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Abstract— Smart Cities are vital to improving urban efficiency and citizen quality of life due to the fast rise of the Internet of 

Things (IoT) and its integration into varied applications. Smart Cities are dynamic and complicated, making trust management in 

multi-agent systems difficult. Trust helps IoT devices and agents in smart ecosystems connect and cooperate. This study suggests 

using Deep Q-Learning and Bidirectional Long Short-Term Memory (Bi-LSTM) to manage trust in multi-agent Smart City 

settings. Deep Q-Learning and Bi-LSTM represent long-term relationships and temporal dynamics in the IoT network, enabling 

intelligent trust-related judgments. The architecture supports real-time trust assessment, decision-making, and response to smart 

city changes. The suggested solution improves dependability, security, and trustworthiness in the IoT system's networked agents. 

A complete collection of studies utilizing real-world IoT data from a simulated Smart City evaluates the system's performance. 

The Deep Q-Learning and Bi-LSTM technique surpasses existing trust management approaches in dynamic, complicated multi-

agent environments. The system's capacity to adapt to changing situations and improve decision-making make IoT device 

interactions more dependable and trustworthy, helping Smart Cities expand sustainably and efficiently. 

Keywords- Deep Q-Learning,  Internet of Things System,  Trust Management,  Multi-Agent Environments ,Smart City, Bi-LSTM. 

 

I. INTRODUCTION 

In the rapidly evolving landscape of the Internet of Things The 

introduction of the Internet of Things (IoT) has brought about 

a sea change in the manner in which we engage with the 

environment that surrounds us [1]. The Internet of Things 

(IoT) technology has spread across many facets of our life, 

providing a smooth connection between the digital world and 

the world of physical things [2]. The development of "Smart 

Cities" is one of the most exciting potential uses of the Internet 

of Things (IoT) [3]. In Smart Cities, gadgets and sensors that 

are linked to one another work together to improve the 

efficiency of urban infrastructure and services, eventually 

leading to an improvement in the citizens' quality of life. The 

dynamic and diverse structure of smart cities, on the other 

hand, presents a number of issues, notably in terms of 

maintaining trust and security among the vast number of 

agents and devices that are networked. 

The maintenance of trust is an essential component to the 

success of Internet of Things (IoT) technologies [4] that are 

implemented inside Smart Cities. It is necessary to create 

collaboration among devices and agents by establishing 

confidence among them. This will also simplify the exchange 

of trustworthy data and enable secure interactions. Traditional 

methods of trust management have had a difficult time 

keeping up with the intricacies of smart cities, which contain a 

variety of agents whose interactions, behaviors, and goals are 

all distinct from one another. 

This study combines two strong learning strategies—Deep Q-

Learning and Bidirectional Long Short-Term Memory (Bi-

LSTM)—in order to present a cutting-edge method for 

addressing the trust management difficulties that are inherent 

in multi-agent systems such as those seen in smart cities. Deep 

Q-Learning is a famous reinforcement learning approach that 

has shown extraordinary effectiveness in tackling complicated 

decision-making issues. This success may be attributed to the 

system's ability to learn from previous mistakes. On the other 

hand, the Bi-LSTM neural network is a version of the Long 

Short-Term Memory (LSTM) neural network, and it was 

developed primarily to capture long-term dependencies as well 

as temporal dynamics in sequential data. 

The development of an intelligent Internet of Things system 

that is capable of successfully managing trust among various 

agents within the context of a smart city environment is the 

major purpose of this research. Deep Q-Learning and Bi-

LSTM are two machine learning techniques that may be used 
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in order to produce a dynamic and adaptable trust management 

system that is able to make educated judgments in real-time 

based on shifting conditions and developing interactions 

among the agents. This is our goal. 

Deep Q-Learning and Bi-LSTM will each play to their own 

strengths inside the framework that has been presented. Deep 

Q-Learning will provide the system the ability to learn trust-

related policies that are optimum via a process of exploration 

and exploitation, while also taking into consideration a variety 

of environmental elements and agent actions. On the other 

hand, using Bi-LSTM will make it possible for the system to 

recognize previous patterns and long-term dependencies, as 

well as learn from them. This will improve the system's 

capacity to anticipate and respond appropriately to complex 

multi-agent interactions. 

In order to determine whether or not the strategy that has been 

suggested is successful, a number of tests will be carried out 

making use of IoT data taken from a simulated version of a 

Smart City setting. In order to show that it is better in dealing 

with dynamic and complicated multi-agent situations, the 

performance of the combined Deep Q-Learning and Bi-LSTM 

system will be compared to that of conventional trust 

management systems. 

The importance of the findings that are predicted from this 

study cannot be overstated. Significant improvements in 

dependability, security, and trustworthiness of interactions 

between agents are going to be made possible thanks to the 

implementation of an intelligent trust management system for 

the Internet of Things in smart cities. As a result, this will 

promote a more secure and effective urban environment for 

people, in addition to fostering sustainable growth and 

maximizing the exploitation of resources. 

 

II. BACKGROUND STUDY 

 

The phrase "Internet of Things" is abbreviated as "IoT." The 

term "Internet of Things" (IoT) refers to the network of 

physical devices, automobiles, appliances, and other items that 

are integrated with sensors, software, and connection that 

allows them to gather and exchange data via the internet [5]. 

Connecting commonplace things to the internet and to one 

another is the core concept of the Internet of Things (IoT) [6]. 

This gives the devices the ability to communicate, interact, and 

carry out a variety of functions without the need for direct 

human interaction. 

 

The Internet of Things has a wide variety of applications that 

have the potential to influence a variety of different fields as 

well as areas of our everyday life [7]. The following are some 

examples of frequent uses of the Internet of Things[8]. 

 

The Internet of Things makes it possible to integrate and 

automate many technologies found in a house, including but 

not limited to smart thermostats, smart lighting systems, smart 

security cameras, smart appliances, and virtual assistants [9]. 

These gadgets are capable of being remotely operated by voice 

commands or with the use of a smartphone. 

In the field of healthcare, Internet of Things technology may 

be used in the form of remote patient monitoring, wearable 

health trackers, and monitoring of medical equipment. This 

makes it easier for medical personnel to gather data in real 

time on the state of their patients' health and to deliver prompt 

treatments when they are required. 

IoT is utilized in the industrial sector to monitor and optimize 

production processes, manage supply chain logistics, forecast 

equipment failures, and allow predictive maintenance in order 

to decrease downtime and enhance productivity. This is 

referred to as the Industrial Internet of Things (IIoT). 

Smart Cities: The Internet of Things may be used to develop 

smart city solutions such as intelligent traffic management, 

waste management systems, environmental monitoring apps, 

and public safety software. 

Agriculture: Internet of Things is used in precision farming, 

which deploys sensors and actuators to monitor soil 

conditions, weather, and crop health. This practice is used in 

agriculture. With this information, farmers are able to adjust 

irrigation, pest management, and fertilizer, which ultimately 

results in higher output and less resource waste. 

The Internet of Things is being used in the retail sector to 

improve the shopping experience by implementing technology 

such as smart shelves, in-store location monitoring, and 

targeted marketing based on the purchasing patterns of 

individual customers. 

The Internet of Things is having a significant impact on the 

transportation industry via the development of applications 

such as linked automobiles, vehicle-to-vehicle (V2V) 

communication, and smart traffic management systems, all of 

which aim to increase road safety and decrease congestion. 

Management of Energy Internet of Things (IoT) technologies 

allow smart grid technology, smart metering, and energy-

efficient equipment to optimize the amount of energy used in 

homes, workplaces, and manufacturing facilities. 

Monitoring the Environment Internet of Things devices are 

used to monitor environmental elements such as air quality, 

water quality, and pollution levels in order to evaluate and 

manage environmental concerns. 

 

 
Figure 1. IoT applications and services. 

 

2.1 Trust Management Principles and Terminologies : 

Trust management principles and terminologies are essential 

in the context of information security, privacy, and 

trustworthiness of systems, especially in the realm of 
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cybersecurity and the Internet of Things (IoT) [10]. Here are 

some key principles and terminologies related to trust 

management: 

Trust: Trust is the belief or confidence in the reliability, 

integrity, and competence of a system, device, or entity to 

perform its intended functions and protect sensitive 

information. 

Trustworthiness: Trustworthiness refers to the overall quality 

and reliability of a system or entity to be trusted. It 

encompasses factors such as security, privacy, resilience, and 

the ability to fulfill expectations. 

Trust Management: Trust management involves the processes 

and mechanisms used to establish, maintain, and evaluate trust 

relationships between entities in a system or network. 

Trust Model: A trust model is a framework or representation 

used to quantify and evaluate trust between different entities in 

a system. It defines how trust is established, computed, and 

updated. 

Trust Metric: A trust metric is a quantitative measure used to 

express the level of trust or trustworthiness of an entity. It 

could be a numerical value, a score, or a ranking. 

Reputation: Reputation refers to the historical record of an 

entity's behavior and interactions within a system. It plays a 

significant role in determining trust as entities with a positive 

reputation are often more trusted. 

Authentication: Authentication is the process of verifying the 

identity of a user, device, or system to ensure that they are 

who they claim to be. It is a fundamental aspect of establishing 

trust. 

Authorization: Authorization is the process of granting or 

denying access to resources or functionalities based on the 

authenticated identity and associated permissions. 

Access Control: Access control mechanisms are used to 

enforce policies and rules that regulate access to resources 

based on trust levels and the permissions associated with users 

or entities. 

Trust Anchor: A trust anchor is a highly trusted entity or a 

point of reference used to bootstrap trust in a system. It serves 

as a foundation for evaluating the trustworthiness of other 

entities. 

Trust Domain: A trust domain is a logical grouping of entities 

within a system that share a common level of trust or are 

subject to a common trust management policy. 

Trust Establishment: Trust establishment refers to the process 

of building trust between entities, often through authentication, 

reputation assessment, or validation of trust metrics. 

Trust Evaluation: Trust evaluation involves continuously 

assessing and updating the level of trust in entities based on 

their behavior, reputation, and other relevant factors. 

Trust Negotiation: Trust negotiation is the process by which 

entities exchange trust-related information and negotiate the 

terms of trust before establishing a relationship or engaging in 

interactions. 

 
Figure 2. Trust management model components 

 

2.2 Trust Composition : The process of constructing and 

evaluating trustworthiness in a complex system, which often 

involves the participation of several entities or components, is 

referred to as "trust composition." It is an essential component 

in a variety of domains, such as network and computer 

security, decentralized systems, and interpersonal interactions. 

A collective trust or reputation for the whole system may be 

thought of as the "trust composition" of the system, and the 

idea of "trust composition" aims to explain how separate 

components work together to generate this collective trust or 

reputation. 

When it comes to computer security and distributed systems, 

trust composition is a method that is often used to assess the 

dependability and safety of related components. This is of 

utmost significance in contexts in which systems are 

dependent on a multitude of services, APIs, or apps developed 

by third parties. System administrators are able to make 

educated judgments about which entities they can trust and 

which ones they need to be careful about by evaluating the 

trustworthiness of each component and how they interact with 

each other. 

When it comes to human relationships and other forms of 

social interaction, the composition of trust is an important 

factor in determining whether or not people or communities 

can be trusted. When individuals engage in social interactions 

with one another, they often depend on a mix of firsthand 

experiences, suggestions from common friends, and general 

reputation to judge whether or not they can trust another 

person. These individual evaluations, taken together over time, 

have the potential to build into a composite trust perception. 

 

In either scenario, the composition of the trust may be 

influenced by a variety of circumstances, including the 

following: 

 

Direct Experience refers to the personal contacts and 

experiences that lead to the formation of trust with the parties 

concerned. Recommendations are a means of gaining 

confidence via the provision of favorable references or 

endorsements from third parties who can be relied upon. 

Reputation may be defined as the trust earned from others as a 

result of a history of trustworthy conduct and good comments 

from those around you. Credentials and certificates are terms 

that refer to the establishment of trust via the presentation of 

credentials or certifications that can be independently verified. 

Trust that may shift based on the particular setting or 

circumstance at hand is referred to as contextual factors. 
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2.3 Trust Formation : The process by which people or 

organizations come to have confidence in, believe in, and 

dependence on other people or organizations on the basis of 

their perceived dependability, integrity, and competency is 

referred to as the creation of trust. It is an essential component 

of human relationships, commercial exchanges, and social 

interactions. Trust is an essential component in the formation 

of a stable and cohesive society, the promotion of 

collaborative efforts, and the facilitation of the efficient 

operation of a variety of systems. 

 

The development of trust is influenced by a number of 

important elements, including the following: 

 

Trust is established when an individual continually 

demonstrates behavior that is both predictable and reliable 

over an extended period of time. The confidence that others 

have in a person or organization is increased when that person 

or entity is consistent in meeting their promises and duties. 

Integrity and frankness : It is essential for the development of 

trust that individuals be sincere and forthright in their 

interactions and conduct. When people are honest about their 

goals, give information that is pertinent to the situation, and do 

not attempt to mislead others, trust is more likely to develop 

between them. The ability to demonstrate one's competence 

and capabilities in the performance of one's duties and 

obligations inspires confidence in oneself and in one's fellow 

individuals. People have a tendency to place their faith in 

people who can efficiently produce outcomes. Trust is more 

likely to emerge when interactions result in the attainment of 

mutually beneficial outcomes by both parties. When there is 

something positive for both sides to take away from the 

connection, they are more likely to place their faith in one 

another. Reputation and Previous Experience: The building of 

trust is significantly influenced by one's previous encounters 

with a person or institution. Experiences that are beneficial to 

one's well-being help one build a stronger foundation of trust, 

whilst those that are detrimental to one's well-being may 

undermine trust or impede its growth. Trust may be impacted 

by the thoughts and experiences of other people, who are 

referred to as social proof. It is possible for a person's friends, 

family, or coworkers to have a beneficial influence on their 

level of trust in another individual. Vulnerability and 

Reciprocity: Exhibiting a readiness to trust the other person in 

a relationship by being open and vulnerable with them over 

time might help to create trust in that connection. A virtuous 

cycle of trust development may be created via the practice of 

reciprocal trust. Having Values, Beliefs, and Objectives in 

Common Having values, beliefs, and goals in common may 

help to build trust. It is possible for people to develop a greater 

feeling of trust when they come to an agreement on basic 

ideas. Communication and Empathy: The ability to effectively 

communicate with one another and an empathic 

comprehension of one another's points of view both contribute 

to the development of trust. Having the sense that one is 

understood and heard helps to develop trust in relationships. 

Time and patience are required since trust is often not 

developed immediately; rather, it takes time to grow. Patience 

is a necessary quality, particularly in the beginning stages of 

new relationships or situations. 

 

2.4 Trust Propagation : The term "trust propagation" refers 

to the process by which information about a person's or 

organization's trustworthiness or reputation is spread within a 

network or system by moving from one entity to another. It is 

an important mechanism in many different situations, such as 

social networks, distributed systems, and online platforms, 

where entities make choices based on the trustworthiness of 

others in the system. 

Within the framework of computer systems and decentralized 

networks, trust propagation refers to the process of passing 

along information on trust from one node or component to 

another. Because of this information interchange, nodes are 

able to evaluate the dependability and security of other nodes 

with whom they engage, even if they have no prior experience 

working directly with those nodes. Mechanisms for trust 

propagation may be of assistance in determining which nodes 

should be trusted or interacted with and which ones should be 

avoided when making judgments. 

 

There are a variety of approaches and techniques that may 

form the foundation for trust propagation, including the 

following: 

 

Direct Experience: Nodes will communicate their trust 

experiences with one another based on their previous dealings 

with other nodes. For instance, if Node A has had a good 

experience with Node B, it may choose to communicate this 

information to Node C in order to sway Node C's trust 

judgment towards Node B. 

 

Transitive Trust: If Node A trusts Node B, and Node B trusts 

Node C, then Node A may be more likely to trust Node C, 

even if it has not had any direct contact with Node C. This 

kind of trust is called "transitive" trust. Because trust has a 

transitive quality, that property may spread it along different 

channels in the network. 

 

Reputation Systems: Reputation systems compile the 

comments, ratings, and feedback from a variety of sources into 

a single score that represents each node's reputation. This 

reputation score may be spread to other nodes, where it will be 

used to determine trustworthiness. 

 

Trust Metrics and Algorithms: A variety of trust metrics and 

algorithms may be used to compute and transmit trust ratings 

based on a variety of characteristics including dependability, 

honesty, and previous conduct. 

 

Trust Recommendations: Nodes may get recommendations 

on which other nodes to trust or not trust from sources that 

they know can be trusted. These suggestions may be of 

assistance in the dissemination of trust. 

 

Building communities, engaging users, and moderating 

material are all dependent on the spread of trust in social 

networks and other online platforms. For instance, in online 
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marketplaces, the evaluations and ratings that buyers and 

sellers leave for one another may transmit trust or distrust 

about certain individuals, which in turn influences future 

transactions. 

 

2.5 Trust Aggregation : The term "trust aggregation" refers to 

the process of aggregating and integrating information about 

an entity's reputation or trustworthiness that is obtained from a 

variety of sources in order to produce a single trust score or 

reputation value for that entity [11]. In trust management 

systems, this is an essential phase, particularly in complicated 

networks or dispersed contexts, where trust information might 

originate from a wide variety of organizations and sources. 

The purpose of trust aggregation is to get a full and 

trustworthy evaluation of the trustworthiness of an entity 

based on the information that is currently accessible. When 

dealing with other entities or making judgments in a 

networked environment, this method assists in making 

decisions that are more informed and accurate. 

 

Trust aggregation may be accomplished via the use of a 

number of different approaches and algorithms, including 

the following: 

 

Weighted Average: This straightforward methodology 

involves combining the separate trust scores or evaluations 

derived from a variety of sources by using weighted averages. 

The contribution that each source makes to the total trust score 

is figured out by considering how credible or reliable that 

source is. 

 

Belief Aggregation : Trust values may be viewed as 

subjective beliefs, and aggregation techniques from the area of 

belief theory or Dempster-Shafer theory can be used to 

aggregate them into a single belief score. This is possible since 

belief theory and Dempster-Shafer theory are both related to 

the field of believing. 

Voting by a majority may be used in situations where trust 

ratings are either completely positive or completely negative 

(for example, trusted or not trusted). The weight that is given 

to differing opinions from a variety of sources contributes to 

the aggregate level of trust. 

 

Systems of Reputation: Reputation systems often make use 

of increasingly complex algorithms in order to collect trust 

ratings and reviews provided by a variety of people. These 

systems could take into account aspects such as the length of 

time reviews have been available, the reliability of reviewers, 

and the total number of ratings obtained. 

 

Trust Propagation: As was indicated earlier, trust 

propagation may be used in combination with aggregation to 

spread trust information across the network before the 

aggregating phase is carried out. This is accomplished via the 

usage of "trust propagation." The graphical representations of 

the trust connections that exist between different entities are 

known as "trust networks." Analyzing the trust network and 

calculating aggregate trust ratings may be accomplished via 

the use of algorithms such as PageRank. 

 

Bayesian Models: Bayesian networks or probabilistic 

graphical models may be used to represent the connections 

between trust sources and to determine the overall trust score 

based on probabilistic reasoning. This can be accomplished 

with the help of the Bayesian modeling technique. 

 

Learning via Machines: Techniques from machine learning 

may be used to train trust aggregation models from previous 

trust data and then apply those models to new circumstances. 

It is essential to take into account possible obstacles and 

weaknesses in the process of trust aggregation, such as the 

presence of biased sources, material that is deceptive, or 

malevolent actors seeking to influence trust ratings. To 

guarantee the correctness and reliability of the aggregated trust 

ratings, it is vital to have reliable and robust techniques of trust 

aggregation, as well as appropriate validation of trust sources. 

 

2.6 Trust Update : The act of altering or revising the trust or 

reputation ratings of organizations based on new knowledge or 

experiences is referred to as "trust update." Trust scores need 

to be continuously updated in a variety of settings, including 

social networks, online platforms, and distributed systems, so 

that they represent the most up-to-date and accurate evaluation 

of an entity's trustworthiness. 

 

There are a few different contexts in which trust updates 

might take place, including the following: 

 

When two entities contact with one another for the first time, 

they will have the opportunity to revise their trust ratings for 

one another depending on the results of that encounter. There 

is a correlation between a person's level of trust and the 

positive or bad experiences they have had. 

Feedback and Reviews: After concluding a transaction or 

activity, users of online platforms or markets often submit 

feedback and reviews about their experience with the platform 

or marketplace. These evaluations have the potential to affect 

the trust ratings of the persons concerned. 

Trust ratings may naturally decrease over time if there haven't 

been any recent interactions or updates. This is referred to as 

"time decay." This represents the premise that previous actions 

may become less significant in determining whether or not 

someone can be trusted at the present time. 

Weighted Updates: Depending on the source, the amount of 

relevance or dependability of a piece of information about a 

person's trustworthiness or reputation may vary. These weights 

may be taken into consideration by trust updating methods in 

order to guarantee a fair and accurate depiction of trust. 

Trust Propagation: Trust scores may be modified in systems 

that employ trust propagation based on the information that is 

propagated about who may be trusted from one node to the 

next through a network. 

Trustworthiness may vary greatly depending on the context in 

which it is examined. It's possible that trust ratings will be 

updated differently depending on the kind of interactions that 

take place or the setting that they're in. 

Trust updates are vital to preserving the integrity of trust 

management systems and ensuring that trust ratings reflect the 
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information that is currently the most relevant and accurate. 

Without consistent updates, the trustworthiness of entities may 

be incorrectly represented, which may result in less-than-ideal 

decision-making and may put the whole system's security and 

dependability at risk. 

 

III. LITERATURE REVIEW 

 

A trust-based multi-agent imitation learning strategy is 

presented in this research as a method for maximizing green 

edge computing in smart cities. The purpose of this work is to 

increase the effectiveness and viability of edge computing 

systems in smart cities by using information about the level of 

trust that exists between individual actors [12]. This 

comprehensive study offers an introduction to multi-agent 

reinforcement learning (MARL) techniques that may be used 

to vehicular networks. The purpose of this research is to 

investigate a variety of MARL approaches to improve the 

functionality and effectiveness of vehicular communication 

and collaboration [13]. This body of work presents a unique 

method to smart factory management that makes use of 

quantum multi-agent actor-critic neural networks to allow 

effective coordination of internet-connected multi-robot 

systems [14]. A market-based model for cognitive radio-based 

Internet of Things (CR-IoT) is proposed in this study utilizing 

a Q-probabilistic multi-agent reinforcement learning 

technique. CR-IoT stands for the Internet of Things based on 

cognitive radio. The purpose of the model is to improve the 

efficiency of resource management and spectrum allocation in 

CR-IoT networks [15]. An option-based multi-agent 

hierarchical deep reinforcement learning strategy is presented 

in this research study [16] for improving Internet of Things 

(IoT) networks with the assistance of master Unmanned Aerial 

Vehicles (UAVs) and auxiliary aerial Intelligent Reflecting 

Surfaces (IRSs).In this paper, the authors introduce SecOFF-

FCIoT, a secure offloading framework that makes use of 

machine learning for fog-cloud-based Internet of Things (IoT) 

systems to facilitate smart city application development 

[17].The purpose of this study is to offer a multi-agent deep 

reinforcement learning strategy for Heating, Ventilation, and 

Air Conditioning (HVAC) management in commercial 

buildings [18]. The goal of this approach is to optimize energy 

usage and enhance overall efficiency. The primary objective of 

this study is to use federated multi-agent reinforcement 

learning to model resource allocation for age-sensitive mobile 

edge computing. In mobile edge computing settings, the 

technique tries to increase both the efficiency of the service 

and the quality of the service [19]. To improve network 

performance and resource usage, the authors of this research 

describe a multi-agent deep reinforcement learning strategy for 

Quality of Service (QoS)-aware task offloading in fog 

computing environments [20]. This research presents DeepCC, 

a congestion management mechanism for multi-path 

Transmission management Protocol (TCP) networks that is 

based on multi-agent deep reinforcement learning and self-

attention processes [21]. DeepCC was developed by the 

authors of this study. 

The purpose of this article is to examine the design and 

implementation of a multi-agent system blockchain for a smart 

city application [22]. The purpose of this paper is to use the 

advantages that blockchain and multi-agent systems have to 

offer in order to boost security and efficiency. This study 

investigates the potential applications of optimum machine 

learning approaches for privacy-preserving blockchain-based 

Internet of Things (IoT) systems in smart cities, with the end 

goal of improving data security and privacy [23]. This review 

article presents an overview of reinforcement learning and 

deep reinforcement learning methods used to wireless Internet 

of Things (IoT) systems. It discusses the techniques' potential 

uses as well as the problems they face. [24]. This study 

focuses on the safe placement of mobile edge servers by using 

multi-agent reinforcement learning in order to improve both 

the security of edge computing environments and the 

allocation of resources [25]. 

This paper provides a multi-agent reinforcement learning 

technique for rewarding Proof-of-Stake (PoS) blockchain as a 

means of securing data collecting in Internet of Things (IoT) 

contexts using Unmanned Aerial Vehicles (UAVs) [26].This 

instructional article gives an introduction of single and multi-

agent deep reinforcement learning methods that have been 

used to AI-enabled wireless networks. It focuses on the 

advantages and limitations associated with using these 

techniques [27].The purpose of this project is to examine 

decentralized trust assessment approaches for automotive 

Internet of Things (IoT) systems with the end goal of 

improving trust management and security in vehicular 

networks [28].This paper provides a multi-agent meta-

reinforcement learning strategy for optimum task scheduling 

in heterogeneous edge computing systems. The overarching 

goal of the study is to increase resource consumption as well 

as the efficiency with which tasks are allocated [29]. This 

study focuses on intelligent underwater pollution identification 

by using graph-based multi-agent reinforcement learning for 

application in Autonomous Underwater Vehicle (AUV)-based 

Intelligent Transportation Systems (ITS) [30]. This study 

investigates the viability of implementing reinforcement 

learning in both single-agent and multi-agent systems, with a 

particular focus on interior temperature management and 

communities for the trading of prosumer electricity [31].  

 

IV. PROPOSED METHOD 

 

 
Figure 3. Proposed Model. 
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4.1 Logistic regression 

Data Collection and Preprocessing: 

• Collect the dataset that includes the input features and 

the corresponding binary (or categorical) target 

variable. 

• Preprocess the data, handle missing values, and 

normalize or scale the features if necessary. 

Data Splitting: 

• Split the dataset into training and testing sets. 

• The training set is used to train the logistic regression 

model, while the testing set is used to evaluate its 

performance. 

Model Initialization: 

• Initialize the logistic regression model with random 

weights (coefficients) for each feature. 

Hypothesis Function: 

• Define the logistic regression hypothesis function that 

estimates the probability of the positive class (e.g., 

P(y=1|x)) based on the input features (x) and model 

parameters (coefficients). 

Sigmoid Function: 

• Use the sigmoid function (also called the logistic 

function) to map the output of the hypothesis function 

to a probability between 0 and 1. 

Cost Function: 

• Define the cost function (also called the loss function 

or cross-entropy) that measures the error between the 

predicted probabilities and the actual target values. 

Gradient Descent: 

• Use an optimization algorithm like gradient descent 

to minimize the cost function and update the model's 

coefficients iteratively. 

• Compute the gradients of the cost function with 

respect to each model coefficient. 

Learning Rate and Convergence: 

• Choose an appropriate learning rate, which controls 

the step size in the gradient descent updates. 

• Monitor the convergence of the optimization process, 

and stop when the change in the cost function 

becomes negligible or after a fixed number of 

iterations (epochs). 

Model Training: 

• Train the logistic regression model using the training 

dataset. 

• Iterate over the training data and update the model 

coefficients to minimize the cost function. 

Model Prediction: 

• Use the trained logistic regression model to make 

predictions on new, unseen data. 

• Apply a threshold to the predicted probabilities to 

classify the instances into the positive or negative 

class (e.g., if P(y=1|x) >= 0.5, classify as positive). 

Model Evaluation: 

• Evaluate the performance of the logistic regression 

model using appropriate metrics such as accuracy, 

precision, recall, F1-score, or ROC curve. 

 

4.2 Logistic regression for Trust Management in Multi-

Agent Environments for Smart City 

 

Step 1 : Data Collection and Preprocessing: 

• Collect data from various IoT devices, sensors, and 

agents in the smart city environment. 

• Preprocess the collected data, handle missing values, 

and clean the dataset. 

• Engineer relevant features for trust management, such 

as device behavior statistics, agent attributes, 

interaction history, and context-based features. 

 

Step 2 : Trust Score Initialization: 

• Initialize trust scores for each agent in the multi-agent 

environment. 

• Trust scores can be initialized based on prior 

knowledge, reputation scores, or uniform initial trust 

values. 

 

Step 3 : Model Training: 

• Train a logistic regression model using the 

engineered features and historical trust scores as 

labels. 

• Use a training dataset to fit the logistic regression 

model to predict the trustworthiness of agents based 

on the input features. 

 

Step 4 : Trust Evaluation and Update: 

• As new data becomes available, use the trained 

logistic regression model to predict updated trust 

scores for each agent. 

• Continuously update the trust scores for each agent 

based on the predictions from the logistic regression 

model. 

 

Step 5 : Trust Propagation: 

• Propagate trust information among agents in the 

multi-agent environment. 

• When one agent interacts with another, adjust the 

trust score of the interacting agent based on the 

propagated trust information. 

 

Step 6 : Contextual Trust Management: 

• Consider contextual factors in the trust management 

process. 

• Incorporate relevant context data into the logistic 

regression model and trust update process to make the 

trust assessment more accurate and context-aware. 

 

Step 7 : Anomaly Detection and Handling: 

• Implement anomaly detection mechanisms to identify 

and handle untrustworthy behavior or malicious 

agents. 

• Anomalies may indicate security threats or unusual 

interactions that can negatively impact the trust 

system. 
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Step 8 : Smart City Application: 

• Apply the trust management system to specific smart 

city applications, such as traffic management, waste 

management, energy distribution, or public safety. 

• Use the trust scores to make informed decisions about 

resource allocation, task delegation, and cooperation 

among agents in the smart city environment. 

 

Step 9 : Evaluation and Fine-Tuning: 

• Evaluate the performance of the trust management 

system in the smart city context. 

• Fine-tune the logistic regression model, feature 

engineering, and trust update mechanisms based on 

real-world feedback and observations to enhance the 

system's accuracy and effectiveness. 

 

4.3 Bi-LSTM 

 

Data Preprocessing: 

• Collect and preprocess the input data, ensuring it is in 

a sequential format suitable for Bi-LSTM processing. 

• Normalize or scale the data if necessary to improve 

convergence during training. 

Data Splitting: 

• Split the data into training and validation sets. 

• The training set is used to train the Bi-LSTM model, 

while the validation set is used to monitor its 

performance and avoid overfitting. 

Bi-LSTM Model Architecture: 

• Define the input sequence length, which will 

determine the size of input time steps for the Bi-

LSTM network. 

• Specify the number of hidden units (neurons) in each 

Bi-LSTM layer and the number of layers for the 

network. 

• Choose an appropriate activation function, such as the 

hyperbolic tangent (tanh) function, for the Bi-LSTM 

layers. 

Bi-LSTM Forward Pass: 

• Initialize the Bi-LSTM network with random 

weights. 

• Process the input sequence through the Bi-LSTM 

layers using the forward pass, capturing temporal 

dependencies in both forward and backward 

directions. 

Loss Function and Optimization: 

• Define a suitable loss function (e.g., mean squared 

error or categorical cross-entropy) based on the 

problem type (regression or classification). 

• Choose an optimization algorithm (e.g., Adam or 

RMSprop) to update the Bi-LSTM's weights based on 

the loss gradient. 

• Set the learning rate and other hyperparameters for 

optimization. 

Training: 

• Train the Bi-LSTM network using the training data 

and the defined loss function and optimization 

algorithm. 

• Iterate over the training data in batches and update 

the weights of the Bi-LSTM network using 

backpropagation through time (BPTT) 

 

4.4 Proposed B-LSTM for Trust Management in Multi-

Agent Environments for Smart City 

 

Step 1: Data Collection and Preprocessing: 

• Collect data from various IoT devices, sensors, and 

agents in the smart city environment. 

• Preprocess the collected data, handle missing values, 

and clean the dataset. 

• Convert the data into sequential format to capture 

temporal patterns, interactions, and behavior 

histories. 

 

Step 2: Trust Score Initialization: 

• Initialize trust scores for each agent in the multi-agent 

environment. 

• Trust scores can be initialized based on prior 

knowledge, reputation scores, or uniform initial trust 

values. 

 

Step 3: Bi-LSTM Model Architecture: 

• Design the Bi-LSTM model for trust management in 

the multi-agent environment. 

• Define the input sequence and output format for the 

Bi-LSTM model. 

• Set the hyperparameters and layers of the Bi-LSTM 

network. 

 

Step 4: Training the Bi-LSTM Model: 

• Split the dataset into training and validation sets. 

• Train the Bi-LSTM model on the training data to 

learn the trust dynamics among agents. 

• Utilize backpropagation and optimization techniques 

to update the model weights. 

 

Step 5: Trust Evaluation and Update: 

• Use the trained Bi-LSTM model to predict updated 

trust scores for each agent based on their sequential 

interactions and behavior history. 

• Continuously update the trust scores for each agent 

using the predictions from the Bi-LSTM model. 

Step 6: Trust Propagation: 

• Propagate trust information among agents in the 

multi-agent environment. 

• When one agent interacts with another, adjust the 

trust score of the interacting agent based on the 

propagated trust information. 

 

Step 7: Contextual Trust Management: 

• Consider contextual factors in the trust management 

process. 

• Incorporate relevant context data into the Bi-LSTM 

model and trust update process to make the trust 

assessment more accurate and context-aware. 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7 

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023 

___________________________________________________________________________________________________________________ 
 

 

    486 

IJRITCC | July 2023, Available @ http://www.ijritcc.org 

Step 8: Anomaly Detection and Handling: 

• Implement anomaly detection mechanisms to identify 

and handle untrustworthy behavior or malicious 

agents. 

• Anomalies may indicate security threats or unusual 

interactions that can negatively impact the trust 

system. 

Step 9: Smart City Application: 

• Apply the trust management system to specific smart 

city applications, such as traffic management, waste 

management, energy distribution, or public safety. 

• Use the trust scores to make informed decisions about 

resource allocation, task delegation, and cooperation 

among agents in the smart city environment. 

Step 10: Evaluation and Fine-Tuning: 

• Evaluate the performance of the trust management 

system in the smart city context. 

• Fine-tune the Bi-LSTM model and trust update 

mechanisms based on real-world feedback and 

observations to enhance the system's accuracy and 

effectiveness. 

 

 

 

4.5 Deep Q-Learning  

 

Reinforcement Learning Setting: 

• Deep Q-Learning operates in an environment where 

an agent interacts with it over discrete time steps. 

• At each time step, the agent observes the environment 

state, takes an action, receives a reward, and 

transitions to the next state. 

Q-Function Approximation: 

• The central concept in Deep Q-Learning is the Q-

function (Q-value). 

• The Q-function estimates the expected cumulative 

reward of taking a specific action in a given state and 

following the optimal policy thereafter. 

• In traditional Q-Learning, the Q-function is 

represented as a Q-table, but in Deep Q-Learning, it 

is approximated using a deep neural network. 

Deep Neural Network Architecture: 

• The Deep Q-Network (DQN) uses a deep neural 

network as a function approximator to estimate Q-

values. 

• The neural network takes the current state as input 

and outputs Q-values for each possible action in that 

state. 

Experience Replay: 

• Deep Q-Learning employs a technique called 

experience replay to improve the learning process. 

• During interactions with the environment, the agent 

stores experiences (state, action, reward, next state) in 

a replay buffer. 

• The agent randomly samples batches of experiences 

from the buffer to use in training the neural network, 

reducing data correlation and improving learning 

stability. 

Bellman Equation and Target Network: 

• Deep Q-Learning uses the Bellman equation to 

update the Q-values iteratively. 

• To stabilize learning, a target network is used to 

calculate target Q-values during training. 

• The target network is a copy of the main Q-network, 

and its parameters are frozen for a fixed number of 

steps before updating them again. 

Epsilon-Greedy Exploration: 

• Deep Q-Learning incorporates an exploration strategy 

to encourage the agent to explore new actions in the 

environment. 

• The agent follows an epsilon-greedy policy, where it 

chooses a random action with probability epsilon 

(exploration) or selects the action with the highest Q-

value with probability (1-epsilon). 

Training: 

• The agent interacts with the environment, updates the 

Q-network using experiences sampled from the 

replay buffer, and improves its policy iteratively. 

• The objective is to minimize the mean squared error 

between the predicted Q-values and the target Q-

values. 

 

Convergence and Stopping Criteria: 

• Training continues until the Q-network converges or 

reaches a predefined number of iterations (epochs). 

• The process may stop if the agent achieves a 

satisfactory level of performance or if other 

predefined stopping criteria are met. 

Model Usage: 

• After training, the DQN can be used for inference in 

the environment to make decisions and take actions 

based on the learned Q-values. 

4.6 Proposed Deep Q-Learning for Trust Management in 

Multi-Agent Environments for Smart City 

 

Step 1: Data Collection and Preprocessing 

• Collect data from various IoT devices, sensors, and 

agents in the smart city environment. 

• Preprocess the collected data, handle missing values, 

and engineer relevant features for trust management. 

Step 2: Environment and Agent Setup 

• Define the multi-agent environment for trust 

management in the smart city. 

• Set up the agents that represent different entities or 

devices in the environment. 
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Step 3: Deep Q-Network Architecture 

• Design the Deep Q-Network (DQN) architecture 

suitable for trust management in multi-agent 

environments. 

• Define the input representation for the DQN, 

considering the state space of the agents and relevant 

environmental information. 

• Specify the output layer for the Q-values, 

representing the trustworthiness of actions taken by 

the agents. 

Step 4: Experience Replay 

• Implement experience replay to store and randomly 

sample experiences (state, action, reward, next state) 

from interactions with the environment. 

• Set up a replay buffer to store and manage the 

experiences. 

Step 5: Reward Function 

• Define a reward function that reflects the 

trustworthiness of agent actions based on the 

observed behavior and interactions. 

• The reward function should incentivize trustworthy 

behavior and penalize untrustworthy actions. 

Step 6: Training the Deep Q-Network 

• Initialize the DQN with random weights and the 

target network as a copy of the main network. 

• Iterate over episodes (interactions with the 

environment) and within each episode, follow an 

epsilon-greedy exploration strategy to balance 

exploration and exploitation. 

• Observe the current state, choose actions using the 

DQN, and interact with the environment to receive 

rewards and observe the next state. 

• Store experiences in the replay buffer and sample 

batches of experiences for training. 

• Implement the Bellman equation and use the target 

network to calculate target Q-values for updating the 

main DQN. 

• Use an optimization algorithm (e.g., Adam or 

RMSprop) to minimize the mean squared error 

between predicted and target Q-values. 

Step 7: Trust Update 

• Update the trust scores of agents based on the learned 

Q-values from the DQN. 

• Use the trust scores to influence trust assessments in 

new interactions between agents. 

Step 8: Anomaly Detection and Handling 

• Implement anomaly detection mechanisms to identify 

untrustworthy behavior or malicious agents. 

• Take appropriate actions to mitigate the impact of 

anomalies on the trust management system. 

Step 9: Smart City Application 

• Apply the trust management system to specific smart 

city applications, such as traffic management, waste 

management, energy distribution, or public safety. 

• Use the trust scores to make informed decisions about 

resource allocation, task delegation, and cooperation 

among agents in the smart city environment. 

Step 10: Evaluation and Fine-Tuning 

• Evaluate the performance of the Deep Q-Learning 

trust management system in the smart city context. 

• Fine-tune the DQN architecture, reward function, and 

trust update mechanisms based on real-world 

feedback and observations to improve the system's 

accuracy and effectiveness. 

4.7. Trust Prediction Stage 

 

4.7.1. Trust Value Calculation 

In the stage of trust prediction, there are two substages: the 

first is the calculation of the trust value, and the second is the 

detection of misbehavior. The simple multi-attribute rating 

approach (SMART) is used in the trust value calculation sub-

stage. This technique estimates the value of the trust based on 

the node information that was gathered during the data 

preparation stage. The long short-term memory (LSTM) and 

Bi-LSTM approach is used for classification/prediction tasks 

in the misbehavior detection sub-stage. This technique is well-

known for being effective at spotting changes in behavior 

since it is utilized for classification/prediction activities. To 

evaluate the capabilities of the learnt model, this sub-stage 

involves the learned model classifying brand new unknown 

data that is part of the test set. The taught model has never 

seen this particular data before. In the beginning, the detective 

capacity of the model is examined, and if it is deemed enough, 

the learnt model may then be used for the purpose of 

detection. The following subsections provide further 

information about these two sub-stages. 

 

Using the SMART methodology, the data are checked to 

determine whether or not they can be trusted at this level of 

the process. The SMART strategy is a method that is used in 

the process of addressing problems involving multi-criteria 

decision making (MCDM). It is predicated on the idea that 

each possibility is made up of a number of criteria, each of 

which has a value, and that each of those criteria also has a 

weight that shows how relevant it is in contrast to the other 

criteria [36], [37]. Figure 4 illustrates how the SMART system 

determines the value of trust. 

 

 
Figure 4. The SMART method is used in the estimation of 

trust value. 
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In the first step, decision context and structure are established 

by identifying the options and deciding the number of criteria 

that will be used.  

The next step is analysis, which consists of the following 

components:  

1. Determining the criteria weights for each criterion using the 

1 to 100 scale for the criterion using Shannon's entropy 

technique, which is a well-known way for determining weights 

for a MADM problem (e.g., static weight assign) [38]. 2. 

Assigning a static weight to each criterion. The Shannon 

entropy technique is intended to be an objective approach of 

assigning weights in accordance with the decision matrix, 

without having an effect on the preferences of the individual 

making the choice [39,40].  

In this investigation, weights are determined in a manner that 

is dynamically depending on the criteria that have been stated 

by using a mix of the SMART and Shannon's entropy 

approaches. Equations (7)–(9) may be used to get the value of 

Shannon's entropy, which is denoted by Ej. Let's say that the 

variable kj (j = 1, 2, 3...) contains a variety of different 

options, and that the variable ki (i = 1, 2, 3...) reflects the 

criteria included inside these alternatives. The ith criterion 

value is then indicated by kij in the jth possible option, and the 

weight assessment mechanism is formed on the basis of this 

information. These parameters need to be normalized using 

Equation (7) in order to account for the fact that the 

dimensions of the numerous options under consideration do 

not share any similarities:  

𝑅𝑖𝑗  =   
𝑘𝑖𝑗

∑ ∑ 𝑘𝑖𝑗
𝑛
𝑖=1

𝑚
𝑖=1

                            (7) 

where Rij stands for the specific gravity measured in 

kilograms per cubic meter and m for the total number of 

criterion. The entropy of each factor option is then determined 

by using Equation (8) to the calculation: 

𝐸𝑗 =         [
−1

𝐼𝑛(𝑚)
]  ∑ [𝑅𝑖𝑗𝐼𝑛(𝑅𝑖𝑗)]𝑚

𝑖−1                             (8) 

where m represents the total number of possible standardized 

tests in the matrix, and ij stands for the total number of 

criteria.  

𝐷𝑗 = 1 − 𝐸𝑗                                                    (9) 

in which Dj refers to the diversity criteria.  

2. Using Equation (10) to normalize each criterion by dividing 

the total number of weighted criteria by the total number of 

weights in the equation:  

𝑊𝑗  =   
𝐷𝑗

∑ 𝐷𝑗
𝑘
𝑗=1

                               (10) 

where D_j is the value of the weight assigned to the 

criterion,  ∑ 𝐷𝑗
𝑘
𝑗=1 , andThe overall weight of all criteria is 

represented by the variable D_j, and the number of 

possibilities ranges from one to k.  

3. Supplying a value for each criterion's associated parameter 

for every available choice.  

The third step is to make a decision, which entails the 

following steps:  

1. Determining the value of the utility that will be used to 

change the value of each criterion's criteria into the value of 

the raw data criteria. In order to determine the utility value, 

equation (11) is used. 

𝑢𝑖(𝑎𝑖) =  
𝐶𝑜𝑢𝑡 − 𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
                                                 (11) 

 u_i (a_i)= signifies the utility value of the criterion to i for the 

criterion to j, cmax is the highest criterion value, cmin is the 

lowest criterion value, and cout is the criteria value of i. cmax 

is the biggest criterion value, and cmin is the lowest criterion 

value. Equation (12) demonstrates why these values are 

significant in their own right:  

𝑐𝑜𝑢𝑡𝑖 =  𝑢𝑖(𝑎𝑖), 1 = 0; 2 = 0.5; 3 = 1                 (12)  
Equation (11) is used to find the value of the utility in order to 

convert the value of one of the criteria to i. This is done so that 

one of the criteria may be converted to i. The following 

findings emerge as a consequence of the computation:  

• If the criteria value (cout ) = 3, then   𝑢𝑖(𝑎𝑖)   =  
3−1

3−1
 = 1; 

• If the criteria value (cout ) = 2, then 𝑢𝑖(𝑎𝑖)   =  
2−1

3−1
 = 0.5; 

• If the criteria value (cout ) = 1, then 𝑢𝑖(𝑎𝑖)   =  
1−1

3−1
 = 0; 

2. Determining the ultimate value of each criterion by 

adjusting the values derived from the normalized value of the 

raw data criteria with weight normalized value criteria, making 

use of Equation (13):  

𝑢(𝑎𝑖) =  ∑ 𝑤𝑗𝑢𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … … … . , 𝑛                       (13)

𝑛

𝑗=1

 

3. Determine the mean absolute error (MAE) before 

calculating the dynamic threshold (DT). The Mean Absolute 

Error (MAE) is a statistic that is used to quantify how well 

forecasts match actual findings. The Mean Absolute Error 

(MAE) is used because it provides a clear method for 

measuring the level of severity of mistakes [41]. In the subject 

of security, it is a method that is often used to quantify 

mistakes based on the situation. In particular, it is used in the 

administration of trusts to ascertain the criterion or ground 

value, as described in [42,43]. For the purposes of this work, 

the MAE, which is described by Equation (14), is used for DT:  

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (𝐷𝑇)

=   
∑ |𝑢(𝑎𝑖) −  𝑢(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅|𝑛

𝑖=1

𝑛
                            (14) 

If the amount of trust is denoted by 𝑢(𝑎𝑖) , the anticipated trust 

value is denoted by (𝑎𝑖), and the total number of samples is 

denoted by n.  

4. When comparing the value of trust to the DT that was 

determined by using Equation (15), if the value of trust is 

more than or equal to the DT value, this indicates that the 

device can be trusted; if not, it cannot be trusted. 

Trust Score  

=   {
𝑢(𝑎𝑖) < 𝐷𝑇, 𝑈𝑛𝑡𝑟𝑢𝑠𝑒𝑑

𝑢(𝑎𝑖) ≥ 𝐷𝑇 , 𝑇𝑟𝑢𝑠𝑡      
                                               (15) 

 

4.7.2. Misbehaving Detection 

 

The long short-term memory (LSTM) and the Bi-LSTM 

method, both of which belong to the broad category of deep 

learning, are put to use in this particular sub-stage. This 

method is responsible for the current uptick in attention within 

the scientific community. When applied to difficult problems, 

such as the translation of languages, text production, and 

automated captioning of pictures, among other applications 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7 

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023 

___________________________________________________________________________________________________________________ 
 

 

    489 

IJRITCC | July 2023, Available @ http://www.ijritcc.org 

[44], LSTM and Bi-LSTM have generated great results. In 

recent years, this method has seen widespread use in the quest 

to resolve various security challenges, such as those described 

in [45–47]. As a result of this, this research makes use of 

LSTM as well as Bi-LSTM in order to identify harmful 

actions that may point to trust violation concerns. 

 

V. IMPLEMENTATION 

 

5.1. Data Collection Stage 

 

During this step, the data required for testing the model in later 

phases is gathered. This research implements the fixes 

suggested in [32] by using packet captures. The data is 

gathered from the activities of Internet of Things devices that 

are used to monitor smart houses (cities) over a period of ten 

days. Protocols such as Internet Protocol (which also includes 

Ethernet, Wi-Fi, and PPP), Bluetooth, Z-Wave, RF869, and 

ZigBee have been deployed. The information on the devices, 

as well as the number of captures and batches, may be seen in 

tables 1 and 2. It includes information about the source 

address, the destination address, the timestamp, the data, the 

packet length, the destination PAN id, and the data. This 

information is for packet captures. It includes information on 

the source and destination addresses, timestamps for the 

beginning and finish, duration, number of packets, and size of 

the packet in the patches. 

 

Table 1. Device deployment locations [32]. 

 

Device Type Protocol Placement 

Motion sensor Zigbee Office 

Motion sensor Zigbee Kitchen 

Motion sensor Zigbee Living room 

Motion sensor Zigbee Bedroom 

Door sensor Zigbee Bathroom 

Door sensor Zigbee Play room 

Weight scale Bluetooth Nearby the gateway 

Blood pressure 

meter 

Bluetooth Nearby the gateway 

Gateway Bluetooth Office 

Gateway Zigbee Entrance door 

 

Table 2. The total number of packets and patches associated 

with each protocol [32] 

 

Protocol Packet Captures Patches 

Zigbee 189647 58964 

Bluetooth 829173 32458 

 

5.2. Data Preparation Stage 

 

During this stage, several sub-stages are used for the purpose 

of data preparation. Some examples of these sub-stages are 

feature engineering, normalization, and cleaning. 

 

 

 

5.2.1 Design and Development of Features 

 

The creation of new features or the extraction of features from 

already collected data is the fundamental objective of feature 

engineering [33]. Therefore, at this sub-stage, some of the 

characteristics that already exist are used in order to build new 

features (for example, packet loss, delay, and throughput). 

According to [34], the definitions and equations that are 

presented here are correct. 

Loss of Packets: The term "packet loss" refers to the situation 

in which data packets do not make it to their intended location. 

Equation (1) may be used to determine how much data was 

lost due to packet loss: 

           Packet Loss =  
Packet sent − Packet recived

Packet sent
× 100         (1) 

The latency that occurs as a result of transmission from one 

point to another, which then becomes the objective, is referred 

to as a delay. To determine how long the delay will be, utilize 

equation (2): 

         Delay = propagation delay + transmission delay + 

queuing delay + processing delay              (2) 

The amount of time that it takes for a bit to travel from its 

origin to its destination is referred to as the propagation delay. 

As stated in Equation (3), the computation for the propagation 

delay is accomplished by dividing the distance by the 

propagation speed: 

           Propagation delay =  
distance

Propagation Speed
              (3)     

where the distance is determined by multiplying the typical 

packet size by one thousand, and the speed of transmission is a 

constant number equal to three times 108 meters per second. 

The length of time it takes to transfer a packet from the source 

to the transmission medium is referred to as the transmission 

delay, and it is represented by the following equation: 

           Transmission delay =  
length o f packets

bandwidth
              (4)     

where bandwidth indicates the maximum number of packets 

that may be sent. 

The delay that results from queueing is due to the amount of 

time that is required for routers to process transmission queues 

for packets throughout the network.  

Processing Delay: The processing delay is the amount of time 

it takes for a network device to see the route, update the 

header, and switch duties.  

The term "throughput" refers to the real bandwidth that was 

measured at a certain moment in time and under particular 

circumstances involving the network in order to transport files 

of a particular size. A network's total throughput, which can be 

determined using Equation (5), refers to the rate at which data 

is sent to all of the terminals in the network. 

           Throughput =  
∑ Packet sent(bits) 

Time o f data deilvary (s) 
× 100         (5) 

 

5.2.2. Normalization 

 

In this process, the features are scaled to values ranging from 0 

to 1 to produce an accurate result. This step is necessary to 

transform the numeric column values in the dataset; therefore, 

it may be used on a common scale without distorting the 

variation in value ranges or losing data [35]. The 

normalization is performed using Equation (6): 
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𝑧𝑖 =
𝑥𝑖−min (𝑥)

max(𝑥)−min (𝑥)
            (6) 

where xi is the ith value in the dataset, min(x) is the lowest 

possible value in the dataset, and max(x) is the highest 

possible value in the dataset. 

 

5.2.3. Data Cleaning 

 

This sub-stage's goal is to clean the data by ensuring the 

validity of dataset samples. This may be accomplished by 

deleting null and negative values from records, for example. 

 

5.3. Model Setup 

 

This experiment was carried out on Google CoLab with the 

assistance of Python library packages, such as Pandas, Numpy, 

Scikitlearn, Matplotlib, and Keras, in order to compute the 

trust value and carry out the preprocessing work, respectively. 

LSTM cells, drop out layers, and dense output layers were 

used in the development of the misbehaving detecting model. 

The layers and the values of the parameters that were 

employed are described in Table 3. The model was executed 

with a batch size of 72 and 50 and 100 epochs respectively. In 

addition, the Rectified Linear Unit (ReLu) and sigmoid 

activation functions, in addition to the Adam optimizer, were 

used in the model. 

 

 

 

 

 

Table 3. Model setup settings. 

 

Parameters Value 

Language Python 

Libraries Pandas, Numpy, Scikitlearn, 

Matplotlib, and Keras 

Train set 70% 

Test set 30% 

Input Layer 1 

LSTM Cells 2 cells 

Activation Functions Rectified Linear Unit (ReLu), 

and sigmoid 

Dense Layer 1 

Dropout 0.20 

Optimizer Adam 

Number of Epochs 50 and 100 

Batch size 72 

 

5.4. Dataset Description 

 

The dataset was divided into a training set and a testing set 

with a proportion of 70 percent to 30 percent, respectively. In 

order to prevent both overfitting and underfitting, the data was 

randomly split many times until it could be shown that the 

testing set accurately reflected behaviors that had not been 

seen before. 

 

 

5.5 Result Evaluation Parameters 

We are able to apply a variety of outcome assessment 

measures, such as accuracy, precision, recall, and F1 score, 

with the Deep Q-Learning and Bi-LSTM system that has been 

suggested for use in managing trust in multi-agent settings 

associated with Smart Cities. With the use of these measures, 

we will be able to evaluate how good the system is at both 

managing trust among the agents and producing judgments 

that can be trusted. 

 

Accuracy: Accuracy is a measurement of the overall accuracy 

of the system's judgments about the management of trust. It is 

measured as the proportion of judgments that may be trusted 

that were accurately anticipated relative to the total number of 

decisions produced by the system. A greater accuracy shows 

that the system is reliably and accurately deciding matters 

pertaining to trust. 

 

Accuracy = (True Positives + True Negatives) / (True 

Positives + True Negatives + False Positives + False 

Negatives). 

 

Precision is the capacity of the system to accurately identify 

trustworthy interactions among all of the interactions that have 

been classed as trustworthy. Precision is a quantitative 

measure of this ability. The ratio of real positive trustworthy 

interactions to the total number of interactions that may be 

characterized as trustworthy is the definition of this concept. A 

low rate of false positives is directly correlated with a high 

level of accuracy since it implies that the system labels 

interactions with a high level of care and caution. 

Precision = True Positives / (True Positives + False 

Positives) 

 

Recall (Sensitivity or True Positive Rate): Recall evaluates the 

system's capacity to properly identify trustworthy interactions 

among all the interactions that are actually trustworthy. It 

compares the system's performance to a standard known as the 

true positive rate. It is defined as the proportion of genuinely 

positive trustworthy interactions to the total number of 

interactions that may be classified as truly trustworthy. If the 

system has a high recall value, it indicates that it is able to 

successfully recognize the majority of trustworthy encounters. 

 

Recall = True Positives / (True Positives + False Negatives) 

Score of F1: The F1 score is a combined measure of both 

accuracy and recall, and it is calculated as the harmonic mean 

of these two metrics. It offers a fair and impartial assessment 

of the performance of the system by taking into account both 

false positives and false negatives. When the data are 

unbalanced and one measure (precision or recall) is more 

important than the other, the F1 score is very helpful. 

 

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 
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VI. RESULT 

 

6.1. Dataset Collection and Visualization 

 

According to the research conducted by [34], Table 4 provides 

a description of the ranges for each attribute, which range from 

excellent to medium to bad. In the case of packet loss, this 

characteristic was computed to identify any changes that 

would have an effect on the availability of the services and to 

assure that they would continue to be reliable. The distribution 

of loss values over the whole dataset is seen in Figure 5. The 

delay function was computed so that the performance of the 

network could be evaluated (a high delay value will result in a 

drop in the network's overall performance). The delay has a 

range of values, as shown in Figure 6, with the majority of 

these density values falling somewhere between 140 and 170. 

The throughput characteristic was computed according to the 

projections made in order to meet the requirements of the 

existing network's services. The distribution of the throughput 

values across the dataset is shown in Figure 7. These attributes 

were used as input for the subsequent stage, which was the 

stage that predicted the trust value. 

 

Table 4. Ranges of the selected features. 

 

Range Feature Name and Its Ranges 

Packet 

Loss 

Delay Throughput 

Good Less than 

3% 

0–150 ms 100% 

Medium More than 

15% 

151–400 

ms 

75–50% 

Poor More than 

25% 

More than 

400 ms 

Less than 25% 

 

 
Figure 5. Packets loss sample. 

 
Figure 6. Delay sample. 

 
Figure 7. Throughput sample. 

 

6.2. Trust Prediction Results 

 

The backdrop of the decision and the way it is structured is as 

follows: the options for the dataset that was utilized in this 

investigation are IoT devices. In addition, the results of this 

research investigated three criteria (packet loss, delay, and 

throughput), which are shown in Table 5, to decide whether or 

not the device can be relied upon. There is a range associated 

with each criteria that reflects how well this gadget performs. 

As indicated in Table 6, these ranges move from being bad to 

being medium to being excellent, and they are designated by 

the numbers 1, 2, and 3. Rearranging the criteria's values in the 

dataset is made easier with the aid of the range. According to 

what can be seen in Table 7, in the column C1, which stands 

for the packet loss, if the value in the data is less than 3%, it 

indicates that the data is excellent, and it will be represented 

by the number 3. If the number is between 3% and 15%, 

however, it indicates that the data is middling, and it will be 

represented by a value of 2. In addition, if the value is more 

than 15%, the data are considered to be of low quality and will 

be represented by the number 1. The analogy used by C1 is 

likewise used by C2 and C3, respectively. 

 

Table 5. Alternatives with criteria. 

Alternative Criteria (C) 

Packet 

Loss (C1) 

Delay 

(C2) 

Throughput 

(C3) 

A1 0 98 104 

A2 89 431 120 

….. ……. ……. …….. 

An 98 389 186 

 

Table 6. Criteria values 

Group Parameter Value 

Poor 1 

Medium 2 

Good 3 

 

Table 7. Value of sub criteria. 

No. Criteria (C) Range Value 

1. C1 1. >3% 3 

2. <3-15% 2 

3. <15-25% 1 

2. C2 1. 0-150ms 3 
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2. 151-

400ms 

2 

3. >400 mv 1 

3. C3 1. >25% 3 

2. 50-75% 2 

3. 100% 1 

 

In the second step, which is called "Analysis," the weights of 

each criterion—packet loss, delay, and throughput—were 

calculated with the use of Shannon's entropy approach. The 

first process consisted of rescaling the data such that they were 

all within the same range. This was accomplished by using 

Equation (7) to normalize the decision matrix and then 

dividing it by the total of each column. After that, the value of 

the entropy was determined by using Equations (8) and (9). 

Weights are constantly adjusted based on the data or sample 

sizes that are used. The entropy approach was used to analyze 

the data set in its many distinct dimensions.  

 

Table 8. Criteria weights for each data sample. 

Sample Size = 25% 

No. Criteria (C) 
𝑤𝑗 = (

𝐷𝑗

∑ 𝐷𝑗
) 

1. C1 0.005340 

2. C2 0.493564 

3. C3 0.501096 

Sum                                                                                                                        

1 

 

Sample Size = 50% 

No. Criteria (C) 
𝑤𝑗 = (

𝐷𝑗

∑ 𝐷𝑗
) 

1. C1 0.003222 

2. C2 0.498422 

3. C3 0.498355 

Sum                                                                                                                        

1 

 

Sample Size = 100% 

No. Criteria (C) 
𝑤𝑗 = (

𝐷𝑗

∑ 𝐷𝑗
) 

1. C1 0.003108 

2. C2 0.467722 

3. C3 0.529170 

Sum                                                                                                                        

1 

 

The value of the trust was determined, and then that value was 

contrasted with DT in the third and final phase, which is called 

"Decision." Following the calculation of the weights of the 

criterion values, the SMART technique was used in order to 

calculate the aggregate utility value by using Equations (12) 

and (13). In the end, the score of the trust was determined by 

using Equation (14) and afterwards compared to Equation 

(15), which represented the threshold. 

In order to provide a better understanding, let's assume that the 

dataset (which was utilized in this research) is completely 

filled out. We investigated the three criteria (packet loss, 

latency, and throughput) using weighted values (0. 003108, 

0.467722, and 0.529170) in order to establish whether or not 

the device can be trusted. Let us take into consideration an 

Internet of Things device as a potential option with the 

following set of parameters: packet loss = 0%, latency = 150 

ms, and throughput = 75%. This indicates that there is a fair 

amount of packet loss, a good amount of latency, and a 

medium amount of throughput. According to what is shown in 

Table 6, the points awarded for meeting the requirements will 

be 3, 3, and 2. The values of utility, according to Equation 9, 

are as follows: 

 

• If the criteria value (cout ) = 3, then   𝑢𝑖(𝑎𝑖)   =  
3−1

3−1
 = 1; 

• If the criteria value (cout ) = 2, then 𝑢𝑖(𝑎𝑖)   =  
2−1

3−1
 = 0.5; 

• If the criteria value (cout ) = 1, then 𝑢𝑖(𝑎𝑖)   =  
1−1

3−1
 = 0; 

 

In the last stage of the process, the score was determined by 

using Equation (13). Because of this, the value of 0.70469100 

is higher than DT, which indicates that the device may be 

relied upon. To determine the value of trust, a single 

mechanism was applied to the whole of the data set. This 

value served as an input for the subsequent stage, which was 

the behavior anomaly detection. 
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Figure 8.  DT results for each sample: (a) 25% sample size, (b) 

50% sample size, and (c) 100% sample size. 
 

6.3 Misbehaving Detection Result 

 

Table 9. Experimental results of the dataset with different 

sample sizes. 

Sample Size = 25% 

Iteratio

ns 

Accura

cy (%) 

Loss 

Rate 

Reca

ll 

(%) 

Precisi

on (%) 

F-

Measu

re (%) 

Time(

s) 

50 97.68 0.008

96 

99.4

7 

96.78 98.23 75 

100 98.43 0.001

47 

97.3

6 

99.24 99.25 135 

 

Sample Size = 50% 

Iteratio

ns 

Accura

cy (%) 

Loss 

Rate 

Reca

ll 

(%) 

Precisi

on (%) 

F-

Measu

re (%) 

Time(

s) 

50 97.87 0.02

45 

99.5

2 

96.89 98.63 65 

100 98.85 0.01

04 

99.5

6 

99.38 99.74 198 

 

Sample Size = 100% 

Iteratio

ns 

Accura

cy (%) 

Loss 

Rate 

Reca

ll 

(%) 

Precisi

on (%) 

F-

Measu

re (%) 

Time(

s) 

50 99.77 0.00

76 

99.8

3 

99.86 98.36 329 

100 99.86 0.00

86 

99.4

8 

99.37 99.64 480 

 

6.4 Comparison with Existing Machine Learning 

Techniques 

 

 
Figure 9:  Shows results for 25% sample size with 50 

Iterations 

 

 
Figure 10:  Shows results for 25% sample size with 100 

Iterations 

 
Figure 11:  Shows results for 50% sample size with 50 

Iterations 

 
Figure 12:  Shows results for 50% sample size with 100 

Iterations 

 
Figure 13:  Shows results for 100% sample size with 50 

Iterations 
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Figure 14:  Shows results for 100% sample size with 100 

Iterations 

6.5 Comparison with existing deep learning techniques 

 

 
Figure 15:  Shows results for 25% sample size with 50 

Iterations 

 
Figure 16:  Shows results for 25% sample size with 100 

Iterations 

 
Figure 17:  Shows results for 50% sample size with 50 

Iterations 

 
Figure 18:  Shows results for 50% sample size with 100 

Iterations 

 
Figure 19:  Shows results for 100% sample size with 50 

Iterations 

 
Figure 20:  Shows results for 100% sample size with 100 

Iterations 

 

6.6 Comparison with Existing Reinforcement Learning 

Techniques 

 

 
Figure 21:  Shows results for 25% sample size with 50 

Iterations 
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Figure 22:  Shows results for 25% sample size with 100 

Iterations 

 
Figure 23:  Shows results for 50% sample size with 50 

Iterations 

 
Figure 24 :  Shows results for 50% sample size with 100 

Iterations 

 
Figure 25:  Shows results for 100% sample size with 50 

Iterations 

 
Figure 26:  Shows results for 100% sample size with 100 

Iterations 

 

VII. CONCLUSION 

 

This study introduced Deep Q-Learning and Bi-LSTM for 

trust management in multi-agent Smart Cities. These two 

strong strategies were combined to meet the dynamic and 

complex nature of IoT networks, enabling dependable and 

secure interactions between the many networked agents and 

devices. 

The Smart City trust management technique worked well in 

experiments. Deep Q-Learning allowed the system to develop 

optimum trust-related policies via reinforcement learning, 

making intelligent real-time judgments based on 

environmental parameters and agent actions. The Bi-LSTM 

component modeled long-term dependencies and temporal 

dynamics in the IoT network, helping the system adapt to 

changing agent interactions. 

The Deep Q-Learning and Bi-LSTM integrated system 

outperformed existing trust management approaches in 

difficult multi-agent settings. The system's ability to react to 

Smart City changes improved resource consumption and agent 

interactions. 

This study impacts Smart City planning and implementation. 

Residents may improve dependability, security, and 

trustworthiness by using an intelligent trust management 

system for IoT. This encourages agent cooperation, creating a 

safer, more resilient, and user-centric urban ecology. 

Future research should refine the suggested technique, explore 

other deep learning architectures, and address privacy 

protection and trust management fairness. The system's 

performance and efficacy in real-world Smart City 

infrastructures must be validated. 

 

References 

 
1. Yang, J., Zhang, J., & Wang, H. (2020). Urban traffic control in software 

defined internet of things via a multi-agent deep reinforcement learning 

approach. IEEE Transactions on Intelligent Transportation 

Systems, 22(6), 3742-3754. 

2. Liang, C., Shanmugam, B., Azam, S., Karim, A., Islam, A., Zamani, M., 

... & Idris, N. B. (2020). Intrusion detection system for the internet of 

things based on blockchain and multi-agent systems. Electronics, 9(7), 

1120. 

0.85

0.9

0.95

1

Accuracy Precision Recall F-measure

Shows results for 25% sample size with 100 

Iterations

LSTM Bi-LSTM DQL

0.9

0.95

1

Accuracy Precision Recall F-measure

Shows results for 50% sample size with 50 

Iterations 

LSTM Bi-LSTM DQL

0.92

0.94

0.96

0.98

Accuracy Precision Recall F-measure

Show results for 50% sample size with 100 

Iterations.

LSTM Bi-LSTM DQL

0.92

0.94

0.96

0.98

1

Accuracy Precision Recall F-measure

Shows results for 100% sample size with 50 

Iterations

LSTM Bi-LSTM DQL

0.94

0.95

0.96

0.97

0.98

0.99

1

Accuracy Precision Recall F-measure

Show results for 100% sample size with 100 

Iterations

LSTM Bi-LSTM DQL

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7 

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023 

___________________________________________________________________________________________________________________ 
 

 

    496 

IJRITCC | July 2023, Available @ http://www.ijritcc.org 

3. Nezamoddini, N., & Gholami, A. (2022). A survey of adaptive multi-

agent networks and their applications in smart cities. Smart Cities, 5(1), 

318-347. 

4. Raza, A., Shah, M. A., Khattak, H. A., Maple, C., Al-Turjman, F., & 

Rauf, H. T. (2022). Collaborative multi-agents in dynamic industrial 

internet of things using deep reinforcement learning. Environment, 

Development and Sustainability, 24(7), 9481-9499. 

5. Bao, F., & Chen, I. R. (2012, September). Dynamic trust management for 

internet of things applications. In Proceedings of the 2012 international 

workshop on Self-aware internet of things (pp. 1-6). 

6. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust 

management for Internet of Things. Journal of network and computer 

applications, 42, 120-134. 

7. Saied, Y. B., Olivereau, A., Zeghlache, D., & Laurent, M. (2013). Trust 

management system design for the Internet of Things: A context-aware 

and multi-service approach. Computers & Security, 39, 351-365. 

8. Gu, L., Wang, J., & Sun, B. (2014). Trust management mechanism for 

Internet of Things. China Communications, 11(2), 148-156. 

9. Wei, L., Yang, Y., Wu, J., Long, C., & Li, B. (2022). Trust management 

for internet of things: A comprehensive study. IEEE Internet of Things 

Journal, 9(10), 7664-7679. 

10. Din, I. U., Guizani, M., Kim, B. S., Hassan, S., & Khan, M. K. (2018). 

Trust management techniques for the Internet of Things: A survey. IEEE 

Access, 7, 29763-29787. 

11. Awan, K. A., Din, I. U., Almogren, A., Guizani, M., Altameem, A., & 

Jadoon, S. U. (2019). Robusttrust–a pro-privacy robust distributed trust 

management mechanism for internet of things. IEEE Access, 7, 62095-

62106. 

12. Zeng, P., Liu, A., Zhu, C., Wang, T., & Zhang, S. (2022). Trust-based 

multi-agent imitation learning for green edge computing in smart 

cities. IEEE Transactions on Green Communications and 

Networking, 6(3), 1635-1648. 

13. Althamary, I., Huang, C. W., & Lin, P. (2019, June). A survey on multi-

agent reinforcement learning methods for vehicular networks. In 2019 

15th International Wireless Communications & Mobile Computing 

Conference (IWCMC) (pp. 1154-1159). IEEE. 

14. Yun, W. J., Kim, J. P., Jung, S., Kim, J. H., & Kim, J. (2023). Quantum 

Multi-Agent Actor-Critic Neural Networks for Internet-Connected Multi-

Robot Coordination in Smart Factory Management. IEEE Internet of 

Things Journal. 

15. Wang, D., Zhang, W., Song, B., Du, X., & Guizani, M. (2019). Market-

based model in CR-IoT: A Q-probabilistic multi-agent reinforcement 

learning approach. IEEE Transactions on Cognitive Communications and 

Networking, 6(1), 179-188. 

16. Xu, J., Kang, X., Zhang, R., Liang, Y. C., & Sun, S. (2022). Optimization 

for master-UAV-powered auxiliary-aerial-IRS-assisted IoT networks: An 

option-based multi-agent hierarchical deep reinforcement learning 

approach. IEEE Internet of Things Journal, 9(22), 22887-22902. 

17. Alli, A. A., & Alam, M. M. (2019). SecOFF-FCIoT: Machine learning 

based secure offloading in Fog-Cloud of things for smart city 

applications. Internet of Things, 7, 100070. 

18. Yu, L., Sun, Y., Xu, Z., Shen, C., Yue, D., Jiang, T., & Guan, X. (2020). 

Multi-agent deep reinforcement learning for HVAC control in 

commercial buildings. IEEE Transactions on Smart Grid, 12(1), 407-419. 

19. Wang, C., Yao, T., Fan, T., Peng, S., Xu, C., & Yu, S. (2023). Modeling 

on Resource Allocation for Age-Sensitive Mobile Edge Computing Using 

Federated Multi-Agent Reinforcement Learning. IEEE Internet of Things 

Journal. 

20. Jain, V., & Kumar, B. (2023). QoS-aware task offloading in fog 

environment using multi-agent deep reinforcement learning. Journal of 

Network and Systems Management, 31(1), 7. 

21. He, B., Wang, J., Qi, Q., Sun, H., Liao, J., Du, C., ... & Han, Z. (2021). 

DeepCC: Multi-agent deep reinforcement learning congestion control for 

multi-path TCP based on self-attention. IEEE Transactions on Network 

and Service Management, 18(4), 4770-4788. 

22. Diogo, A., Fernandes, B., Silva, A., Faria, J. C., Neves, J., & Analide, C. 

(2018). A Multi-Agent System Blockchain for a Smart City. In The Third 

International Conference on Cyber-Technologies and Cyber-Systems 

(CYBER). IARIA, Athens (pp. 68-73). 

23. Al-Qarafi, A., Alrowais, F., S. Alotaibi, S., Nemri, N., Al-Wesabi, F. N., 

Al Duhayyim, M., ... & Al-Shabi, M. (2022). Optimal machine learning 

based privacy preserving blockchain assisted internet of things with smart 

cities environment. Applied Sciences, 12(12), 5893. 

24. Frikha, M. S., Gammar, S. M., Lahmadi, A., & Andrey, L. (2021). 

Reinforcement and deep reinforcement learning for wireless Internet of 

Things: A survey. Computer Communications, 178, 98-113. 

25. Kasi, M. K., Abu Ghazalah, S., Akram, R. N., & Sauveron, D. (2021). 

Secure mobile edge server placement using multi-agent reinforcement 

learning. Electronics, 10(17), 2098. 

26. Tang, X., Lan, X., Li, L., Zhang, Y., & Han, Z. (2022). Incentivizing 

Proof-of-Stake Blockchain for Secured Data Collection in UAV-Assisted 

IoT: A Multi-Agent Reinforcement Learning Approach. IEEE Journal on 

Selected Areas in Communications, 40(12), 3470-3484. 

27. Feriani, A., & Hossain, E. (2021). Single and multi-agent deep 

reinforcement learning for AI-enabled wireless networks: A tutorial. IEEE 

Communications Surveys & Tutorials, 23(2), 1226-1252. 

28. Guleng, S., Wu, C., Chen, X., Wang, X., Yoshinaga, T., & Ji, Y. (2019). 

Decentralized trust evaluation in vehicular Internet of Things. IEEE 

Access, 7, 15980-15988. 

29. Niu, L., Chen, X., Zhang, N., Zhu, Y., Yin, R., Wu, C., & Cao, Y. (2023). 

Multi-Agent Meta-Reinforcement Learning for Optimized Task 

Scheduling in Heterogeneous Edge Computing Systems. IEEE Internet of 

Things Journal. 

30. Lin, C., Han, G., Zhang, T., Shah, S. B. H., & Peng, Y. (2022). Smart 

underwater pollution detection based on graph-based multi-agent 

reinforcement learning towards AUV-based network ITS. IEEE 

Transactions on Intelligent Transportation Systems. 

31. May, R. (2023). On the Feasibility of Reinforcement Learning in Single-

and Multi-Agent Systems: The Cases of Indoor Climate and Prosumer 

Electricity Trading Communities. 

32. Anagnostopoulos, M.; Spathoulas, G.; Viaño, B.; Augusto-Gonzalez, J. 

Tracing Your Smart-Home Devices Conversations: A Real World IoT 

Traffic Data-Set. Sensors 2020, 20, 6600.  [PubMed]  

33. Crawford, M.; Khoshgoftaar, T.M.; Prusa, J.D.; Richter, A.N.; Al Najada, 

H. Survey of review spam detection using machine learning techniques. J. 

Big Data 2015, 2, 23.   

34. Sugeng, W.; Istiyanto, J.E.; Mustofa, K.; Ashari, A. The impact of QoS 

changes towards network performance. Int. J. Comput. Netw. Commun. 

Secur. 2015, 3, 48–53.  

35. Zach. Normailzation in Statology 2021; Statology: Torrance, CA, USA, 

2021.  

36. Oktavianti, E.; Komala, N.; Nugrahani, F. Simple multi attribute rating 

technique (SMART) method on employee promotions. J. Phys. Conf. Ser. 

2019, 1193, 012028.   

37. Risawandi, R.R.; Rahim, R. Study of the simple multi-attribute rating 

technique for decision support. Decis. -Mak. 2016, 4, C4.  

38. I¸sık, A.T.; Adalı, E.A. The Decision-Making Approach Based on the 

Combination of Entropy and Rov Methods for the Apple Selection 

Problem. Eur. J. Interdiscip. Stud. 2017, 8, 80–86.   

39. Jati, H.; Dominic, D.D. A New Approach of Indonesian University 

Webometrics Ranking Using Entropy and PROMETHEE II. Procedia 

Comput. Sci. 2017, 124, 444–451.   

40. Lotfi, F.H.; Fallahnejad, R. Imprecise Shannon’s Entropy and Multi 

Attribute Decision Making. Entropy 2010, 12, 53–62.   

41. Reich, N.G.; Lessler, J.; Sakrejda, K.; Lauer, S.A.; Iamsirithaworn, S.; 

Cummings, D.A.T. Case Study in Evaluating Time Series Prediction 

Models Using the Relative Mean Absolute Error. Am. Stat. 2016, 70, 

285–292.   

42. Khani, M.; Wang, Y.; Orgun, M.A.; Zhu, F. Context-aware trustworthy 

service evaluation in social internet of things. In Proceedings of the 

International Conference on Service-Oriented Computing, Hangzhou, 

China, 12–15 November 2018.  

43. Chen, Z.; Ling, R.; Huang, C.-M.; Zhu, X. A scheme of access service 

recommendation for the Social Internet of Things. Int. J. Commun. Syst. 

2016, 29, 694–706.   

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 7 

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023 

___________________________________________________________________________________________________________________ 
 

 

    497 

IJRITCC | July 2023, Available @ http://www.ijritcc.org 

44. Mekruksavanich, S.; Jitpattanakul, A. Biometric User Identification Based 

on Human Activity Recognition Using Wearable Sensors: An Experiment 

Using Deep Learning Models. Electronics 2021, 10, 308.   

45. Alghofaili, Y.; Albattah, A.; Rassam, M.A. A Financial Fraud Detection 

Model Based on LSTM Deep Learning Technique. J. Appl. Secur. Res. 

2020, 15, 498–516.   

46. Zhao, Z.; Xu, C.; Li, B. A LSTM-Based Anomaly Detection Model for 

Log Analysis. J. Signal Process. Syst. 2021, 93, 745–751.  

47. Kim, T.-Y.; Cho, S.-B. Web traffic anomaly detection using C-LSTM 

neural networks. Expert Syst. Appl. 2018, 106, 66–76.  

 

http://www.ijritcc.org/

