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Abstract—This paper focuses on the analysis of cocurrent imbibition phenomenon which occurs during secondary oil recovery process.In
cocurrent imbibition, a strongly wetting phase(water) displaces a non-wetting phase(oil) spontaneously under the influence of capillary forces
such that the oil moves in the same direction to the water. We use an optimal homotopy analysis method to derive an approximate analytical

expression for saturation of water when the viscosity of the non-wetting phase is non-negligible.
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. INTRODUCTION

When a porous medium is partially covered by water, oil
recovery is dominated by cocurrent imbibition i.e. the
production of non-wetting phase has the same direction of
flow as the wetting phase.This phenomenon has been studied
by many researchers and solved by different methods [1-5]. To
find the distribution of water saturation in porous medium,
pertaining nonlinear partial differential equation(PDE) should
be solved with appropriate conditions. The purpose of this
work is to solve nonlinear PDE describing cocurrent
imbibition in inclined homogeneous porous medium by
Optimal Homotopy analysis method(OHAM).This method has
been applied recently to a number of problems for solving
nonlinear ordinary and partial differential equations[15-26].

During secondary oil recovery process, it is assumed that
the water is injected into fractured oil saturated
inclinedhomogeneous porous medium and cocurrent imbibition
occurs. It is also assumed that the macroscopic behavior of
fingers is governed by statistical treatment. Thus, only average
cross- sectional area occupied by fingers is taken into account,
the size and shape of individual fingers are ignored. The
velocities of both the phases are considered under gravitational
and inclination effect. We assume that the porosity and the
permeability of the porous medium are constant for the
investigated flow system. The saturation of injected water
S;(x,t) is then defined as the average cross-sectional area
occupied by injected water at distance x and time t.

Il.  GOVERNING EQUATIONS

The generalized Darcy’s law for the wetting and non-
wetting phases[7]:
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where V; and 1, are the velocities of water and oil respectively,
k; and k, are the relative permeabilities of water and
oilrespectively,u; andy,, are the constant viscosities of water
and oil respectively, Kis the permeability of the inclined
homogeneous porous medium, p;and p, are the pressures of
water and oil respectively, p;and p,are the constant densities
of water and oil respectively, gis the acceleration due to
gravity, 0 is the angle of inclination with porous matrix.

Mass balance of water volume assuming incompressible
flow in one dimension with no overall flow can be expressed as
follows [7-8]:

asi+avi_ ;
at = ax ()

whereP is the porosity of the medium.
The expression of the total velocity V, of two phases in
cocurrent imbibition phenomenon can be written as [11]

Vi=Vit 1 C)

The relation between the capillary pressure (p.) generated
by an interface and the difference in pressure across the
interface between the non-wetting and wetting phases is [9]:

De =Pn —Di %)

We assume the linear relationship between capillary
pressure and phase saturation as [12]

Pc(S) = —BS; (6)
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wherep is a constant.
According to Scheidegger and Johnson [13], we consider

the analytical relationship between relative permeability and
phase saturation as

ki =S5 7
The pressure of injected water can be expressed in the form

'zpn+pi Di — Pn
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=p—50Dc (8)

N| =

wherep is the average pressure which is constant.
Using (1) to (8), we obtain the following nonlinear partial
differential equation for the saturation of injected phase:
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Using dimensionless variables

x Kpt
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(9) reduces to
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whered = 221958 and S, (x, £) = S, (X, T).
Eg. (10) is the nonlinear partial differential equation
governing cocurrent imbibition phenomenon in inclined
homogeneous porous medium. The solution of this equation
represents the water saturation.
We assume following boundary conditions for the
saturation of injected phase:

S5,(0,TY=aT forT>0 (11
and
S;(1,T) =bT forT>0 (12)

whereaand b are constants.
We solve (10) together with boundary conditions (11) and

(12) using optimal homotopy analysis method to obtain
saturation distribution of water.

I1l.  OPTIMAL HOMOTOPY ANALYSIS SOLUTION

To solve(10) by optimal homotopy-analysis method, we
choose the initial approximation

_ L b—a—e™)
Sig(X,T) = aT + a—eD T (13)

of S;(X,T) which satisfies boundary conditions and the
auxiliary linear operator as
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LlpX,T; q)] = (14)
with the property L[C] =0, where Cis integral constant
and (X, T;q) is an unknown function.Furthermore, in the
view of (10), we have defined the nonlinear operator as

(X, T; dp(X,T; @))*
NpX, T;q)] = (X, T; q) (pgxz q)+{ qD(ax q)}

L 00X Ta) 0p(X.T;q)
0X aT

(15)

By means of the optimal homotopy analysis-method, Liao
[20] constructs the so-called zeroth-order deformation
equation

(1 - L[eX,T;q) — S, (X, T)]
= coqHX, )N [9(X,T; q)] (16)

where g € [0,1] is the embedding parameter, ¢, # 0 is
convergence control parameter andH (X, T)is nonzero auxiliary
function.

It is obvious that for the embedding parameter g = Oand
q =1, (16) becomes

9(X,T;0) = S;,(X,T) (17)
and
X, T;1) = SX,T) (18)

respectively. Thus, as g increases from 0 to 1, the solution
@(X, T; q)varies from the initial guess S; (X, T) to the solution
S;(X,T) of (10).

Obviously, ¢ (X, T; q)is determined by the auxiliary linear
operator £, the initial guess S; (X,T) and the auxiliary

parameter c,. We have great freedom to select all of them.
Assuming that all of them are so properly chosen that the
Taylor series

PATIQ) = S, + ) S, K Da™  (19)
m=1

exists and converges at g = 1, we have the homotopy-series
solution

S.(X,T) = 5,,(X,T) + Z S, (X,T) (20)

m=1

where
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Differentiating the zeroth order deformation equation (16)
m times with respect to the embedding parameter g and then
dividing by m! and finally setting ¢ = 0, we have the so called

high order deformation equation
L[S, (X,T) = xmSi,, X, D] = coHX, T)R,,(X,T) (22)
subject to the boundary conditions

S, (0,T)=0ands; (1,T)=0, m=1  (23)

where
1 " 'WeIX,T; q)]
R, (X, T) = ,m=1 (24
m( ) (m_ 1)' aqm—l - m ( )
_ (0, ifm<
and Xy, = {1, if m>1. (25)

For simplicity, assumeH (X, T) = 1.Theegs. (22) are second
order ordinary linear differential equations for all m = 1and
can be solved by symbolic computation software such as
Mathematica. Thus we convert the original nonlinear problem
(10)-(11)-(12) into an infinite sequence of linear sub-problems
governed by (22)-(23).

Hence the approximate analytical solution to the given
nonlinear problem takes the following form:

S;(X,T)=aT +a(1 - e‘X)T
PPN
o 1—e1

—aqe AT +ae '+ a+ a) + a?e*T?
—a?eXXT? — aae X XT? — a?e 2XT?

(ocae_sz + a?e?T?

+ ade X XT —ae *X —aX — aX}
4o (26)

wherea = lli_:.

The solution represents the saturation distribution of water
S;(X,T) at distance X and timeT. The convergence of the
solution depends on the convergence control parameter c,. As
shown in [14, 17, 20], we can determine the possible optimal
value of convergence-control parameterc,by minimizing the

averaged squared residual
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(27)

M N m .
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i=0j=0

where we have chosen M = N = 50in this paper.
At the given order of approximation, the minimum of the

averaged squared residual corresponds to the optimal
approximation.

The value of ¢, can be optimally identified from the
condition

dEm (CO) _

i (28)

In this paper, the command NMinimize of the computer
algebra system Mathematica is used to find out the minimum of
averaged squared residual and the corresponding optimal
convergence-control parameter.

IV.  NUMERICAL RESULTS AND DISCUSSION
To obtain the numerical values of the solution, we assume
the value of constantsas L = 1;p; = 0.1; g = 9.8; 8 =
2; a=0.001;b =0.01;0 =0.01; A=0for = 0" ;A =
0.09 for6 = 5"; A = 0.17 for6 = 10°.

A. 6 = 0" inclination with porous matrix.

Fig.1 shows the curve of averaged squared residual at the
10th order of approximationE;, versus cowhend = 0°. Using
Mathematica, we find that E;, has its minimum value

7.97134 %10 ° at ¢, = —0.83which can be seen in Fig. 1.
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Fig.1. Averaged Squared Residual E;owhen 8 = 0°.

Table 1 indicates the numerical values of saturation of
injected water up to 10th order approximation when 6 =
0°using ¢, = —0.83. The graph of saturation of injected water
versus distance Xfor fixed time T = 10, 20, ..., 100 is shown
in Fig. 2.
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Fig.2: Saturation of water versus distance X for fixed time
T = 10,20, ...,100whend = 0"

B. 6 = 5" inclination with porous matrix.

Fig.3 shows the curve of averaged squared residual at the
10th order of approximationE;, versus cowhen 8 = 5°. Using
Mathematica, we find that E;, has its minimum value

2.45049 %10 ®at ¢, = —0.84 which can be seen in Fig. 3
also.
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Fig.3. Averaged Squared Residual E;,when® = 5°.

The numerical values of saturation of injected water up to
10th order approximation are obtained when 8 = 5" using
¢y = —0.84 (Table 2). Fig.4 shows the graph of saturation of
injected water versus distance X for fixed time T =
10, 20, ..., 100.
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Fig.4: Saturation of water versus distance X for fixed time
T = 10,20, ...,100when 8 = 5’

C. 6 = 10" inclination with porous matrix.

Fig.5 shows the curve of averaged squared residual at the
10th order of approximationE;, versus c,when 8 = 10°.Using
Mathematica, we find that E;; has its minimum value
6.68927 <10 °at ¢, = —0.57which can be seen in Fig. 5
also.
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Fig.5: Averaged Squared Residual E;owhen 8 = 10°.

Table 3 indicates the numerical values of saturation of
injected water up to 10th order approximation for 6 =
10°taking c, = —0.57. The graph of saturation of injected
water versus distance X for fixed time T = 10, 20, ..., 100 is
shown in Fig.6.
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F1g.5: Saturation or water versus distance X tor Tixed time

T = 10,20, ...,100 when 6 = 10°.

V. CONCLUSIONS

The approximate analytical solution is obtained for the
concurrent imbibition phenomenon in inclined homogeneous
porous medium by optimal homotopy analysis method. The
convergence of solution is guaranteed by using optimal value
of convergence control parameter. The saturation of injected
water increases when angle of inclination with porous matrix
increases. The water saturation increases when the distance
increases for fixed time.
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TABLE 1: Numerical values of the saturation of injected water forg = 0°.

T X=0.1 X=0.2 X=0.3 X=0.4 X=0.5 X=0.6 X=0.7 X=0.8 X=0.9 X=1

10 0.023558 0.052737 0.084317 0.117539 0.151809 0.186671 0.221786 0.256907 0.291870 0.326570

20 0.035053 0.078396 0.124219 0.171351 0.219011 0.266713 0.314182 0.361291 0.408013 0.454380

30 0.045124 0.099590 0.155979 0.213130 0.270387 0.327424 0.384118 0.440467 0.496523 0.552360

40 0.054205 0.117842 0.182779 0.248077 0.313282 0.378216 0.442855 0.507238 0.571428 0.635482

50 0.062597 0.134078 0.206341 0.278724 0.350948 0.422933 0.494692 0.566269 0.637711 0.709059

60 0.070514 0.148886 0.227660 0.306426 0.385033 0.463450 0.541702 0.619823 0.697846 0.775797

70 0.078112 0.162653 0.247346 0.331977 0.416475 0.500835 0.585078 0.669227 0.753306 0.837332

80 0.085506 0.175644 0.265796 0.355878 0.445867 0.535765 0.625587 0.715349 0.805063 0.894743

90 0.092781 0.188048 0.283283 0.378472 0.473612 0.568708 0.663765 0.758792 0.853796 0.948781

100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TABLE 2: Numerical values of the saturation of injected water forg = 5°.

T X=0.1 X=0.2 X=0.3 X=0.4 X=0.5 X=0.6 X=0.7 X=0.8 X=0.9 X=1

10 0.026667 0.058488 0.092117 0.126890 0.162294 0.197947 0.233571 0.268980 0.304060 0.338751

20 0.039914 0.086912 0.135186 0.183872 0.232434 0.280582 0.328194 0.375263 0.421848 0.468045

30 0.050800 0.109120 0.167810 0.226225 0.284086 0.341330 0.398020 0.454269 0.510202 0.565931

40 0.060037 0.127311 0.194233 0.260515 0.326129 .0391172 0.455784 0.520096 0.584214 0.648215

50 0.068108 0.142791 0.216691 0.289831 0.362348 0.434407 0.506151 0.577688 0.649093 0.720414

60 0.075353 0.156374 0.236440 0.315780 0.394605 0.473082 0.551332 0.629434 0.707439 0.785376

70 0.082012 0.168583 0.254236 0.339284 0.423942 0.508350 0.592599 0.676742 0.760813 0.844833

80 0.088260 0.179772 0.270561 0.360917 0.451012 0.540946 0.630776 0.720537 0.810249 0.899926

90 0.094224 0.190186 0.285739 0.381064 0.476219 0.571373 0.666437 0.761465 0.856468 0.951454

100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TABLE 3: Numerical values of the saturation of injected water forg = 10°.

T X=0.1 X=0.2 X=0.3 X=0.4 X=0.5 X=0.6 X=0.7 X=0.8 X=0.9 X=1

10 0.028016 0.059594 0.092584 0.126638 0.161460 0.196804 0.232462 0.268268 0.304086 0.339813

20 0.042326 0.089470 0.137675 0.186452 0.235438 0.284372 0.333078 0.381446 0.429419 0.476979

30 0.053926 0.112824 0.172021 0.231135 0.289934 0.348293 0.406165 0.463555 0.520504 0.577070

40 0.063524 0.131669 0.199433 0.266655 0.333284 0.399338 0.464878 0.529980 0.594728 0.659202

50 0.071631 0.147308 0.222156 0.296233 0.369638 0.442485 0.514886 0.586944 0.658745 0.730359

60 0.078621 0.160608 0.241569 0.321716 0.401235 0.480281 0.558978 0.637423 0.715688 0.793825

70 0.084769 0.172164 0.258556 0.344224 0.429378 0.514171 0.598712 0.683078 0.767322 0.851480

80 0.090283 0.182395 0.273705 0.364474 0.454883 0.545050 0.635055 0.724951 0.814770 0.904535

90 0.095320 0.191600 0.287423 0.382953 0.478295 0.573518 0.668662 0.763753 0.858808 0.953836

100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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