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Abstract—The multidimensionality of spectrum sensing, the intrinsic complexity of its dependence, and the unpredictability associated 
with spectrum data all contribute to the difficulty of the task. The network of cognitive radio (CR) is comprised of both primary and secondary 

users inside its network. The SUs that are part of the CR network are able to identify the spectrum band and access white space in an 

opportunistic manner. Enhancing spectrum efficiency may be accomplished by using white spaces. This study presents a Deep Stacked CNN-

LSTM (DS-CNN-LSTM)-based spectrum sensing strategy that learns implicit features from spectrum data, such as temporal correlation. This 
approach is based on the research that we have conducted. The effectiveness of the recommended method is shown by a sufficient number of 

simulations, and the results of the simulations demonstrate that it outperforms the current state of the art in terms of detection probability and 

classification accuracy. A comparison is made between the most cutting-edge spectrum sensing approaches and the DS-CNN-LSTM method 

that has been recommended. The results of the experiments indicate that the proposed methods improve detection performance and classification 
accuracy even when the signal-to-noise ratio is low. As we can see, the improvement that was achieved comes at the price of a longer amount 

of time spent on training and a little increase in the amount of time spent on execution. 

Keywords- Cognitive radio, spectrum sensing, long short-term memory, convolutional Neural networks, deep learning. primary users (PUs) , 

secondary users (SUs)  

 

I.  INTRODUCTION  

 

The spectrum resources have become very valuable as a result 

of the fast growth of wireless communication technology and 

the deployment of the 5G paradigm. There is a major 

underutilization of spectrum resources, as shown by the 

spectrum occupancy campaign in [2], which states that the total 

use of spectrum bands ranges from 7% to 34%. One possible 

solution to the trade-off between the availability of spectrum 

and rapid expansion is the cognitive radio (CR) technology [3], 

which has emerged as a viable remedy. By reusing briefly 

unoccupied frequency bands, often known as spectrum gaps or 

white spaces, in an opportunistic way, it seeks to protect 

licensed users from interference while simultaneously 

preventing interference from occurring [4]. Primary users (PU) 

are the users who have been granted permission to access the 

CR network, whereas secondary users (SU) are the users who 

do not have permission to access the network. The usage of 

spectrum may be significantly increased by spectrum sensing. 

Actually, owing to the low signal strength and signal-to-noise 

ratio, it is difficult to determine whether or not the spectrum is 

occupied. This is because of the fact that the spectrum is 

occupied. In order to prevent interference with main users, CR 

makes an effort to allow secondary users to access spectrum 

bands that are not being used to their full potential. The use of 

a spectrum detecting device with a high level of effectiveness is 

necessary in order to remove interference from secondary users 

[5-8]. Detecting the spectrum and making use of the frequency 

band may be accomplished via the use of a variety of spectrum 

sensing methods [9] in [11]. 

   In spite of the fact that these spectrum sensing 

technologies are utilized for the purpose of distributing 

spectrum bands, the capture of vital user actions in the presence 

of ambient noise continues to give rise to difficulties [12–15]. 

The conventional spectrum sensing systems normally make use 

of well-designed test statistics that are derived from the sensing 

signals that have been received. These statistics are then 

compared to a threshold that has been specified in order to 

determine the availability of the spectrum. Depending on the 

amount of prior information that is required about the PU's 

signal (such as the modulation type and grade, pulse shape, and 

frame format) and noise (such as the channel model and 

strength), spectrum sensing systems may be divided into three 

distinct categories: nonblind, semi blind, and entirely blind. The 

methods that constitute nonblind spectrum sensing are based on 

precise statistical models of the signal and noise produced by 

the PU. When using traditional spectrum sensing, the secondary 

user (SU) is only able to identify a single characteristic of the 

signal that is being sent by the main user (PU). Single feature 

detection, on the other hand, does not do a comprehensive 
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analysis of PU data. In order to develop an efficient spectrum 

sensing model, it is essential to use a combination of 

Convolutional Neural Networks (CNN) and Long ShortTerm 

Memory (LSTM), as shown by the research that has been 

conducted up to this point [28]. On the other hand, these models 

are intended for use in contexts that are devoid of noise and do 

not include real-time spectral data. In this article, Hybrid 

Optimized LSTM Enabled Networks are discussed. These 

networks make use of Convolutional Neural Networks (CNN) 

and Optimized Long Short-Term Memory (LSTM) to perform 

better in noisy environments. The most important addition that 

this study makes is a novel hybrid combination of CNN and 

LSTM. In this novel hybrid combination, the hyperparameters 

of LSTM are optimized to achieve high sensing accuracy.  

II. LITERATURE SURVEY 

 

 Despite the fact that the bulk of these models fail to take into 

account temporal dependencies in the signal, machine learning 

techniques are often used in the research literature for the 

purpose of spectrum sensing in cognitive radio 

communications. In order to take use of the temporal correlation 

that exists between spectrum data points, this article makes use 

of a Long Short-Term Memory (LSTM) network. A 

hierarchical cooperative long short-term memory (LSTM) 

network-based cooperative spectrum sensing (CSS) approach 

was developed by D. Janu and colleagues [17]. This technique 

makes use of both a convolutional neural network (CNN) and 

an LSTM network. The convolutional neural network (CNN) is 

able to extract spatial properties from the input covariance 

matrices (CMs) provided by the sensory data of each secondary 

user. A. Rojas and colleagues [18] offered eight different 

strategies for narrowband spectrum sensing, including three 

fuzzy logic algorithms and four deep learning-based 

approaches. There are a variety of implications and aggregation 

processes that are used by fuzzy logic systems. Triangular and 

Gaussian membership functions are also utilized. Convolutional 

neural networks (CNN), long short-term memory (LSTM), and 

fully connected (FC) layers are the three primary designs that 

are used in the construction of deep learning systems. The 

stacked autoencoder (SAE) and the bi-directional long short-

term memory (Bi-LSTM) based spectrum prediction approach 

(SAEL-SP) are presented by G. Pan and colleagues [19]. In 

order to extract hidden properties (semantic coding) from 

spectrum data in an unsupervised manner, an SAE was created 

expressly for this purpose from the beginning. After then, the 

output of the SAE is sent into a predictor known as a Bi-LSTM, 

which is able to learn long-term predictions by discovering 

previously unknown traits. A novel cluster-based cooperative 

sensing-after-prediction strategy is presented by D. Nie et al. 

[20]. This approach is characterized by the collaboration of a 

learning cluster and a sensing cluster in order to achieve 

successful cooperative prediction and sensing. Chae and 

colleagues [21] introduced a novel spectrum sensing approach 

that is based on deep learning and makes use of a receiver with 

several antennas. The creation of a correlation matrix that 

incorporates not only auto correlation functions for each 

antenna but also cross-correlation functions across antennas is 

the essential notion that we are working with. Our Deep 

Spectrum Sensing with Multiple Antennas (DS2MA) model is 

able to swiftly train to recognize the presence of a principal user 

(PU) by using a rich informative matrix and a fundamental 

convolutional neural network (CNN) structure. This allows the 

model to quickly adapt to changing conditions. ConvLSTM-

based spectrum sensing is a methodology that was proposed by 

Q. Wang and colleagues [22]. This method makes use of the 

ConvLSTM network to simultaneously extract the temporal and 

spatial components of the observed IQ signals. Subsequently, 

low-SNR spectrum sensing is performed based on the features 

that were produced from the ConvLSTM network.   

  The Time-Frequency-Fused Adjustable Deep 

Convolutional Neural Network (TFF_ADCNN) was proposed 

by X. Li and colleagues [23]. This network was trained to give 

a pre-trained base model with a single distribution. In the 

subsequent step, the author used the base model for transfer 

learning in order to accomplish the sensing job in the actual 

environment. This resulted in a newly trained sensing model 

that was rather quick to be created. A new compact optical fiber 

concentration sensing system that is based on machine learning 

was proposed by J. Xue and colleagues. A prediction-driven 

channel-switching scheduling system for multi-channel 

customer relationship networks (MC-CRNs) is presented by 

Chauhan et al. [25]. This system is based on machine learning. 

Because it strikes a balance between spectral efficiency and 

channel switching cost, the technique that has been presented 

makes the most of the utility of SUs. Initially, a network-based 

channel prediction approach that is based on Long-Short Term 

Memory (LSTM) is introduced. On the basis of their previous 

spectrum sensing experiences, individual SUs makes local 

predictions on the occupancy of PUs in future time slots. A 

novel method for spectrum sensing is presented by M. Liu and 

colleagues [26], which is based on the combination of 

multimodal fusion and convolutional neural networks (CNN). 

To begin, the signal that has been received from a number of 

antennas is preprocessed by using the generalized covariance 

matrix and the generalized Wigner-Ville distribution. This is 

done in order to define two distinct modes of the received 

signal, which are then then used as input to CNN. Afterwards, 

a CNN model that incorporates multimodal fusion is developed. 

III. METHODOLOGY 

 

Depending on whether or not the primary user signal is present, 

the sequence characteristics of the received signal might vary 

significantly. For the purpose of extracting the temporal 

attributes of each major user's signal sequence, LSTM is used. 

The fully connected layer is utilized for the purpose of fusing 

the features in the fusion center, and SoftMax is utilized for the 

purpose of classifying the merged features. Because of this, the 

current research in spectrum sensing has focused a significant 

amount of attention on deep learning, which does not make any 

assumptions about the models being used. It is important to note 

that in the field of deep learning, convolutional neural networks 

(CNNs) and long-short term memory (LSTM) networks have 

excellent capabilities for extracting spatial and temporal 

features of input, respectively. In this letter, we present a CNN-

LSTM detector that first extracts energy-correlation features 

from the covariance matrices created by the sensing data, and 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 12 Issue: 1 

Article Received: 25 August 2023 Revised: 12 November 2023 Accepted: 30 December 2023 

___________________________________________________________________________________________________________________ 
 

 

    231 

IJRITCC | January 2024, Available @ http://www.ijritcc.org 

then inputs a sequence of energy-correlation features 

corresponding to different sensing periods into the LSTM in 

order to learn the PU activity pattern. This algorithm is designed 

to facilitate the learning of the PU activity pattern.  

3.1 System Model: 

 

  A multi-user scenario is regarded to exist in the 

cognitive radio setting. Transmission of primary user signals is 

carried out by a main user (PU) transmitter. It is captured and 

sampled that the primary signal consumers are monitored. In 

order to train and assess the suggested design, the sampled 

signals are employed. This enables the architecture to identify 

samples that are not known to exist inside the network 

infrastructure.  

Consider, 

    𝑋(𝑘) = {𝑋 𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘), … , 𝑥𝑚(𝑘)}                         [1]                               

where m represents the number of user and k denotes the 

received signals from m users. X (k) denotes the discrete time 

sample present at mth users. The paper uses the binary 

hypothesis testing process for spectrum sensing as mentioned, 

𝐻1: 𝑥(𝑘) = 𝑅𝑁(𝑘) + 𝑌(𝑘) 

𝐻0: 𝑥(𝑘) = 𝑌(𝑘) 

Channel fading and route loss are two factors that might have 

an effect on the signal vector 𝑅𝑁(𝑘). The separate noise vector 

that contains the aero mean is denoted by 𝑌(𝑘). As a result, 

hypothesis 𝐻1 implies that there is a significant user, but 

hypothesis 𝐻0 says that there is no such user. In order to train 

and test the proposed architecture, these signal characteristics 

are separated into real and imaginary components. These 

components help to train and test the design.  

 
Fig 1: Memory Networks for Long-Term and Short-Term 

Storage 

 

 In order to accommodate the concept of memory, it is 

possible to alleviate the disadvantage that is associated with 

normal RNNs by including three gates into each network cell. 

In an effort to make things easier, this is done.  

A memory is first established and then updated inside the cell 

whenever it receives data. This happens each and every time.  

  LSTMs with four gate: forget (f), input (𝑖), memory 

(𝑐), and output gate (𝑜).   

If we have an old memory, 𝐶𝑡−1, we can calculate the new cell 

memory, 𝐶𝑡, as: 

                   𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡                          [2]                                                                                          

 

Forget Gate: chooses which information will be removed from 

the working memory. 

                 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                  [3]                                                                                

 

  Memory Gate: generates a new set of potential recollections. 

                    �̃�𝑡 = tanh (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)           [4]                                                                            

 

Input Gate: This gate regulates the quantity of data that is sent 

from the candidate memory to the updated memory. 

                   𝑖𝑡 = 𝜎 (𝑊𝑖 𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                  [5] 

                                                                         

Output Gate: restricts the amount of data that may be retrieved 

from the memory of the unit. 

                 𝑜𝑡 = σ (𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                [6]                                                                  

 

 The LSTM networks that make up ELMo are linked to 

one another in a back-to-back configuration. Word vectors that 

are ELMo are generated at the top end of a two-layer 

bidirectional word embedding, which is referred to as BiLSTM. 

Two levels are included in this template, with each layer being 

placed on top of the other. There are two passes ahead and two 

passes back. Its forward pass includes information on that word 

in addition to further phrases that have meanings that are 

comparable to that word right up to that point. The information 

from the backward pass includes additional information about 

the word as well as the context that comes after it. This is the 

final ELMo description, which is obtained by adding together 

all of the fundamental word predictions and the word indexes 

that are most likely to be accompanied by them. LSTM 

algorithms are enhanced by BiLSTM algorithms, which 

analyses data in two independent LSTM layers in both forward 

and backward orientations when applied to the data. On the 

other hand, the backward layer analyses the same data in reverse 

order, and the forward layer processes the input in the same 

manner that a normal LSTM does. In a neural network, the first 

layer is known as the input layer, and it also serves as the point 

of entry into the network.  

During the training process, the Dropout Layer is responsible 

for introducing disorder into the network by regularly 

disrupting the number of connections that exist between 

neurons as they move from one layer to the next. The result is a 

reduction in overfitting, which makes it possible for models to 

generalize more successfully. Generally speaking, this results in 

an improvement in the accuracy of the model throughout the 

assessment.  

• LSTM Layer: An implementation of a single LSTM layer 

that meets all of the forward and backward requirements 

for the creation process is carried out. 

• A layer that enables RNN layers to construct models that 

look in both directions. In place of generating two distinct 

RNN layers for forward and reverse direction and adding 

the outputs, the bidirectional template element does all of 
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these tasks inside a single layer.  

The Dense Layer is comprised of a single completely 

linked vanilla artificial neural layer being used.  

In the Embedding Layer, positive integers are converted 

into floating point vectors. This layer is responsible for this 

transformation. 

• A one-dimensional version of the convolutional neural 

network layer is referred to as the Conv1D Layer.  

• A layer that performs maximum pooling in a single 

dimension is referred to as the MaxPooling1D Layer. 

A mathematical representation of it may look something like 

this, for example:  

 

                      𝑥𝑗
𝑙 = 𝑓 ( ∑ 𝑥𝑖

𝑙−1 𝑘𝑖𝑗
𝑙 +  𝑏𝑗  

𝑙
𝑖 ∈ 𝑀𝑗

)                       [7] 

 

  Where  𝑥𝑗
𝑙  is the output of the previous layer, 𝑥𝑖

𝑙−1 is 

the output of the current layer, 𝑘𝑖𝑗
𝑙  is the kernel for the present 

layer, 𝑏𝑗  
𝑙  is the bias for the current layer, and 𝑀𝑗  represents a 

selection of input maps. Convoluting a text with several filters 

in different combinations may help with tasks like recognition, 

identification. 

  The second layer, known as the pooling layer, is 

utilized to reduce the number of parameters if the data are too 

large to process with the first layer alone. Spatial pooling, also 

known as sub - sampling or down sampling, reduces the number 

of dimensions in each map while preserving the crucial details. 

Pooling is a sampling-based approach of discretization. Its goal 

is to minimize the number of dimensions in an input sequence 

(such as an image or the output matrix of a hidden layer). The 

features contained in the sub-regions are thought to have been 

binned. Common types of pooling include maximum pooling 

and minimum pooling. As its primary function is down 

sampling, this layer is often described as the subsampling layer. 

This procedure may be described in a number of ways, 

including the one shown here: 

 

                         𝑥𝑗
𝑙 = 𝑓 ( 𝛽𝑗

𝑙 𝑑𝑜𝑤𝑛 ( 𝑥𝑗
𝑙−1) +  𝑏𝑗

𝑙  )                    [8]    

Each dot here denotes a different kind of subsampling strategy. 

This function typically picks either the average or the greatest 

value from all 𝑛𝑥𝑛 blocks of the mappings from the layer below 

it. Maximum pooling, like minimum pooling, seeks to choose 

the greatest possible value from a given collection. Choosing 

the greatest possible value is the objective of max pooling. To 

build linear stacking for metaheuristic algorithms without 

limiting the program's generalization ability, we will use the 

interaction of two subcomponents as an instance. The approach 

may be easily adapted for use with many other kinds of 

subsystems. 

   Let's call the first result from the deep learning module 

as 𝒀 = [𝒚1, ⋯ , 𝒚𝑖, ⋯ , 𝒚𝑁]  in terms of the posterior probability 

at the level of frames of 𝑪 classes and with a total of 𝑵 frames 

in the data (test or training); that is, 𝒀 ∈  𝑅𝐶×𝑁. the same result 

is obtained for the second subsystem. = [𝒛1, ⋯ , 𝒛𝑖 , ⋯ , 𝒛𝑁] ∈
 𝑅𝐶×𝑁 .( Since the information we're sifting through is a 

representation of medical transcripts, our sample size of N = 

10,000 and a confidence level of 𝐶 = 1000. To generate the 

combined system's output at each frame, we use linear ensemble 

learning. 𝑖 = 1,2,3,4, … 𝑁 to be. 

  𝑽𝒚𝑖 + 𝑾𝒛𝑖 ∈  𝑅𝐶                                                  [9]                            

a sequence of which, with  𝑖 = 1,2,3,4, … 𝑁, i = 1, 2, ⋯ , N , is 

passed to a different HMM to generate the test phoneme or word 

sequences. The two matrices,  𝑽 ∈ 𝑅𝐶×𝐶  and 𝑾 ∈ 𝑅𝐶×𝐶 , are the 

ad hoc variables that may be adjusted as needed during training 

and which we'll go through below.  

Parameter estimation: 

  To master 𝑽 and 𝑾, we turn to the supervised learning 

environment. For this setup, the pre-labeled category targets 

just at segment level of the data sets serve as the supervisory 

signal: 

             𝑻 = [𝒕1, ⋯ , 𝒕𝑖, ⋯ , 𝒕𝑁] ∈ 𝑅𝐶×𝑁                               [10]                                                  

Possibilities based on information gained in retrospect  

𝒀 = [𝒚1, ⋯ , 𝒚𝑖, ⋯ , 𝒚𝑁]  and 𝒁 = [𝒛1, ⋯ , 𝒛𝑖, ⋯ , 𝒛𝑁] ,comprise 

the training data input. 𝑁 is the total number of images used in 

the training process. 

For this purpose, we shall use TSE as our loss function. The 

training objective function of is derived using 𝑳2 regularisation. 

 

𝐸 =
1

2
∑ ∥ 𝑽𝒚𝑖 + 𝑾𝒛𝑖 −𝑖 𝒕𝑖 ∥2+ λ 1 ∥ 𝑽 ∥2+ λ 2 ∥ 𝑾 ∥2,   

                                                                                      [11]                             

where λ 1 and λ 2 are two experimental hyper-parameters, 

Lagrange multipliers, that we tune using both training and 

validation data. Making a few tweaks to (2) improves it. 
𝜕𝐸

𝜕𝑽
= 𝟎  and 

𝜕𝐸

𝜕𝑾
= 𝟎,  

we acquire 

 

                  ∑ (𝑽𝒚𝑖 + 𝑾𝒛𝑖 −𝑖 𝒕𝑖)𝒚𝒊
𝑻 + λ 1𝑽 = 𝟎             [12] 

 

                  ∑ (𝑽𝒚𝑖 + 𝑾𝒛𝑖 −𝑖 𝒕𝑖)𝒛𝒊
𝑻 + λ 2𝑾 = 𝟎             [13] 

 

The equations in this set may be reduced to 

          𝑽(𝒀𝒀𝑻 + λ 1𝑰) + 𝑾(𝒁𝒀𝑻) = 𝑻𝒀𝑻 
               

      [14] 

           𝑽(𝒀𝒁𝑻) + 𝑾(𝒁𝒁𝑻 + λ 2𝑰) = 𝑻𝒁𝑻 
                                               

[15] 

The analytical solution to the learning dilemma: 

[𝑽, 𝑾] = [ 𝑻𝒀𝑻, 𝑻𝒁𝑻] [
𝒀𝒀𝑻 + λ 1𝑰 𝒁𝒀𝑻

𝒀𝒁𝑻 𝒁𝒁𝑻 + λ 2𝑰
]

−𝟏

                                                        

                                                                                    [16] 

 

  The pseudo-code for creating this design is shown in 

Algorithm 1. Employing high-level domain-specific deep 

learning tools like Keras, it is trivial to transform such pseudo 

code into actual implementation. Fine-tuning the model 

parameters is considerably more complex and time-consuming 

in practice. 

Algorithm 1: Pseudo Code of the spectrum sensing detection 

Define Model: 

Model. add(Embedding) 

Model. add(CNN) 

Model. add(LSTM) 

Model. add(Dropout) 

Model. add(Dense) 
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Model. add((Activation) 

Compile Model: 

Model. compile() 

 

IV. EXPERMENT AND RESULT 

 

  In order to evaluate the dependability of the proposed 

system, we made use of the following criteria for suggested and 

well-known state-of-the-art methodologies. The well-known 

state of the art method is put into practice and evaluated using 

the exact same training and testing procedure on the same signal 

data set. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑇𝑟𝑢𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙
 

 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙
 

 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚

=  
𝑇𝑟𝑢𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙
 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑈 𝑠𝑖𝑔𝑛𝑎𝑙
 

 

For the most part, the evaluation of the performance of the 

machine learning model is based on accuracy. Precision is the 

factor that is responsible for defining the significance of the 

discoveries that are generated by predictions. It is the 

responsibility of the recall to quantify the number of tweets that 

have been correctly detected, and the F1-Score is a weighted 

combination of the recall and accuracy ratings. A great number 

of observations and conclusions may be drawn from the results 

of the implementation. The overall performance scores across 

all of the approaches have begun to show signs of improvement. 

Taking into consideration the findings, one might reach the 

following conclusions: With a precision of 96% and an 

accuracy of 98%, the DS-CNN-LSTM model that was proposed 

for spectrum identification was able to reach the highest 

possible results.  

 
Fig. 2: Accuracy  

 
 

Fig. 3: Precision 

 

V. CONCLUSION 

 

When it comes to establishing ultra-dense and ultra-large-

capacity intelligent connections of everything, intelligent 

wideband spectrum sensing technology is very necessary in the 

future of beyond 5G (B5G) and 6G. On the other hand, attaining 

high-precision and high-reconstruction-capability wideband 

spectrum sensing (WSS) with very low signal-to-noise ratio 

(SNR) continues to be a challenge over an extremely large 

frequency range. In the present study, we provide a spectrum 

sensing approach that is based on DS-CNN-LSTM. This 

method is capable of learning implicit properties from spectrum 

data, such as temporal correlation, which refers to the 

connection between the current timestamp and the timestamps 

that came before it.  
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