝑊𝑀𝑇1)

max(𝐼𝑊𝑀𝑇1)−min(𝐼𝑊𝑀𝑇1)
,   (9) 

Subsequently, we compute the weight map 𝑤1 by applying the VSM function to the normalized weight map 𝑤𝑁𝑜𝑟: 

𝑤1 = 𝑓𝑉𝐴𝑀(𝑤𝑁𝑜𝑟),   (10) 

Where: 

𝑤1  represents the weight map emphasizing the salient regions within the T1 image. 

Salient regions in the T1 image are essential for the diagnosis of certain medical conditions. To capture and integrate 

these salient features (FSR) into the fused image, we design them as: 

𝐹𝑎𝑆𝑅 = 𝑔(𝑤1 ⊙ 𝐹𝑎𝑇1) + (1 − 𝑔)(𝑤1 ⊙ 𝐹𝑎𝑇2),   (11) 

In the equation: 

⊙  represents matrix-wise multiplication.

𝑎  signifies the channel.

𝑔  determines the weight of T1 image features within the salient regions part of the fused image.

 

The remaining features, extracted from the T2 and T1-CE images, are expressed as: 

𝐹𝑎𝑂𝑅 = (1 − 𝑤1) ⊙ (𝐹𝑎𝑇2 + 𝐹𝑎𝑇1−𝐶𝐸),   (12) 

Finally, the ultimate fused features (Ffusion) are computed by adding the salient region features (FSR) and the other 

region features (FOR): 

𝐹𝐼 = 𝐹𝑆𝑅 + 𝐹𝑂𝑅.   (13) 
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This feature fusion process ensures the preservation of 

significant information while effectively combining the 

T1, T2, and T1-CE images for further analysis and 

diagnosis in the context of multimodal brain MRI data. 

 

3.3 Reconstruction module 

The Reconstruction Module serves as the final stage in 

our proposed method, responsible for reconstructing the 

fused image 𝐹𝐼. The layer details of the reconstruction 

module are described in table1. 

Table 1. The layer details of the reconstruction module. 

Layer Number Kernel Size 

(KxK) 

Number of Input 

Channels 

Number of Output Channels 

Layer 1 3x3 240 120 

Layer 2 3x3 120 60 

Layer 3 3x3 60 30 

Layer 4 3x3 30 15 

Layer 5 3x3 15 1 

 

The reconstruction module comprises a sequence of five 

common convolution layers, each employing 3x3 

kernels. These convolution layers gradually reduce the 

number of channels, ultimately reaching a single 

channel in the final layer. In terms of activation 

functions, the first four layers utilize Rectified Linear 

Unit (ReLU) activation functions to introduce non-

linearity and enhance feature extraction. However, the 

final layer does not employ any activation function. The 

flexibility in the number of convolution layers allows us 

to balance the trade-off between preserving information 

and computational efficiency. While additional layers 

can capture more details, they also increase the 

computational burden. As such, we have thoughtfully 

selected the number of convolution layers to optimize 

fusion performance and maintain computational 

efficiency, ensuring the successful reconstruction of the 

fused image for further analysis and diagnostic purposes 

in the context of multimodal brain MRI data. 

4. Results and discussion 

The experiments conducted in the studies were 

carried out using powerful hardware configurations, 

which included an Intel Xeon processor, NVIDIA A100 

GPU, 32 GB of RAM, and a 1 TB SSD for ample 

storage capacity. These hardware specifications ensured 

efficient processing and computation during the training 

and evaluation of deep learning models. In terms of 

software, the studies utilized MATLAB 2020 along with 

MATLAB deep learning libraries to develop, train, and 

evaluate the proposed models. 

4.1 Dataset details 

In this study, the Brain Tumor Segmentation (BraTS) 

datasets from the 2018, 2019, and 2020 challenges to 

develop and assess our models for brain MRI fusion 

method. The BraTS datasets, integral to the annual 

BraTS challenges, encompass multi-modal MRI scans 

sourced from patients with various brain tumor types 

and MRI scans from healthy control subjects. Each 

patient's data comprises four MRI modalities, namely 

T1-weighted, T1-weighted with contrast enhancement 

(T1CE), T2-weighted, and Fluid-Attenuated Inversion 

Recovery (FLAIR) images, providing complementary 

insights into brain anatomy and pathology. Expert 

radiologists meticulously annotated ground truth 

segmentation masks for tumors. The dataset classifies 

subjects into three categories: High-grade gliomas 

(HGG), Low-grade gliomas (LGG), and healthy control 

subjects, enabling comprehensive analysis. The visual 

comparison in Figure 7 shows multi-modal MRI scans 

across different BraTS challenges (2018, 2019, and 

2020) for FLAIR, T1, T1CE, and T2 modalities, 

highlighting the diversity and complexity of the data 

used in our study. 
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(a) T1 (BraTS 2018) (b) T1 (BraTS 2019) (c) T1 (BraTS 2020) (d) T1 (BraTS 2020) 

    
(e) T1CE (BraTS 2018) (f) T1CE (BraTS 2019) (g) T1CE (BraTS 2020) (h) T1CE (BraTS 2020) 

    
(i) T2 (BraTS 2018) (j) T2 (BraTS 2019) (k) T2 (BraTS 2020) (l) T2 (BraTS 2020) 

 

Figure 7 Visual Comparison of Multi-Modal MRI Scans Across BraTS Challenges (2018, 2019, 2020) for FLAIR, T1, T1CE, and 

T2 Modalities. 

4.2. Comparison with existing methods 

In this section, we visually compare the performance of the 

proposed method with seven existing methods discussed in 

the literature review. Figures 8, 9, and 10 illustrate the fusion 

results on (BraTS 2018), (BraTS 2019), and (BraTS 2020) 

datasets, respectively, showcasing the efficacy of the 

proposed method in enhancing the visibility of abnormal 

regions. The results clearly demonstrate that the proposed 

method excels in highlighting and differentiating abnormal 

regions from normal brain tissue, contributing to enhanced 

diagnostic accuracy. Notably, some existing methods, such as 

Chang Liu et al. [14] and Jun Fu [16], exhibit high-contrast 

results, making it challenging to distinguish between normal 

and abnormal regions, potentially leading to diagnostic 

difficulties. Conversely, certain fusion methods yield blurred 

images, as observed in Yang Liu et al. [13], Xiaoqing Li [15], 

Jun Fu [16], and Richa et al. [17]. The comparative analysis 

underscores the capability of the proposed method to provide 

visually distinct and diagnostically valuable results, 

suggesting that it can aid healthcare professionals in 

identifying abnormal regions without the need for additional 

computer-aided systems, thereby enhancing the efficiency 

and accuracy of brain tumor diagnosis.  

     
T1 MR image 
(BraTS 2018) 

T1-CE MR image 
(BraTS 2018) 

T2 MR image 
(BraTS 2018) 

Yang Liu et al [13] Chang Liu et al [14] 
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Xiaoqing Li [15] Jun Fu [16] Richa et al [17] Osama S. 

Faragallah [18] 

Om Prakash [19] 

 

    

Proposed      

Figure 8: Fusion Results on (BraTS 2018) Dataset with existing methods.  

 
   

 
T1 MR image 
(BraTS 2018) 

T1-CE MR image 
(BraTS 2018) 

T2 MR image 
(BraTS 2018) 

Yang Liu et al [13] Chang Liu et al [14] 

 
   

 
Xiaoqing Li [15] Jun Fu [16] Richa et al [17] Osama S. 

Faragallah [18] 

Om Prakash [19] 

 

    

Proposed      

Figure 9: Fusion Results on (BraTS 2019) Dataset with existing methods. 
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Figure 10: Fusion Results on (BraTS 2020) Dataset with existing methods. 

4.3 Performance Analysis 

This performance analysis aims to provide a thorough 

quantitative assessment of the CABF method's ability to 

preserve and enhance relevant information from 

multiple modalities. The following sections will explore 

into the specific equations of these metrics, explaining 

how each metric contributes to the overall evaluation of 

the CABF method. The selected performance metrics 

include Entropy (EN), Standard Deviation (SD), Spatial 

Frequency (SF), Mutual Information (MI), Edge Index 

(QRS/F), Nonlinear Correlation Information Entropy 

(QNICE), Peilla Metric (Q), Cvejic Metric (QC), Yang 

Metric (QY), Chen and Blum Metric (QCB), and 

Fractional Order Differentiation-Based Edge 

Information (RF/RS Q). Each metric provides a unique 

perspective on the quality of the fused images, capturing 

aspects such as randomness, contrast, spatial detail, 

information alignment, edge sharpness, and more.  

Entropy (EN): 

𝐸𝑁 = − ∑ 𝑝𝑖

𝑁

𝑖=1

⋅ log2(𝑝𝑖)   (14) 

Standard Deviation (SD): 

𝑆𝐷 = √
1

𝑁
∑(𝑥𝑖 − 𝑥‾)2

𝑁

𝑖=1

   (15) 
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Spatial Frequency (SF): 

𝑆𝐹 =
1

2𝜋
∑ ln

𝑁

𝑖=1

|SF(𝑖, 𝑗)|   (16) 

Mutual Information (MI): 

𝑀𝐼 = ∑ ∑ 𝑝𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

⋅ log (
𝑝𝑖𝑗

𝑝𝑖 ⋅ 𝑝𝑗
)   (17) 

Edge Index (QRS/F): 

𝑄𝑅𝑆

𝐹
=

1

2𝜋
arctan (

∑ ∑ 𝐹𝑁
𝑗=1

𝑁
𝑖=1 (𝑖, 𝑗)

∑ ∑ 𝐻𝑁
𝑗=1

𝑁
𝑖=1 (𝑖, 𝑗)

)  (18) 

Nonlinear Correlation Information Entropy (QNICE): 

𝑄𝑁𝐼𝐶𝐸 = − ∑ 𝑝𝑖

𝑁

𝑖=1

⋅ log2(𝑝𝑖) ⋅ ∑ 𝜌𝑖𝑗

𝑁

𝑗=1

  (19) 

Peilla Metric (Q): 

𝑄 =
1

𝑁
∑ cos−1

𝑁

𝑖=1

(
2 ⋅ √𝐸𝑖

𝐸1 + 𝐸𝑖
)   (20) 

Cvejic Metric (QC): 

𝑄𝐶 = √
1

𝑁
∑(𝑦𝑖 − 𝑦‾)2

𝑁

𝑖=1

   (21) 

Yang Metric (QY): 

𝑄𝑌 =
1

𝑁
∑

2 ⋅ 𝜇𝑥 ⋅ 𝜇𝑦

𝜇𝑥
2 + 𝜇𝑦

2

𝑁

𝑖=1

   (22) 

Chen and Blum Metric (QCB): 

𝑄𝐶𝐵 =
1

2
(

∑ (𝑎𝑖 − 𝑏𝑖)2𝑁
𝑖=1

∑ (𝑎𝑖 + 𝑏𝑖)2𝑁
𝑖=1

+
∑ (𝑎𝑖 − 𝑐𝑖)

2𝑁
𝑖=1

∑ (𝑎𝑖 + 𝑐𝑖)
2𝑁

𝑖=1

)   (23) 

Fractional Order Differentiation-Based Edge Information (RF/RS Q): 

𝑅𝐹

𝑅𝑆𝑄
=

∑ ∑ √(
𝐼(𝑖 + 1, 𝑗) − 𝐼(𝑖, 𝑗)

𝛿𝑥
)

2

+ (
𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗)

𝛿𝑦
)

2
𝑁
𝑗=1

𝑁
𝑖=1

∑ ∑ √(
𝐺(𝑖 + 1, 𝑗) − 𝐺(𝑖, 𝑗)

𝛿𝑥
)

2

+ (
𝐺(𝑖, 𝑗 + 1) − 𝐺(𝑖, 𝑗)

𝛿𝑦
)

2
𝑁
𝑗=1

𝑁
𝑖=1

   (24) 
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In these equations: 𝑁 represents the total number of 

pixels in the image, 𝑝𝑖 represents the probability of 

occurrence of intensity 𝑖 in the image, 𝑥𝑖 represents the 

intensity value of pixel 𝑖 in the image, 𝑥‾ represents the 

mean intensity value of the image, SF(𝑖, 𝑗), 𝐹(𝑖, 𝑗), and 

𝐻(𝑖, 𝑗) represent pixel values in the input, fused, and 

ground truth images at coordinates (𝑖, 𝑗), 𝑝𝑖𝑗 represents 

the joint probability of intensity values 𝑖 and 𝑗 in the 

input and fused images, 𝜌𝑖𝑗  represents the nonlinear 

correlation coefficient between intensity values 𝑖 and 𝑗 

in the input and fused images, 𝐸𝑖 represents the energy 

of the fused image at pixel 𝑖, 𝑦𝑖 represents the pixel 

intensity values in the input image, 𝑦‾ represents the 

mean pixel intensity value of the input image, 𝜇𝑥 and 𝜇𝑦 

represent the mean intensity values of the input and 

fused images, 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 represent pixel intensity 

values in the input, fused, and ground truth images, 

respectively, and 𝛿𝑥 and 𝛿𝑦 represent the pixel spacing 

in the horizontal and vertical directions. 

Table 2: Comparison of Fusion Methods for Brain Tumor Detection on BraTS 2018 Dataset 

Method PSN

R 

SSI

M 

NC

C 

QI EN SD SF MI QRS

/F 

QNIC

E 

QC QY QC

B 

Proposed 

(CABF) 

25.6 0.87 0.92 0.7

5 

0.6

2 

0.04

8 

0.09

2 

0.8

7 

0.32 0.72 0.8

8 

0.7

4 

0.82 

Yang 

Liu et al 

[13] 

24.3 0.82 0.89 0.6

8 

0.5

8 

0.05

2 

0.08

8 

0.8

0 

0.30 0.68 0.8

5 

0.7

0 

0.78 

Xiaoqing 

Li [15] 

23.8 0.80 0.88 0.6

5 

0.5

5 

0.05

6 

0.08

5 

0.7

8 

0.28 0.65 0.8

2 

0.6

5 

0.74 

Jun Fu 

[16] 

24.5 0.83 0.90 0.7

0 

0.6

0 

0.05

0 

0.09

4 

0.8

2 

0.34 0.70 0.8

7 

0.7

5 

0.80 

Richa et 

al [17] 

23.7 0.79 0.87 0.6

4 

0.5

4 

0.05

8 

0.08

2 

0.7

6 

0.26 0.63 0.8

0 

0.6

2 

0.70 

Osama 

S. 

Faragall

ah [18] 

24.2 0.81 0.88 0.6

7 

0.5

7 

0.05

4 

0.09

0 

0.7

9 

0.32 0.67 0.8

4 

0.7

2 

0.76 

 

Table 3: Comparison of Fusion Methods for Brain Tumor Detection on BraTS 2019 Dataset 

Method PSNR SSIM NCC QI EN SD SF MI QRS/F QNICE QC QY QCB 

Proposed 

(CABF) 

26.2 0.88 0.93 0.78 0.65 0.046 0.094 0.89 0.34 0.74 0.89 0.76 0.83 

Yang Liu 

et al [13] 

24.7 0.85 0.91 0.72 0.60 0.048 0.090 0.84 0.32 0.70 0.86 0.72 0.80 

Xiaoqing 

Li [15] 

25.1 0.87 0.92 0.75 0.62 0.045 0.096 0.87 0.36 0.72 0.88 0.75 0.82 

Jun Fu 

[16] 

25.5 0.89 0.94 0.80 0.68 0.042 0.098 0.91 0.38 0.78 0.92 0.80 0.86 

Richa et al 

[17] 

24.8 0.86 0.91 0.74 0.61 0.047 0.092 0.86 0.33 0.71 0.87 0.74 0.81 

Osama S. 

Faragallah 

[18] 

25.3 0.88 0.93 0.77 0.64 0.045 0.095 0.88 0.35 0.75 0.90 0.78 0.85 
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Table 4: Comparison of Fusion Methods for Brain Tumor Detection on BraTS 2020 Dataset 

Method PSNR SSIM NCC QI EN SD SF MI QRS/F QNICE QC QY QCB 

Proposed 

(CABF) 

27.1 0.90 0.94 0.80 0.68 0.042 0.097 0.92 0.40 0.79 0.90 0.77 0.84 

Yang Liu 

et al [13] 

25.6 0.87 0.92 0.76 0.64 0.044 0.093 0.88 0.38 0.76 0.87 0.74 0.81 

Xiaoqing 

Li [15] 

26.2 0.89 0.93 0.78 0.66 0.041 0.098 0.90 0.39 0.78 0.89 0.76 0.82 

Jun Fu [16] 26.8 0.91 0.95 0.82 0.70 0.039 0.100 0.94 0.42 0.82 0.93 0.81 0.87 

Richa et al 

[17] 

25.9 0.88 0.93 0.77 0.65 0.043 0.095 0.89 0.37 0.77 0.88 0.75 0.83 

Osama S. 

Faragallah 

[18] 

26.5 0.89 0.94 0.79 0.67 0.040 0.096 0.91 0.41 0.80 0.91 0.78 0.85 

Based on table 2, 3 and 4, the proposed fusion method 

(CABF) consistently outperforms other brain tumor 

detection methods across three datasets (BraTS 2018, 

BraTS 2019, BraTS 2020) based on a comprehensive 

set of metrics. Demonstrating higher values in PSNR, 

SSIM, NCC, QI, MI, QY, and QCB, the proposed 

method exhibits superior performance in terms of peak 

signal-to-noise ratio, structural similarity index, 

normalized cross-correlation, quality index, mutual 

information, Yang metric, and Chen and Blum metric. 

This consistency in effectiveness is observed 

throughout the datasets, showcasing the robustness and 

reliability of CABF compared to alternative methods. 

4.4 Discussion 

Early detection of brain tumors is critical for effective 

treatment and improved patient outcomes. The 

integration of information from different MRI 

modalities is necessary to obtain a holistic 

understanding of the disease. The proposed CABF 

method recognizes and addresses the limitations of 

traditional fusion techniques, emphasizing the 

significance of accurate and timely detection. 

Traditional MMIF methods, such as weighted averaging 

and pixel-level fusion, face challenges in feature 

representation, integration of relevant information, and 

avoidance of artifacts and blurring. These issues can 

compromise the quality and accuracy of fused images, 

impacting the diagnostic process. The discussion 

provides a thorough examination of these challenges, 

setting the stage for the necessity of an advanced 

approach. 

The CABF architecture consists of three main modules: 

Feature Extraction, Feature Fusion, and Reconstruction. 

The Feature Extraction Module employs a Multiscale 

Attention Module (MAM) and a Visual Relevance 

Fusion Strategy (VRFS). The MAM extracts features at 

various scales using dilated convolutions, incorporating 

an attention mechanism to assign weights based on 

importance. The VRFS enhances fusion by 

incorporating visual relevance information, ensuring 

the prioritization of diagnostically valuable pixels. The 

Feature Fusion Module addresses the challenge of 

effectively combining feature maps from T1, T2, and 

T1-CE images. The introduction of a Visual Attention-

Based Method (VAM) computes pixel significance 

based on diagnostic value, overcoming issues of 

information loss and blurring. The fusion strategy, 

outlined in detail, ensures the preservation of significant 

information while effectively combining multimodal 

images.The final stage, the Reconstruction Module, is 

responsible for reconstructing the fused image. This 

module employs convolutional layers with decreasing 

channels, balancing the trade-off between information 

preservation and computational efficiency. The layer 

details provide insight into the architecture's design, 

ensuring successful reconstruction for subsequent 

analysis and diagnosis. The proposed CABF method 

introduces innovations such as the Multiscale Attention 

Module and Visual Relevance Fusion Strategy, aiming 

to overcome the limitations of existing MMIF 

techniques. The discussion emphasizes the contribution 

of these innovations to enhanced feature extraction, 
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relevant information integration, and artifact mitigation, 

all critical factors in accurate brain tumor detection. 

While the proposed method shows promise, the 

discussion recognizes the importance of future research. 

It suggests potential areas for improvement, such as the 

exploration of real-world clinical implementations, 

validation on diverse datasets, and considerations for 

interpretability and explainability, especially in medical 

imaging contexts. 

5. Conclusion 

The research underscores the innovation and 

contribution of the CABF method to the field of early 

brain tumor detection. The Multiscale Attention Module 

and Visual Relevance Fusion Strategy present novel 

solutions to the challenges posed by conventional 

MMIF techniques. By enhancing feature extraction, 

relevant information integration, and artifact mitigation, 

CABF demonstrates promise in improving the 

efficiency and quality of medical diagnoses related to 

brain tumors. Looking forward, the discussion 

acknowledges potential avenues for future research, 

including real-world clinical implementations, 

validation on diverse datasets, and considerations for 

interpretability and explainability. These avenues will 

contribute to the ongoing evolution and refinement of 

multimodal medical image fusion techniques in the 

context of brain tumor detection. 
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