
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 478

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Deep Q-Learning on Internet of Things System for

Trust Management in Multi-Agent Environments for

Smart City

Pankaj Jagtap
Ph. D. Scholar

 Department of Computer Application

 Dr. A. P. J. Abdul Kalam University, Indore, MP, India

jagtap03@gmail.com

Dr. Sandeep Singh Rajpoot
Research Supervisor

Department of Computer Application, College of Engineering

 Dr. A. P. J. Abdul Kalam University, Indore, MP, India

sandeepraj413@gmail.com

Abstract— Smart Cities are vital to improving urban efficiency and citizen quality of life due to the fast rise of the Internet of

Things (IoT) and its integration into varied applications. Smart Cities are dynamic and complicated, making trust management in

multi-agent systems difficult. Trust helps IoT devices and agents in smart ecosystems connect and cooperate. This study suggests

using Deep Q-Learning and Bidirectional Long Short-Term Memory (Bi-LSTM) to manage trust in multi-agent Smart City

settings. Deep Q-Learning and Bi-LSTM represent long-term relationships and temporal dynamics in the IoT network, enabling

intelligent trust-related judgments. The architecture supports real-time trust assessment, decision-making, and response to smart

city changes. The suggested solution improves dependability, security, and trustworthiness in the IoT system's networked agents.

A complete collection of studies utilizing real-world IoT data from a simulated Smart City evaluates the system's performance.

The Deep Q-Learning and Bi-LSTM technique surpasses existing trust management approaches in dynamic, complicated multi-

agent environments. The system's capacity to adapt to changing situations and improve decision-making make IoT device

interactions more dependable and trustworthy, helping Smart Cities expand sustainably and efficiently.

Keywords- Deep Q-Learning, Internet of Things System, Trust Management, Multi-Agent Environments ,Smart City, Bi-LSTM.

I. INTRODUCTION

In the rapidly evolving landscape of the Internet of Things The

introduction of the Internet of Things (IoT) has brought about

a sea change in the manner in which we engage with the

environment that surrounds us [1]. The Internet of Things

(IoT) technology has spread across many facets of our life,

providing a smooth connection between the digital world and

the world of physical things [2]. The development of "Smart

Cities" is one of the most exciting potential uses of the Internet

of Things (IoT) [3]. In Smart Cities, gadgets and sensors that

are linked to one another work together to improve the

efficiency of urban infrastructure and services, eventually

leading to an improvement in the citizens' quality of life. The

dynamic and diverse structure of smart cities, on the other

hand, presents a number of issues, notably in terms of

maintaining trust and security among the vast number of

agents and devices that are networked.

The maintenance of trust is an essential component to the

success of Internet of Things (IoT) technologies [4] that are

implemented inside Smart Cities. It is necessary to create

collaboration among devices and agents by establishing

confidence among them. This will also simplify the exchange

of trustworthy data and enable secure interactions. Traditional

methods of trust management have had a difficult time

keeping up with the intricacies of smart cities, which contain a

variety of agents whose interactions, behaviors, and goals are

all distinct from one another.

This study combines two strong learning strategies—Deep Q-

Learning and Bidirectional Long Short-Term Memory (Bi-

LSTM)—in order to present a cutting-edge method for

addressing the trust management difficulties that are inherent

in multi-agent systems such as those seen in smart cities. Deep

Q-Learning is a famous reinforcement learning approach that

has shown extraordinary effectiveness in tackling complicated

decision-making issues. This success may be attributed to the

system's ability to learn from previous mistakes. On the other

hand, the Bi-LSTM neural network is a version of the Long

Short-Term Memory (LSTM) neural network, and it was

developed primarily to capture long-term dependencies as well

as temporal dynamics in sequential data.

The development of an intelligent Internet of Things system

that is capable of successfully managing trust among various

agents within the context of a smart city environment is the

major purpose of this research. Deep Q-Learning and Bi-

LSTM are two machine learning techniques that may be used

http://www.ijritcc.org/
mailto:jagtap03@gmail.com
mailto:sandeepraj413@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 479

IJRITCC | July 2023, Available @ http://www.ijritcc.org

in order to produce a dynamic and adaptable trust management

system that is able to make educated judgments in real-time

based on shifting conditions and developing interactions

among the agents. This is our goal.

Deep Q-Learning and Bi-LSTM will each play to their own

strengths inside the framework that has been presented. Deep

Q-Learning will provide the system the ability to learn trust-

related policies that are optimum via a process of exploration

and exploitation, while also taking into consideration a variety

of environmental elements and agent actions. On the other

hand, using Bi-LSTM will make it possible for the system to

recognize previous patterns and long-term dependencies, as

well as learn from them. This will improve the system's

capacity to anticipate and respond appropriately to complex

multi-agent interactions.

In order to determine whether or not the strategy that has been

suggested is successful, a number of tests will be carried out

making use of IoT data taken from a simulated version of a

Smart City setting. In order to show that it is better in dealing

with dynamic and complicated multi-agent situations, the

performance of the combined Deep Q-Learning and Bi-LSTM

system will be compared to that of conventional trust

management systems.

The importance of the findings that are predicted from this

study cannot be overstated. Significant improvements in

dependability, security, and trustworthiness of interactions

between agents are going to be made possible thanks to the

implementation of an intelligent trust management system for

the Internet of Things in smart cities. As a result, this will

promote a more secure and effective urban environment for

people, in addition to fostering sustainable growth and

maximizing the exploitation of resources.

II. BACKGROUND STUDY

The phrase "Internet of Things" is abbreviated as "IoT." The

term "Internet of Things" (IoT) refers to the network of

physical devices, automobiles, appliances, and other items that

are integrated with sensors, software, and connection that

allows them to gather and exchange data via the internet [5].

Connecting commonplace things to the internet and to one

another is the core concept of the Internet of Things (IoT) [6].

This gives the devices the ability to communicate, interact, and

carry out a variety of functions without the need for direct

human interaction.

The Internet of Things has a wide variety of applications that

have the potential to influence a variety of different fields as

well as areas of our everyday life [7]. The following are some

examples of frequent uses of the Internet of Things[8].

The Internet of Things makes it possible to integrate and

automate many technologies found in a house, including but

not limited to smart thermostats, smart lighting systems, smart

security cameras, smart appliances, and virtual assistants [9].

These gadgets are capable of being remotely operated by voice

commands or with the use of a smartphone.

In the field of healthcare, Internet of Things technology may

be used in the form of remote patient monitoring, wearable

health trackers, and monitoring of medical equipment. This

makes it easier for medical personnel to gather data in real

time on the state of their patients' health and to deliver prompt

treatments when they are required.

IoT is utilized in the industrial sector to monitor and optimize

production processes, manage supply chain logistics, forecast

equipment failures, and allow predictive maintenance in order

to decrease downtime and enhance productivity. This is

referred to as the Industrial Internet of Things (IIoT).

Smart Cities: The Internet of Things may be used to develop

smart city solutions such as intelligent traffic management,

waste management systems, environmental monitoring apps,

and public safety software.

Agriculture: Internet of Things is used in precision farming,

which deploys sensors and actuators to monitor soil

conditions, weather, and crop health. This practice is used in

agriculture. With this information, farmers are able to adjust

irrigation, pest management, and fertilizer, which ultimately

results in higher output and less resource waste.

The Internet of Things is being used in the retail sector to

improve the shopping experience by implementing technology

such as smart shelves, in-store location monitoring, and

targeted marketing based on the purchasing patterns of

individual customers.

The Internet of Things is having a significant impact on the

transportation industry via the development of applications

such as linked automobiles, vehicle-to-vehicle (V2V)

communication, and smart traffic management systems, all of

which aim to increase road safety and decrease congestion.

Management of Energy Internet of Things (IoT) technologies

allow smart grid technology, smart metering, and energy-

efficient equipment to optimize the amount of energy used in

homes, workplaces, and manufacturing facilities.

Monitoring the Environment Internet of Things devices are

used to monitor environmental elements such as air quality,

water quality, and pollution levels in order to evaluate and

manage environmental concerns.

Figure 1. IoT applications and services.

2.1 Trust Management Principles and Terminologies :

Trust management principles and terminologies are essential

in the context of information security, privacy, and

trustworthiness of systems, especially in the realm of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 480

IJRITCC | July 2023, Available @ http://www.ijritcc.org

cybersecurity and the Internet of Things (IoT) [10]. Here are

some key principles and terminologies related to trust

management:

Trust: Trust is the belief or confidence in the reliability,

integrity, and competence of a system, device, or entity to

perform its intended functions and protect sensitive

information.

Trustworthiness: Trustworthiness refers to the overall quality

and reliability of a system or entity to be trusted. It

encompasses factors such as security, privacy, resilience, and

the ability to fulfill expectations.

Trust Management: Trust management involves the processes

and mechanisms used to establish, maintain, and evaluate trust

relationships between entities in a system or network.

Trust Model: A trust model is a framework or representation

used to quantify and evaluate trust between different entities in

a system. It defines how trust is established, computed, and

updated.

Trust Metric: A trust metric is a quantitative measure used to

express the level of trust or trustworthiness of an entity. It

could be a numerical value, a score, or a ranking.

Reputation: Reputation refers to the historical record of an

entity's behavior and interactions within a system. It plays a

significant role in determining trust as entities with a positive

reputation are often more trusted.

Authentication: Authentication is the process of verifying the

identity of a user, device, or system to ensure that they are

who they claim to be. It is a fundamental aspect of establishing

trust.

Authorization: Authorization is the process of granting or

denying access to resources or functionalities based on the

authenticated identity and associated permissions.

Access Control: Access control mechanisms are used to

enforce policies and rules that regulate access to resources

based on trust levels and the permissions associated with users

or entities.

Trust Anchor: A trust anchor is a highly trusted entity or a

point of reference used to bootstrap trust in a system. It serves

as a foundation for evaluating the trustworthiness of other

entities.

Trust Domain: A trust domain is a logical grouping of entities

within a system that share a common level of trust or are

subject to a common trust management policy.

Trust Establishment: Trust establishment refers to the process

of building trust between entities, often through authentication,

reputation assessment, or validation of trust metrics.

Trust Evaluation: Trust evaluation involves continuously

assessing and updating the level of trust in entities based on

their behavior, reputation, and other relevant factors.

Trust Negotiation: Trust negotiation is the process by which

entities exchange trust-related information and negotiate the

terms of trust before establishing a relationship or engaging in

interactions.

Figure 2. Trust management model components

2.2 Trust Composition : The process of constructing and

evaluating trustworthiness in a complex system, which often

involves the participation of several entities or components, is

referred to as "trust composition." It is an essential component

in a variety of domains, such as network and computer

security, decentralized systems, and interpersonal interactions.

A collective trust or reputation for the whole system may be

thought of as the "trust composition" of the system, and the

idea of "trust composition" aims to explain how separate

components work together to generate this collective trust or

reputation.

When it comes to computer security and distributed systems,

trust composition is a method that is often used to assess the

dependability and safety of related components. This is of

utmost significance in contexts in which systems are

dependent on a multitude of services, APIs, or apps developed

by third parties. System administrators are able to make

educated judgments about which entities they can trust and

which ones they need to be careful about by evaluating the

trustworthiness of each component and how they interact with

each other.

When it comes to human relationships and other forms of

social interaction, the composition of trust is an important

factor in determining whether or not people or communities

can be trusted. When individuals engage in social interactions

with one another, they often depend on a mix of firsthand

experiences, suggestions from common friends, and general

reputation to judge whether or not they can trust another

person. These individual evaluations, taken together over time,

have the potential to build into a composite trust perception.

In either scenario, the composition of the trust may be

influenced by a variety of circumstances, including the

following:

Direct Experience refers to the personal contacts and

experiences that lead to the formation of trust with the parties

concerned. Recommendations are a means of gaining

confidence via the provision of favorable references or

endorsements from third parties who can be relied upon.

Reputation may be defined as the trust earned from others as a

result of a history of trustworthy conduct and good comments

from those around you. Credentials and certificates are terms

that refer to the establishment of trust via the presentation of

credentials or certifications that can be independently verified.

Trust that may shift based on the particular setting or

circumstance at hand is referred to as contextual factors.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 481

IJRITCC | July 2023, Available @ http://www.ijritcc.org

2.3 Trust Formation : The process by which people or

organizations come to have confidence in, believe in, and

dependence on other people or organizations on the basis of

their perceived dependability, integrity, and competency is

referred to as the creation of trust. It is an essential component

of human relationships, commercial exchanges, and social

interactions. Trust is an essential component in the formation

of a stable and cohesive society, the promotion of

collaborative efforts, and the facilitation of the efficient

operation of a variety of systems.

The development of trust is influenced by a number of

important elements, including the following:

Trust is established when an individual continually

demonstrates behavior that is both predictable and reliable

over an extended period of time. The confidence that others

have in a person or organization is increased when that person

or entity is consistent in meeting their promises and duties.

Integrity and frankness : It is essential for the development of

trust that individuals be sincere and forthright in their

interactions and conduct. When people are honest about their

goals, give information that is pertinent to the situation, and do

not attempt to mislead others, trust is more likely to develop

between them. The ability to demonstrate one's competence

and capabilities in the performance of one's duties and

obligations inspires confidence in oneself and in one's fellow

individuals. People have a tendency to place their faith in

people who can efficiently produce outcomes. Trust is more

likely to emerge when interactions result in the attainment of

mutually beneficial outcomes by both parties. When there is

something positive for both sides to take away from the

connection, they are more likely to place their faith in one

another. Reputation and Previous Experience: The building of

trust is significantly influenced by one's previous encounters

with a person or institution. Experiences that are beneficial to

one's well-being help one build a stronger foundation of trust,

whilst those that are detrimental to one's well-being may

undermine trust or impede its growth. Trust may be impacted

by the thoughts and experiences of other people, who are

referred to as social proof. It is possible for a person's friends,

family, or coworkers to have a beneficial influence on their

level of trust in another individual. Vulnerability and

Reciprocity: Exhibiting a readiness to trust the other person in

a relationship by being open and vulnerable with them over

time might help to create trust in that connection. A virtuous

cycle of trust development may be created via the practice of

reciprocal trust. Having Values, Beliefs, and Objectives in

Common Having values, beliefs, and goals in common may

help to build trust. It is possible for people to develop a greater

feeling of trust when they come to an agreement on basic

ideas. Communication and Empathy: The ability to effectively

communicate with one another and an empathic

comprehension of one another's points of view both contribute

to the development of trust. Having the sense that one is

understood and heard helps to develop trust in relationships.

Time and patience are required since trust is often not

developed immediately; rather, it takes time to grow. Patience

is a necessary quality, particularly in the beginning stages of

new relationships or situations.

2.4 Trust Propagation : The term "trust propagation" refers

to the process by which information about a person's or

organization's trustworthiness or reputation is spread within a

network or system by moving from one entity to another. It is

an important mechanism in many different situations, such as

social networks, distributed systems, and online platforms,

where entities make choices based on the trustworthiness of

others in the system.

Within the framework of computer systems and decentralized

networks, trust propagation refers to the process of passing

along information on trust from one node or component to

another. Because of this information interchange, nodes are

able to evaluate the dependability and security of other nodes

with whom they engage, even if they have no prior experience

working directly with those nodes. Mechanisms for trust

propagation may be of assistance in determining which nodes

should be trusted or interacted with and which ones should be

avoided when making judgments.

There are a variety of approaches and techniques that may

form the foundation for trust propagation, including the

following:

Direct Experience: Nodes will communicate their trust

experiences with one another based on their previous dealings

with other nodes. For instance, if Node A has had a good

experience with Node B, it may choose to communicate this

information to Node C in order to sway Node C's trust

judgment towards Node B.

Transitive Trust: If Node A trusts Node B, and Node B trusts

Node C, then Node A may be more likely to trust Node C,

even if it has not had any direct contact with Node C. This

kind of trust is called "transitive" trust. Because trust has a

transitive quality, that property may spread it along different

channels in the network.

Reputation Systems: Reputation systems compile the

comments, ratings, and feedback from a variety of sources into

a single score that represents each node's reputation. This

reputation score may be spread to other nodes, where it will be

used to determine trustworthiness.

Trust Metrics and Algorithms: A variety of trust metrics and

algorithms may be used to compute and transmit trust ratings

based on a variety of characteristics including dependability,

honesty, and previous conduct.

Trust Recommendations: Nodes may get recommendations

on which other nodes to trust or not trust from sources that

they know can be trusted. These suggestions may be of

assistance in the dissemination of trust.

Building communities, engaging users, and moderating

material are all dependent on the spread of trust in social

networks and other online platforms. For instance, in online

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 482

IJRITCC | July 2023, Available @ http://www.ijritcc.org

marketplaces, the evaluations and ratings that buyers and

sellers leave for one another may transmit trust or distrust

about certain individuals, which in turn influences future

transactions.

2.5 Trust Aggregation : The term "trust aggregation" refers to

the process of aggregating and integrating information about

an entity's reputation or trustworthiness that is obtained from a

variety of sources in order to produce a single trust score or

reputation value for that entity [11]. In trust management

systems, this is an essential phase, particularly in complicated

networks or dispersed contexts, where trust information might

originate from a wide variety of organizations and sources.

The purpose of trust aggregation is to get a full and

trustworthy evaluation of the trustworthiness of an entity

based on the information that is currently accessible. When

dealing with other entities or making judgments in a

networked environment, this method assists in making

decisions that are more informed and accurate.

Trust aggregation may be accomplished via the use of a

number of different approaches and algorithms, including

the following:

Weighted Average: This straightforward methodology

involves combining the separate trust scores or evaluations

derived from a variety of sources by using weighted averages.

The contribution that each source makes to the total trust score

is figured out by considering how credible or reliable that

source is.

Belief Aggregation : Trust values may be viewed as

subjective beliefs, and aggregation techniques from the area of

belief theory or Dempster-Shafer theory can be used to

aggregate them into a single belief score. This is possible since

belief theory and Dempster-Shafer theory are both related to

the field of believing.

Voting by a majority may be used in situations where trust

ratings are either completely positive or completely negative

(for example, trusted or not trusted). The weight that is given

to differing opinions from a variety of sources contributes to

the aggregate level of trust.

Systems of Reputation: Reputation systems often make use

of increasingly complex algorithms in order to collect trust

ratings and reviews provided by a variety of people. These

systems could take into account aspects such as the length of

time reviews have been available, the reliability of reviewers,

and the total number of ratings obtained.

Trust Propagation: As was indicated earlier, trust

propagation may be used in combination with aggregation to

spread trust information across the network before the

aggregating phase is carried out. This is accomplished via the

usage of "trust propagation." The graphical representations of

the trust connections that exist between different entities are

known as "trust networks." Analyzing the trust network and

calculating aggregate trust ratings may be accomplished via

the use of algorithms such as PageRank.

Bayesian Models: Bayesian networks or probabilistic

graphical models may be used to represent the connections

between trust sources and to determine the overall trust score

based on probabilistic reasoning. This can be accomplished

with the help of the Bayesian modeling technique.

Learning via Machines: Techniques from machine learning

may be used to train trust aggregation models from previous

trust data and then apply those models to new circumstances.

It is essential to take into account possible obstacles and

weaknesses in the process of trust aggregation, such as the

presence of biased sources, material that is deceptive, or

malevolent actors seeking to influence trust ratings. To

guarantee the correctness and reliability of the aggregated trust

ratings, it is vital to have reliable and robust techniques of trust

aggregation, as well as appropriate validation of trust sources.

2.6 Trust Update : The act of altering or revising the trust or

reputation ratings of organizations based on new knowledge or

experiences is referred to as "trust update." Trust scores need

to be continuously updated in a variety of settings, including

social networks, online platforms, and distributed systems, so

that they represent the most up-to-date and accurate evaluation

of an entity's trustworthiness.

There are a few different contexts in which trust updates

might take place, including the following:

When two entities contact with one another for the first time,

they will have the opportunity to revise their trust ratings for

one another depending on the results of that encounter. There

is a correlation between a person's level of trust and the

positive or bad experiences they have had.

Feedback and Reviews: After concluding a transaction or

activity, users of online platforms or markets often submit

feedback and reviews about their experience with the platform

or marketplace. These evaluations have the potential to affect

the trust ratings of the persons concerned.

Trust ratings may naturally decrease over time if there haven't

been any recent interactions or updates. This is referred to as

"time decay." This represents the premise that previous actions

may become less significant in determining whether or not

someone can be trusted at the present time.

Weighted Updates: Depending on the source, the amount of

relevance or dependability of a piece of information about a

person's trustworthiness or reputation may vary. These weights

may be taken into consideration by trust updating methods in

order to guarantee a fair and accurate depiction of trust.

Trust Propagation: Trust scores may be modified in systems

that employ trust propagation based on the information that is

propagated about who may be trusted from one node to the

next through a network.

Trustworthiness may vary greatly depending on the context in

which it is examined. It's possible that trust ratings will be

updated differently depending on the kind of interactions that

take place or the setting that they're in.

Trust updates are vital to preserving the integrity of trust

management systems and ensuring that trust ratings reflect the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 483

IJRITCC | July 2023, Available @ http://www.ijritcc.org

information that is currently the most relevant and accurate.

Without consistent updates, the trustworthiness of entities may

be incorrectly represented, which may result in less-than-ideal

decision-making and may put the whole system's security and

dependability at risk.

III. LITERATURE REVIEW

A trust-based multi-agent imitation learning strategy is

presented in this research as a method for maximizing green

edge computing in smart cities. The purpose of this work is to

increase the effectiveness and viability of edge computing

systems in smart cities by using information about the level of

trust that exists between individual actors [12]. This

comprehensive study offers an introduction to multi-agent

reinforcement learning (MARL) techniques that may be used

to vehicular networks. The purpose of this research is to

investigate a variety of MARL approaches to improve the

functionality and effectiveness of vehicular communication

and collaboration [13]. This body of work presents a unique

method to smart factory management that makes use of

quantum multi-agent actor-critic neural networks to allow

effective coordination of internet-connected multi-robot

systems [14]. A market-based model for cognitive radio-based

Internet of Things (CR-IoT) is proposed in this study utilizing

a Q-probabilistic multi-agent reinforcement learning

technique. CR-IoT stands for the Internet of Things based on

cognitive radio. The purpose of the model is to improve the

efficiency of resource management and spectrum allocation in

CR-IoT networks [15]. An option-based multi-agent

hierarchical deep reinforcement learning strategy is presented

in this research study [16] for improving Internet of Things

(IoT) networks with the assistance of master Unmanned Aerial

Vehicles (UAVs) and auxiliary aerial Intelligent Reflecting

Surfaces (IRSs).In this paper, the authors introduce SecOFF-

FCIoT, a secure offloading framework that makes use of

machine learning for fog-cloud-based Internet of Things (IoT)

systems to facilitate smart city application development

[17].The purpose of this study is to offer a multi-agent deep

reinforcement learning strategy for Heating, Ventilation, and

Air Conditioning (HVAC) management in commercial

buildings [18]. The goal of this approach is to optimize energy

usage and enhance overall efficiency. The primary objective of

this study is to use federated multi-agent reinforcement

learning to model resource allocation for age-sensitive mobile

edge computing. In mobile edge computing settings, the

technique tries to increase both the efficiency of the service

and the quality of the service [19]. To improve network

performance and resource usage, the authors of this research

describe a multi-agent deep reinforcement learning strategy for

Quality of Service (QoS)-aware task offloading in fog

computing environments [20]. This research presents DeepCC,

a congestion management mechanism for multi-path

Transmission management Protocol (TCP) networks that is

based on multi-agent deep reinforcement learning and self-

attention processes [21]. DeepCC was developed by the

authors of this study.

The purpose of this article is to examine the design and

implementation of a multi-agent system blockchain for a smart

city application [22]. The purpose of this paper is to use the

advantages that blockchain and multi-agent systems have to

offer in order to boost security and efficiency. This study

investigates the potential applications of optimum machine

learning approaches for privacy-preserving blockchain-based

Internet of Things (IoT) systems in smart cities, with the end

goal of improving data security and privacy [23]. This review

article presents an overview of reinforcement learning and

deep reinforcement learning methods used to wireless Internet

of Things (IoT) systems. It discusses the techniques' potential

uses as well as the problems they face. [24]. This study

focuses on the safe placement of mobile edge servers by using

multi-agent reinforcement learning in order to improve both

the security of edge computing environments and the

allocation of resources [25].

This paper provides a multi-agent reinforcement learning

technique for rewarding Proof-of-Stake (PoS) blockchain as a

means of securing data collecting in Internet of Things (IoT)

contexts using Unmanned Aerial Vehicles (UAVs) [26].This

instructional article gives an introduction of single and multi-

agent deep reinforcement learning methods that have been

used to AI-enabled wireless networks. It focuses on the

advantages and limitations associated with using these

techniques [27].The purpose of this project is to examine

decentralized trust assessment approaches for automotive

Internet of Things (IoT) systems with the end goal of

improving trust management and security in vehicular

networks [28].This paper provides a multi-agent meta-

reinforcement learning strategy for optimum task scheduling

in heterogeneous edge computing systems. The overarching

goal of the study is to increase resource consumption as well

as the efficiency with which tasks are allocated [29]. This

study focuses on intelligent underwater pollution identification

by using graph-based multi-agent reinforcement learning for

application in Autonomous Underwater Vehicle (AUV)-based

Intelligent Transportation Systems (ITS) [30]. This study

investigates the viability of implementing reinforcement

learning in both single-agent and multi-agent systems, with a

particular focus on interior temperature management and

communities for the trading of prosumer electricity [31].

IV. PROPOSED METHOD

Figure 3. Proposed Model.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 484

IJRITCC | July 2023, Available @ http://www.ijritcc.org

4.1 Logistic regression

Data Collection and Preprocessing:

• Collect the dataset that includes the input features and

the corresponding binary (or categorical) target

variable.

• Preprocess the data, handle missing values, and

normalize or scale the features if necessary.

Data Splitting:

• Split the dataset into training and testing sets.

• The training set is used to train the logistic regression

model, while the testing set is used to evaluate its

performance.

Model Initialization:

• Initialize the logistic regression model with random

weights (coefficients) for each feature.

Hypothesis Function:

• Define the logistic regression hypothesis function that

estimates the probability of the positive class (e.g.,

P(y=1|x)) based on the input features (x) and model

parameters (coefficients).

Sigmoid Function:

• Use the sigmoid function (also called the logistic

function) to map the output of the hypothesis function

to a probability between 0 and 1.

Cost Function:

• Define the cost function (also called the loss function

or cross-entropy) that measures the error between the

predicted probabilities and the actual target values.

Gradient Descent:

• Use an optimization algorithm like gradient descent

to minimize the cost function and update the model's

coefficients iteratively.

• Compute the gradients of the cost function with

respect to each model coefficient.

Learning Rate and Convergence:

• Choose an appropriate learning rate, which controls

the step size in the gradient descent updates.

• Monitor the convergence of the optimization process,

and stop when the change in the cost function

becomes negligible or after a fixed number of

iterations (epochs).

Model Training:

• Train the logistic regression model using the training

dataset.

• Iterate over the training data and update the model

coefficients to minimize the cost function.

Model Prediction:

• Use the trained logistic regression model to make

predictions on new, unseen data.

• Apply a threshold to the predicted probabilities to

classify the instances into the positive or negative

class (e.g., if P(y=1|x) >= 0.5, classify as positive).

Model Evaluation:

• Evaluate the performance of the logistic regression

model using appropriate metrics such as accuracy,

precision, recall, F1-score, or ROC curve.

4.2 Logistic regression for Trust Management in Multi-

Agent Environments for Smart City

Step 1 : Data Collection and Preprocessing:

• Collect data from various IoT devices, sensors, and

agents in the smart city environment.

• Preprocess the collected data, handle missing values,

and clean the dataset.

• Engineer relevant features for trust management, such

as device behavior statistics, agent attributes,

interaction history, and context-based features.

Step 2 : Trust Score Initialization:

• Initialize trust scores for each agent in the multi-agent

environment.

• Trust scores can be initialized based on prior

knowledge, reputation scores, or uniform initial trust

values.

Step 3 : Model Training:

• Train a logistic regression model using the

engineered features and historical trust scores as

labels.

• Use a training dataset to fit the logistic regression

model to predict the trustworthiness of agents based

on the input features.

Step 4 : Trust Evaluation and Update:

• As new data becomes available, use the trained

logistic regression model to predict updated trust

scores for each agent.

• Continuously update the trust scores for each agent

based on the predictions from the logistic regression

model.

Step 5 : Trust Propagation:

• Propagate trust information among agents in the

multi-agent environment.

• When one agent interacts with another, adjust the

trust score of the interacting agent based on the

propagated trust information.

Step 6 : Contextual Trust Management:

• Consider contextual factors in the trust management

process.

• Incorporate relevant context data into the logistic

regression model and trust update process to make the

trust assessment more accurate and context-aware.

Step 7 : Anomaly Detection and Handling:

• Implement anomaly detection mechanisms to identify

and handle untrustworthy behavior or malicious

agents.

• Anomalies may indicate security threats or unusual

interactions that can negatively impact the trust

system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 485

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Step 8 : Smart City Application:

• Apply the trust management system to specific smart

city applications, such as traffic management, waste

management, energy distribution, or public safety.

• Use the trust scores to make informed decisions about

resource allocation, task delegation, and cooperation

among agents in the smart city environment.

Step 9 : Evaluation and Fine-Tuning:

• Evaluate the performance of the trust management

system in the smart city context.

• Fine-tune the logistic regression model, feature

engineering, and trust update mechanisms based on

real-world feedback and observations to enhance the

system's accuracy and effectiveness.

4.3 Bi-LSTM

Data Preprocessing:

• Collect and preprocess the input data, ensuring it is in

a sequential format suitable for Bi-LSTM processing.

• Normalize or scale the data if necessary to improve

convergence during training.

Data Splitting:

• Split the data into training and validation sets.

• The training set is used to train the Bi-LSTM model,

while the validation set is used to monitor its

performance and avoid overfitting.

Bi-LSTM Model Architecture:

• Define the input sequence length, which will

determine the size of input time steps for the Bi-

LSTM network.

• Specify the number of hidden units (neurons) in each

Bi-LSTM layer and the number of layers for the

network.

• Choose an appropriate activation function, such as the

hyperbolic tangent (tanh) function, for the Bi-LSTM

layers.

Bi-LSTM Forward Pass:

• Initialize the Bi-LSTM network with random

weights.

• Process the input sequence through the Bi-LSTM

layers using the forward pass, capturing temporal

dependencies in both forward and backward

directions.

Loss Function and Optimization:

• Define a suitable loss function (e.g., mean squared

error or categorical cross-entropy) based on the

problem type (regression or classification).

• Choose an optimization algorithm (e.g., Adam or

RMSprop) to update the Bi-LSTM's weights based on

the loss gradient.

• Set the learning rate and other hyperparameters for

optimization.

Training:

• Train the Bi-LSTM network using the training data

and the defined loss function and optimization

algorithm.

• Iterate over the training data in batches and update

the weights of the Bi-LSTM network using

backpropagation through time (BPTT)

4.4 Proposed B-LSTM for Trust Management in Multi-

Agent Environments for Smart City

Step 1: Data Collection and Preprocessing:

• Collect data from various IoT devices, sensors, and

agents in the smart city environment.

• Preprocess the collected data, handle missing values,

and clean the dataset.

• Convert the data into sequential format to capture

temporal patterns, interactions, and behavior

histories.

Step 2: Trust Score Initialization:

• Initialize trust scores for each agent in the multi-agent

environment.

• Trust scores can be initialized based on prior

knowledge, reputation scores, or uniform initial trust

values.

Step 3: Bi-LSTM Model Architecture:

• Design the Bi-LSTM model for trust management in

the multi-agent environment.

• Define the input sequence and output format for the

Bi-LSTM model.

• Set the hyperparameters and layers of the Bi-LSTM

network.

Step 4: Training the Bi-LSTM Model:

• Split the dataset into training and validation sets.

• Train the Bi-LSTM model on the training data to

learn the trust dynamics among agents.

• Utilize backpropagation and optimization techniques

to update the model weights.

Step 5: Trust Evaluation and Update:

• Use the trained Bi-LSTM model to predict updated

trust scores for each agent based on their sequential

interactions and behavior history.

• Continuously update the trust scores for each agent

using the predictions from the Bi-LSTM model.

Step 6: Trust Propagation:

• Propagate trust information among agents in the

multi-agent environment.

• When one agent interacts with another, adjust the

trust score of the interacting agent based on the

propagated trust information.

Step 7: Contextual Trust Management:

• Consider contextual factors in the trust management

process.

• Incorporate relevant context data into the Bi-LSTM

model and trust update process to make the trust

assessment more accurate and context-aware.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 486

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Step 8: Anomaly Detection and Handling:

• Implement anomaly detection mechanisms to identify

and handle untrustworthy behavior or malicious

agents.

• Anomalies may indicate security threats or unusual

interactions that can negatively impact the trust

system.

Step 9: Smart City Application:

• Apply the trust management system to specific smart

city applications, such as traffic management, waste

management, energy distribution, or public safety.

• Use the trust scores to make informed decisions about

resource allocation, task delegation, and cooperation

among agents in the smart city environment.

Step 10: Evaluation and Fine-Tuning:

• Evaluate the performance of the trust management

system in the smart city context.

• Fine-tune the Bi-LSTM model and trust update

mechanisms based on real-world feedback and

observations to enhance the system's accuracy and

effectiveness.

4.5 Deep Q-Learning

Reinforcement Learning Setting:

• Deep Q-Learning operates in an environment where

an agent interacts with it over discrete time steps.

• At each time step, the agent observes the environment

state, takes an action, receives a reward, and

transitions to the next state.

Q-Function Approximation:

• The central concept in Deep Q-Learning is the Q-

function (Q-value).

• The Q-function estimates the expected cumulative

reward of taking a specific action in a given state and

following the optimal policy thereafter.

• In traditional Q-Learning, the Q-function is

represented as a Q-table, but in Deep Q-Learning, it

is approximated using a deep neural network.

Deep Neural Network Architecture:

• The Deep Q-Network (DQN) uses a deep neural

network as a function approximator to estimate Q-

values.

• The neural network takes the current state as input

and outputs Q-values for each possible action in that

state.

Experience Replay:

• Deep Q-Learning employs a technique called

experience replay to improve the learning process.

• During interactions with the environment, the agent

stores experiences (state, action, reward, next state) in

a replay buffer.

• The agent randomly samples batches of experiences

from the buffer to use in training the neural network,

reducing data correlation and improving learning

stability.

Bellman Equation and Target Network:

• Deep Q-Learning uses the Bellman equation to

update the Q-values iteratively.

• To stabilize learning, a target network is used to

calculate target Q-values during training.

• The target network is a copy of the main Q-network,

and its parameters are frozen for a fixed number of

steps before updating them again.

Epsilon-Greedy Exploration:

• Deep Q-Learning incorporates an exploration strategy

to encourage the agent to explore new actions in the

environment.

• The agent follows an epsilon-greedy policy, where it

chooses a random action with probability epsilon

(exploration) or selects the action with the highest Q-

value with probability (1-epsilon).

Training:

• The agent interacts with the environment, updates the

Q-network using experiences sampled from the

replay buffer, and improves its policy iteratively.

• The objective is to minimize the mean squared error

between the predicted Q-values and the target Q-

values.

Convergence and Stopping Criteria:

• Training continues until the Q-network converges or

reaches a predefined number of iterations (epochs).

• The process may stop if the agent achieves a

satisfactory level of performance or if other

predefined stopping criteria are met.

Model Usage:

• After training, the DQN can be used for inference in

the environment to make decisions and take actions

based on the learned Q-values.

4.6 Proposed Deep Q-Learning for Trust Management in

Multi-Agent Environments for Smart City

Step 1: Data Collection and Preprocessing

• Collect data from various IoT devices, sensors, and

agents in the smart city environment.

• Preprocess the collected data, handle missing values,

and engineer relevant features for trust management.

Step 2: Environment and Agent Setup

• Define the multi-agent environment for trust

management in the smart city.

• Set up the agents that represent different entities or

devices in the environment.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 487

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Step 3: Deep Q-Network Architecture

• Design the Deep Q-Network (DQN) architecture

suitable for trust management in multi-agent

environments.

• Define the input representation for the DQN,

considering the state space of the agents and relevant

environmental information.

• Specify the output layer for the Q-values,

representing the trustworthiness of actions taken by

the agents.

Step 4: Experience Replay

• Implement experience replay to store and randomly

sample experiences (state, action, reward, next state)

from interactions with the environment.

• Set up a replay buffer to store and manage the

experiences.

Step 5: Reward Function

• Define a reward function that reflects the

trustworthiness of agent actions based on the

observed behavior and interactions.

• The reward function should incentivize trustworthy

behavior and penalize untrustworthy actions.

Step 6: Training the Deep Q-Network

• Initialize the DQN with random weights and the

target network as a copy of the main network.

• Iterate over episodes (interactions with the

environment) and within each episode, follow an

epsilon-greedy exploration strategy to balance

exploration and exploitation.

• Observe the current state, choose actions using the

DQN, and interact with the environment to receive

rewards and observe the next state.

• Store experiences in the replay buffer and sample

batches of experiences for training.

• Implement the Bellman equation and use the target

network to calculate target Q-values for updating the

main DQN.

• Use an optimization algorithm (e.g., Adam or

RMSprop) to minimize the mean squared error

between predicted and target Q-values.

Step 7: Trust Update

• Update the trust scores of agents based on the learned

Q-values from the DQN.

• Use the trust scores to influence trust assessments in

new interactions between agents.

Step 8: Anomaly Detection and Handling

• Implement anomaly detection mechanisms to identify

untrustworthy behavior or malicious agents.

• Take appropriate actions to mitigate the impact of

anomalies on the trust management system.

Step 9: Smart City Application

• Apply the trust management system to specific smart

city applications, such as traffic management, waste

management, energy distribution, or public safety.

• Use the trust scores to make informed decisions about

resource allocation, task delegation, and cooperation

among agents in the smart city environment.

Step 10: Evaluation and Fine-Tuning

• Evaluate the performance of the Deep Q-Learning

trust management system in the smart city context.

• Fine-tune the DQN architecture, reward function, and

trust update mechanisms based on real-world

feedback and observations to improve the system's

accuracy and effectiveness.

4.7. Trust Prediction Stage

4.7.1. Trust Value Calculation

In the stage of trust prediction, there are two substages: the

first is the calculation of the trust value, and the second is the

detection of misbehavior. The simple multi-attribute rating

approach (SMART) is used in the trust value calculation sub-

stage. This technique estimates the value of the trust based on

the node information that was gathered during the data

preparation stage. The long short-term memory (LSTM) and

Bi-LSTM approach is used for classification/prediction tasks

in the misbehavior detection sub-stage. This technique is well-

known for being effective at spotting changes in behavior

since it is utilized for classification/prediction activities. To

evaluate the capabilities of the learnt model, this sub-stage

involves the learned model classifying brand new unknown

data that is part of the test set. The taught model has never

seen this particular data before. In the beginning, the detective

capacity of the model is examined, and if it is deemed enough,

the learnt model may then be used for the purpose of

detection. The following subsections provide further

information about these two sub-stages.

Using the SMART methodology, the data are checked to

determine whether or not they can be trusted at this level of

the process. The SMART strategy is a method that is used in

the process of addressing problems involving multi-criteria

decision making (MCDM). It is predicated on the idea that

each possibility is made up of a number of criteria, each of

which has a value, and that each of those criteria also has a

weight that shows how relevant it is in contrast to the other

criteria [36], [37]. Figure 4 illustrates how the SMART system

determines the value of trust.

Figure 4. The SMART method is used in the estimation of

trust value.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 488

IJRITCC | July 2023, Available @ http://www.ijritcc.org

In the first step, decision context and structure are established

by identifying the options and deciding the number of criteria

that will be used.

The next step is analysis, which consists of the following

components:

1. Determining the criteria weights for each criterion using the

1 to 100 scale for the criterion using Shannon's entropy

technique, which is a well-known way for determining weights

for a MADM problem (e.g., static weight assign) [38]. 2.

Assigning a static weight to each criterion. The Shannon

entropy technique is intended to be an objective approach of

assigning weights in accordance with the decision matrix,

without having an effect on the preferences of the individual

making the choice [39,40].

In this investigation, weights are determined in a manner that

is dynamically depending on the criteria that have been stated

by using a mix of the SMART and Shannon's entropy

approaches. Equations (7)–(9) may be used to get the value of

Shannon's entropy, which is denoted by Ej. Let's say that the

variable kj (j = 1, 2, 3...) contains a variety of different

options, and that the variable ki (i = 1, 2, 3...) reflects the

criteria included inside these alternatives. The ith criterion

value is then indicated by kij in the jth possible option, and the

weight assessment mechanism is formed on the basis of this

information. These parameters need to be normalized using

Equation (7) in order to account for the fact that the

dimensions of the numerous options under consideration do

not share any similarities:

𝑅𝑖𝑗 =
𝑘𝑖𝑗

∑ ∑ 𝑘𝑖𝑗
𝑛
𝑖=1

𝑚
𝑖=1

 (7)

where Rij stands for the specific gravity measured in

kilograms per cubic meter and m for the total number of

criterion. The entropy of each factor option is then determined

by using Equation (8) to the calculation:

𝐸𝑗 = [
−1

𝐼𝑛(𝑚)
] ∑ [𝑅𝑖𝑗𝐼𝑛(𝑅𝑖𝑗)]𝑚

𝑖−1 (8)

where m represents the total number of possible standardized

tests in the matrix, and ij stands for the total number of

criteria.

𝐷𝑗 = 1 − 𝐸𝑗 (9)

in which Dj refers to the diversity criteria.

2. Using Equation (10) to normalize each criterion by dividing

the total number of weighted criteria by the total number of

weights in the equation:

𝑊𝑗 =
𝐷𝑗

∑ 𝐷𝑗
𝑘
𝑗=1

 (10)

where D_j is the value of the weight assigned to the

criterion, ∑ 𝐷𝑗
𝑘
𝑗=1 , andThe overall weight of all criteria is

represented by the variable D_j, and the number of

possibilities ranges from one to k.

3. Supplying a value for each criterion's associated parameter

for every available choice.

The third step is to make a decision, which entails the

following steps:

1. Determining the value of the utility that will be used to

change the value of each criterion's criteria into the value of

the raw data criteria. In order to determine the utility value,

equation (11) is used.

𝑢𝑖(𝑎𝑖) =
𝐶𝑜𝑢𝑡 − 𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
 (11)

 u_i (a_i)= signifies the utility value of the criterion to i for the

criterion to j, cmax is the highest criterion value, cmin is the

lowest criterion value, and cout is the criteria value of i. cmax

is the biggest criterion value, and cmin is the lowest criterion

value. Equation (12) demonstrates why these values are

significant in their own right:

𝑐𝑜𝑢𝑡𝑖 = 𝑢𝑖(𝑎𝑖), 1 = 0; 2 = 0.5; 3 = 1 (12)
Equation (11) is used to find the value of the utility in order to

convert the value of one of the criteria to i. This is done so that

one of the criteria may be converted to i. The following

findings emerge as a consequence of the computation:

• If the criteria value (cout) = 3, then 𝑢𝑖(𝑎𝑖) =
3−1

3−1
 = 1;

• If the criteria value (cout) = 2, then 𝑢𝑖(𝑎𝑖) =
2−1

3−1
 = 0.5;

• If the criteria value (cout) = 1, then 𝑢𝑖(𝑎𝑖) =
1−1

3−1
 = 0;

2. Determining the ultimate value of each criterion by

adjusting the values derived from the normalized value of the

raw data criteria with weight normalized value criteria, making

use of Equation (13):

𝑢(𝑎𝑖) = ∑ 𝑤𝑗𝑢𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … … … . , 𝑛 (13)

𝑛

𝑗=1

3. Determine the mean absolute error (MAE) before

calculating the dynamic threshold (DT). The Mean Absolute

Error (MAE) is a statistic that is used to quantify how well

forecasts match actual findings. The Mean Absolute Error

(MAE) is used because it provides a clear method for

measuring the level of severity of mistakes [41]. In the subject

of security, it is a method that is often used to quantify

mistakes based on the situation. In particular, it is used in the

administration of trusts to ascertain the criterion or ground

value, as described in [42,43]. For the purposes of this work,

the MAE, which is described by Equation (14), is used for DT:

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝐷𝑇)

=
∑ |𝑢(𝑎𝑖) − 𝑢(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅|𝑛

𝑖=1

𝑛
 (14)

If the amount of trust is denoted by 𝑢(𝑎𝑖) , the anticipated trust

value is denoted by (𝑎𝑖), and the total number of samples is

denoted by n.

4. When comparing the value of trust to the DT that was

determined by using Equation (15), if the value of trust is

more than or equal to the DT value, this indicates that the

device can be trusted; if not, it cannot be trusted.

Trust Score

= {
𝑢(𝑎𝑖) < 𝐷𝑇, 𝑈𝑛𝑡𝑟𝑢𝑠𝑒𝑑

𝑢(𝑎𝑖) ≥ 𝐷𝑇 , 𝑇𝑟𝑢𝑠𝑡
 (15)

4.7.2. Misbehaving Detection

The long short-term memory (LSTM) and the Bi-LSTM

method, both of which belong to the broad category of deep

learning, are put to use in this particular sub-stage. This

method is responsible for the current uptick in attention within

the scientific community. When applied to difficult problems,

such as the translation of languages, text production, and

automated captioning of pictures, among other applications

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 489

IJRITCC | July 2023, Available @ http://www.ijritcc.org

[44], LSTM and Bi-LSTM have generated great results. In

recent years, this method has seen widespread use in the quest

to resolve various security challenges, such as those described

in [45–47]. As a result of this, this research makes use of

LSTM as well as Bi-LSTM in order to identify harmful

actions that may point to trust violation concerns.

V. IMPLEMENTATION

5.1. Data Collection Stage

During this step, the data required for testing the model in later

phases is gathered. This research implements the fixes

suggested in [32] by using packet captures. The data is

gathered from the activities of Internet of Things devices that

are used to monitor smart houses (cities) over a period of ten

days. Protocols such as Internet Protocol (which also includes

Ethernet, Wi-Fi, and PPP), Bluetooth, Z-Wave, RF869, and

ZigBee have been deployed. The information on the devices,

as well as the number of captures and batches, may be seen in

tables 1 and 2. It includes information about the source

address, the destination address, the timestamp, the data, the

packet length, the destination PAN id, and the data. This

information is for packet captures. It includes information on

the source and destination addresses, timestamps for the

beginning and finish, duration, number of packets, and size of

the packet in the patches.

Table 1. Device deployment locations [32].

Device Type Protocol Placement

Motion sensor Zigbee Office

Motion sensor Zigbee Kitchen

Motion sensor Zigbee Living room

Motion sensor Zigbee Bedroom

Door sensor Zigbee Bathroom

Door sensor Zigbee Play room

Weight scale Bluetooth Nearby the gateway

Blood pressure

meter

Bluetooth Nearby the gateway

Gateway Bluetooth Office

Gateway Zigbee Entrance door

Table 2. The total number of packets and patches associated

with each protocol [32]

Protocol Packet Captures Patches

Zigbee 189647 58964

Bluetooth 829173 32458

5.2. Data Preparation Stage

During this stage, several sub-stages are used for the purpose

of data preparation. Some examples of these sub-stages are

feature engineering, normalization, and cleaning.

5.2.1 Design and Development of Features

The creation of new features or the extraction of features from

already collected data is the fundamental objective of feature

engineering [33]. Therefore, at this sub-stage, some of the

characteristics that already exist are used in order to build new

features (for example, packet loss, delay, and throughput).

According to [34], the definitions and equations that are

presented here are correct.

Loss of Packets: The term "packet loss" refers to the situation

in which data packets do not make it to their intended location.

Equation (1) may be used to determine how much data was

lost due to packet loss:

 Packet Loss =
Packet sent − Packet recived

Packet sent
× 100 (1)

The latency that occurs as a result of transmission from one

point to another, which then becomes the objective, is referred

to as a delay. To determine how long the delay will be, utilize

equation (2):

 Delay = propagation delay + transmission delay +

queuing delay + processing delay (2)

The amount of time that it takes for a bit to travel from its

origin to its destination is referred to as the propagation delay.

As stated in Equation (3), the computation for the propagation

delay is accomplished by dividing the distance by the

propagation speed:

 Propagation delay =
distance

Propagation Speed
 (3)

where the distance is determined by multiplying the typical

packet size by one thousand, and the speed of transmission is a

constant number equal to three times 108 meters per second.

The length of time it takes to transfer a packet from the source

to the transmission medium is referred to as the transmission

delay, and it is represented by the following equation:

 Transmission delay =
length o f packets

bandwidth
 (4)

where bandwidth indicates the maximum number of packets

that may be sent.

The delay that results from queueing is due to the amount of

time that is required for routers to process transmission queues

for packets throughout the network.

Processing Delay: The processing delay is the amount of time

it takes for a network device to see the route, update the

header, and switch duties.

The term "throughput" refers to the real bandwidth that was

measured at a certain moment in time and under particular

circumstances involving the network in order to transport files

of a particular size. A network's total throughput, which can be

determined using Equation (5), refers to the rate at which data

is sent to all of the terminals in the network.

 Throughput =
∑ Packet sent(bits)

Time o f data deilvary (s)
× 100 (5)

5.2.2. Normalization

In this process, the features are scaled to values ranging from 0

to 1 to produce an accurate result. This step is necessary to

transform the numeric column values in the dataset; therefore,

it may be used on a common scale without distorting the

variation in value ranges or losing data [35]. The

normalization is performed using Equation (6):

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 490

IJRITCC | July 2023, Available @ http://www.ijritcc.org

𝑧𝑖 =
𝑥𝑖−min (𝑥)

max(𝑥)−min (𝑥)
 (6)

where xi is the ith value in the dataset, min(x) is the lowest

possible value in the dataset, and max(x) is the highest

possible value in the dataset.

5.2.3. Data Cleaning

This sub-stage's goal is to clean the data by ensuring the

validity of dataset samples. This may be accomplished by

deleting null and negative values from records, for example.

5.3. Model Setup

This experiment was carried out on Google CoLab with the

assistance of Python library packages, such as Pandas, Numpy,

Scikitlearn, Matplotlib, and Keras, in order to compute the

trust value and carry out the preprocessing work, respectively.

LSTM cells, drop out layers, and dense output layers were

used in the development of the misbehaving detecting model.

The layers and the values of the parameters that were

employed are described in Table 3. The model was executed

with a batch size of 72 and 50 and 100 epochs respectively. In

addition, the Rectified Linear Unit (ReLu) and sigmoid

activation functions, in addition to the Adam optimizer, were

used in the model.

Table 3. Model setup settings.

Parameters Value

Language Python

Libraries Pandas, Numpy, Scikitlearn,

Matplotlib, and Keras

Train set 70%

Test set 30%

Input Layer 1

LSTM Cells 2 cells

Activation Functions Rectified Linear Unit (ReLu),

and sigmoid

Dense Layer 1

Dropout 0.20

Optimizer Adam

Number of Epochs 50 and 100

Batch size 72

5.4. Dataset Description

The dataset was divided into a training set and a testing set

with a proportion of 70 percent to 30 percent, respectively. In

order to prevent both overfitting and underfitting, the data was

randomly split many times until it could be shown that the

testing set accurately reflected behaviors that had not been

seen before.

5.5 Result Evaluation Parameters

We are able to apply a variety of outcome assessment

measures, such as accuracy, precision, recall, and F1 score,

with the Deep Q-Learning and Bi-LSTM system that has been

suggested for use in managing trust in multi-agent settings

associated with Smart Cities. With the use of these measures,

we will be able to evaluate how good the system is at both

managing trust among the agents and producing judgments

that can be trusted.

Accuracy: Accuracy is a measurement of the overall accuracy

of the system's judgments about the management of trust. It is

measured as the proportion of judgments that may be trusted

that were accurately anticipated relative to the total number of

decisions produced by the system. A greater accuracy shows

that the system is reliably and accurately deciding matters

pertaining to trust.

Accuracy = (True Positives + True Negatives) / (True

Positives + True Negatives + False Positives + False

Negatives).

Precision is the capacity of the system to accurately identify

trustworthy interactions among all of the interactions that have

been classed as trustworthy. Precision is a quantitative

measure of this ability. The ratio of real positive trustworthy

interactions to the total number of interactions that may be

characterized as trustworthy is the definition of this concept. A

low rate of false positives is directly correlated with a high

level of accuracy since it implies that the system labels

interactions with a high level of care and caution.

Precision = True Positives / (True Positives + False

Positives)

Recall (Sensitivity or True Positive Rate): Recall evaluates the

system's capacity to properly identify trustworthy interactions

among all the interactions that are actually trustworthy. It

compares the system's performance to a standard known as the

true positive rate. It is defined as the proportion of genuinely

positive trustworthy interactions to the total number of

interactions that may be classified as truly trustworthy. If the

system has a high recall value, it indicates that it is able to

successfully recognize the majority of trustworthy encounters.

Recall = True Positives / (True Positives + False Negatives)

Score of F1: The F1 score is a combined measure of both

accuracy and recall, and it is calculated as the harmonic mean

of these two metrics. It offers a fair and impartial assessment

of the performance of the system by taking into account both

false positives and false negatives. When the data are

unbalanced and one measure (precision or recall) is more

important than the other, the F1 score is very helpful.

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 491

IJRITCC | July 2023, Available @ http://www.ijritcc.org

VI. RESULT

6.1. Dataset Collection and Visualization

According to the research conducted by [34], Table 4 provides

a description of the ranges for each attribute, which range from

excellent to medium to bad. In the case of packet loss, this

characteristic was computed to identify any changes that

would have an effect on the availability of the services and to

assure that they would continue to be reliable. The distribution

of loss values over the whole dataset is seen in Figure 5. The

delay function was computed so that the performance of the

network could be evaluated (a high delay value will result in a

drop in the network's overall performance). The delay has a

range of values, as shown in Figure 6, with the majority of

these density values falling somewhere between 140 and 170.

The throughput characteristic was computed according to the

projections made in order to meet the requirements of the

existing network's services. The distribution of the throughput

values across the dataset is shown in Figure 7. These attributes

were used as input for the subsequent stage, which was the

stage that predicted the trust value.

Table 4. Ranges of the selected features.

Range Feature Name and Its Ranges

Packet

Loss

Delay Throughput

Good Less than

3%

0–150 ms 100%

Medium More than

15%

151–400

ms

75–50%

Poor More than

25%

More than

400 ms

Less than 25%

Figure 5. Packets loss sample.

Figure 6. Delay sample.

Figure 7. Throughput sample.

6.2. Trust Prediction Results

The backdrop of the decision and the way it is structured is as

follows: the options for the dataset that was utilized in this

investigation are IoT devices. In addition, the results of this

research investigated three criteria (packet loss, delay, and

throughput), which are shown in Table 5, to decide whether or

not the device can be relied upon. There is a range associated

with each criteria that reflects how well this gadget performs.

As indicated in Table 6, these ranges move from being bad to

being medium to being excellent, and they are designated by

the numbers 1, 2, and 3. Rearranging the criteria's values in the

dataset is made easier with the aid of the range. According to

what can be seen in Table 7, in the column C1, which stands

for the packet loss, if the value in the data is less than 3%, it

indicates that the data is excellent, and it will be represented

by the number 3. If the number is between 3% and 15%,

however, it indicates that the data is middling, and it will be

represented by a value of 2. In addition, if the value is more

than 15%, the data are considered to be of low quality and will

be represented by the number 1. The analogy used by C1 is

likewise used by C2 and C3, respectively.

Table 5. Alternatives with criteria.

Alternative Criteria (C)

Packet

Loss (C1)

Delay

(C2)

Throughput

(C3)

A1 0 98 104

A2 89 431 120

….. ……. ……. ……..

An 98 389 186

Table 6. Criteria values

Group Parameter Value

Poor 1

Medium 2

Good 3

Table 7. Value of sub criteria.

No. Criteria (C) Range Value

1. C1 1. >3% 3

2. <3-15% 2

3. <15-25% 1

2. C2 1. 0-150ms 3

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 492

IJRITCC | July 2023, Available @ http://www.ijritcc.org

2. 151-

400ms

2

3. >400 mv 1

3. C3 1. >25% 3

2. 50-75% 2

3. 100% 1

In the second step, which is called "Analysis," the weights of

each criterion—packet loss, delay, and throughput—were

calculated with the use of Shannon's entropy approach. The

first process consisted of rescaling the data such that they were

all within the same range. This was accomplished by using

Equation (7) to normalize the decision matrix and then

dividing it by the total of each column. After that, the value of

the entropy was determined by using Equations (8) and (9).

Weights are constantly adjusted based on the data or sample

sizes that are used. The entropy approach was used to analyze

the data set in its many distinct dimensions.

Table 8. Criteria weights for each data sample.

Sample Size = 25%

No. Criteria (C)
𝑤𝑗 = (

𝐷𝑗

∑ 𝐷𝑗
)

1. C1 0.005340

2. C2 0.493564

3. C3 0.501096

Sum

1

Sample Size = 50%

No. Criteria (C)
𝑤𝑗 = (

𝐷𝑗

∑ 𝐷𝑗
)

1. C1 0.003222

2. C2 0.498422

3. C3 0.498355

Sum

1

Sample Size = 100%

No. Criteria (C)
𝑤𝑗 = (

𝐷𝑗

∑ 𝐷𝑗
)

1. C1 0.003108

2. C2 0.467722

3. C3 0.529170

Sum

1

The value of the trust was determined, and then that value was

contrasted with DT in the third and final phase, which is called

"Decision." Following the calculation of the weights of the

criterion values, the SMART technique was used in order to

calculate the aggregate utility value by using Equations (12)

and (13). In the end, the score of the trust was determined by

using Equation (14) and afterwards compared to Equation

(15), which represented the threshold.

In order to provide a better understanding, let's assume that the

dataset (which was utilized in this research) is completely

filled out. We investigated the three criteria (packet loss,

latency, and throughput) using weighted values (0. 003108,

0.467722, and 0.529170) in order to establish whether or not

the device can be trusted. Let us take into consideration an

Internet of Things device as a potential option with the

following set of parameters: packet loss = 0%, latency = 150

ms, and throughput = 75%. This indicates that there is a fair

amount of packet loss, a good amount of latency, and a

medium amount of throughput. According to what is shown in

Table 6, the points awarded for meeting the requirements will

be 3, 3, and 2. The values of utility, according to Equation 9,

are as follows:

• If the criteria value (cout) = 3, then 𝑢𝑖(𝑎𝑖) =
3−1

3−1
 = 1;

• If the criteria value (cout) = 2, then 𝑢𝑖(𝑎𝑖) =
2−1

3−1
 = 0.5;

• If the criteria value (cout) = 1, then 𝑢𝑖(𝑎𝑖) =
1−1

3−1
 = 0;

In the last stage of the process, the score was determined by

using Equation (13). Because of this, the value of 0.70469100

is higher than DT, which indicates that the device may be

relied upon. To determine the value of trust, a single

mechanism was applied to the whole of the data set. This

value served as an input for the subsequent stage, which was

the behavior anomaly detection.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 493

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 8. DT results for each sample: (a) 25% sample size, (b)

50% sample size, and (c) 100% sample size.

6.3 Misbehaving Detection Result

Table 9. Experimental results of the dataset with different

sample sizes.

Sample Size = 25%

Iteratio

ns

Accura

cy (%)

Loss

Rate

Reca

ll

(%)

Precisi

on (%)

F-

Measu

re (%)

Time(

s)

50 97.68 0.008

96

99.4

7

96.78 98.23 75

100 98.43 0.001

47

97.3

6

99.24 99.25 135

Sample Size = 50%

Iteratio

ns

Accura

cy (%)

Loss

Rate

Reca

ll

(%)

Precisi

on (%)

F-

Measu

re (%)

Time(

s)

50 97.87 0.02

45

99.5

2

96.89 98.63 65

100 98.85 0.01

04

99.5

6

99.38 99.74 198

Sample Size = 100%

Iteratio

ns

Accura

cy (%)

Loss

Rate

Reca

ll

(%)

Precisi

on (%)

F-

Measu

re (%)

Time(

s)

50 99.77 0.00

76

99.8

3

99.86 98.36 329

100 99.86 0.00

86

99.4

8

99.37 99.64 480

6.4 Comparison with Existing Machine Learning

Techniques

Figure 9: Shows results for 25% sample size with 50

Iterations

Figure 10: Shows results for 25% sample size with 100

Iterations

Figure 11: Shows results for 50% sample size with 50

Iterations

Figure 12: Shows results for 50% sample size with 100

Iterations

Figure 13: Shows results for 100% sample size with 50

Iterations

0.6

0.8

1

Accuracy Precision Recall F-measure

Shows results for 25% sample size with 50

Iterations

Naïve Bayes Logistic regression Proposed-Bi-LSTM

0.8

0.85

0.9

0.95

Accuracy Precision Recall F-measure

Shows results for 25% sample size with 100

Iterations

Naïve Bayes Logistic regression Proposed-Bi-LSTM

0.8

0.85

0.9

0.95

Accuracy Precision Recall F-measure

Shows results for 50% sample size with 50

Iterations

Naïve Bayes Logistic regression Proposed-Bi-LSTM

0.88

0.9

0.92

0.94

0.96

Accuracy Precision Recall F-measure

Shows results for 50% sample size with 100

Iterations

Naïve Bayes Logistic regression Proposed-Bi-LSTM

0.88

0.9

0.92

0.94

0.96

0.98

Accuracy Precision Recall F-measure

Shows results for 100% sample size with 50

Iterations

Naïve Bayes Logistic regression Proposed-Bi-LSTM

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 494

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 14: Shows results for 100% sample size with 100

Iterations

6.5 Comparison with existing deep learning techniques

Figure 15: Shows results for 25% sample size with 50

Iterations

Figure 16: Shows results for 25% sample size with 100

Iterations

Figure 17: Shows results for 50% sample size with 50

Iterations

Figure 18: Shows results for 50% sample size with 100

Iterations

Figure 19: Shows results for 100% sample size with 50

Iterations

Figure 20: Shows results for 100% sample size with 100

Iterations

6.6 Comparison with Existing Reinforcement Learning

Techniques

Figure 21: Shows results for 25% sample size with 50

Iterations

0.85

0.9

0.95

1

Accuracy Precision Recall F-measure

Shows results for 100% sample size with 100

Iterations

Naïve Bayes Logistic regression Proposed-Bi-LSTM

0.7

0.8

0.9

1

Accuracy Precision Recall F-measure

Shows results for 25% sample size with 50

Iterations

ANN LSTM Proposed-Bi-LSTM

0.75

0.8

0.85

0.9

0.95

Accuracy Precision Recall F-measure

Shows results for 25% sample size with 100

Iterations

ANN LSTM Proposed-Bi-LSTM

0.85

0.9

0.95

1

Accuracy Precision Recall F-measure

Shows results for 50% sample size with 50

Iterations

ANN LSTM Proposed-Bi-LSTM

0.85

0.9

0.95

1

Accuracy Precision Recall F-measure

Shows results for 50 % sample size with 100
Iterations

ANN LSTM Proposed-Bi-LSTM

80

85

90

95

100

Accuracy Precision Recall F-measure

Shows results for 100% sample size with 50

Iterations

ANN LSTM Proposed-Bi-LSTM

80

90

100

Accuracy Precision Recall F-measure

Shows results for 100% sample size with 100

Iterations

ANN LSTM Proposed-Bi-LSTM

0.8

0.9

1

Accuracy Precision Recall F-measure

Shows results for 25% sample size with 50

Iterations

LSTM Bi-LSTM DQL

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 495

IJRITCC | July 2023, Available @ http://www.ijritcc.org

Figure 22: Shows results for 25% sample size with 100

Iterations

Figure 23: Shows results for 50% sample size with 50

Iterations

Figure 24 : Shows results for 50% sample size with 100

Iterations

Figure 25: Shows results for 100% sample size with 50

Iterations

Figure 26: Shows results for 100% sample size with 100

Iterations

VII. CONCLUSION

This study introduced Deep Q-Learning and Bi-LSTM for

trust management in multi-agent Smart Cities. These two

strong strategies were combined to meet the dynamic and

complex nature of IoT networks, enabling dependable and

secure interactions between the many networked agents and

devices.

The Smart City trust management technique worked well in

experiments. Deep Q-Learning allowed the system to develop

optimum trust-related policies via reinforcement learning,

making intelligent real-time judgments based on

environmental parameters and agent actions. The Bi-LSTM

component modeled long-term dependencies and temporal

dynamics in the IoT network, helping the system adapt to

changing agent interactions.

The Deep Q-Learning and Bi-LSTM integrated system

outperformed existing trust management approaches in

difficult multi-agent settings. The system's ability to react to

Smart City changes improved resource consumption and agent

interactions.

This study impacts Smart City planning and implementation.

Residents may improve dependability, security, and

trustworthiness by using an intelligent trust management

system for IoT. This encourages agent cooperation, creating a

safer, more resilient, and user-centric urban ecology.

Future research should refine the suggested technique, explore

other deep learning architectures, and address privacy

protection and trust management fairness. The system's

performance and efficacy in real-world Smart City

infrastructures must be validated.

References

1. Yang, J., Zhang, J., & Wang, H. (2020). Urban traffic control in software

defined internet of things via a multi-agent deep reinforcement learning

approach. IEEE Transactions on Intelligent Transportation

Systems, 22(6), 3742-3754.

2. Liang, C., Shanmugam, B., Azam, S., Karim, A., Islam, A., Zamani, M.,

... & Idris, N. B. (2020). Intrusion detection system for the internet of

things based on blockchain and multi-agent systems. Electronics, 9(7),

1120.

0.85

0.9

0.95

1

Accuracy Precision Recall F-measure

Shows results for 25% sample size with 100

Iterations

LSTM Bi-LSTM DQL

0.9

0.95

1

Accuracy Precision Recall F-measure

Shows results for 50% sample size with 50

Iterations

LSTM Bi-LSTM DQL

0.92

0.94

0.96

0.98

Accuracy Precision Recall F-measure

Show results for 50% sample size with 100

Iterations.

LSTM Bi-LSTM DQL

0.92

0.94

0.96

0.98

1

Accuracy Precision Recall F-measure

Shows results for 100% sample size with 50

Iterations

LSTM Bi-LSTM DQL

0.94

0.95

0.96

0.97

0.98

0.99

1

Accuracy Precision Recall F-measure

Show results for 100% sample size with 100

Iterations

LSTM Bi-LSTM DQL

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 496

IJRITCC | July 2023, Available @ http://www.ijritcc.org

3. Nezamoddini, N., & Gholami, A. (2022). A survey of adaptive multi-

agent networks and their applications in smart cities. Smart Cities, 5(1),

318-347.

4. Raza, A., Shah, M. A., Khattak, H. A., Maple, C., Al-Turjman, F., &

Rauf, H. T. (2022). Collaborative multi-agents in dynamic industrial

internet of things using deep reinforcement learning. Environment,

Development and Sustainability, 24(7), 9481-9499.

5. Bao, F., & Chen, I. R. (2012, September). Dynamic trust management for

internet of things applications. In Proceedings of the 2012 international

workshop on Self-aware internet of things (pp. 1-6).

6. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust

management for Internet of Things. Journal of network and computer

applications, 42, 120-134.

7. Saied, Y. B., Olivereau, A., Zeghlache, D., & Laurent, M. (2013). Trust

management system design for the Internet of Things: A context-aware

and multi-service approach. Computers & Security, 39, 351-365.

8. Gu, L., Wang, J., & Sun, B. (2014). Trust management mechanism for

Internet of Things. China Communications, 11(2), 148-156.

9. Wei, L., Yang, Y., Wu, J., Long, C., & Li, B. (2022). Trust management

for internet of things: A comprehensive study. IEEE Internet of Things

Journal, 9(10), 7664-7679.

10. Din, I. U., Guizani, M., Kim, B. S., Hassan, S., & Khan, M. K. (2018).

Trust management techniques for the Internet of Things: A survey. IEEE

Access, 7, 29763-29787.

11. Awan, K. A., Din, I. U., Almogren, A., Guizani, M., Altameem, A., &

Jadoon, S. U. (2019). Robusttrust–a pro-privacy robust distributed trust

management mechanism for internet of things. IEEE Access, 7, 62095-

62106.

12. Zeng, P., Liu, A., Zhu, C., Wang, T., & Zhang, S. (2022). Trust-based

multi-agent imitation learning for green edge computing in smart

cities. IEEE Transactions on Green Communications and

Networking, 6(3), 1635-1648.

13. Althamary, I., Huang, C. W., & Lin, P. (2019, June). A survey on multi-

agent reinforcement learning methods for vehicular networks. In 2019

15th International Wireless Communications & Mobile Computing

Conference (IWCMC) (pp. 1154-1159). IEEE.

14. Yun, W. J., Kim, J. P., Jung, S., Kim, J. H., & Kim, J. (2023). Quantum

Multi-Agent Actor-Critic Neural Networks for Internet-Connected Multi-

Robot Coordination in Smart Factory Management. IEEE Internet of

Things Journal.

15. Wang, D., Zhang, W., Song, B., Du, X., & Guizani, M. (2019). Market-

based model in CR-IoT: A Q-probabilistic multi-agent reinforcement

learning approach. IEEE Transactions on Cognitive Communications and

Networking, 6(1), 179-188.

16. Xu, J., Kang, X., Zhang, R., Liang, Y. C., & Sun, S. (2022). Optimization

for master-UAV-powered auxiliary-aerial-IRS-assisted IoT networks: An

option-based multi-agent hierarchical deep reinforcement learning

approach. IEEE Internet of Things Journal, 9(22), 22887-22902.

17. Alli, A. A., & Alam, M. M. (2019). SecOFF-FCIoT: Machine learning

based secure offloading in Fog-Cloud of things for smart city

applications. Internet of Things, 7, 100070.

18. Yu, L., Sun, Y., Xu, Z., Shen, C., Yue, D., Jiang, T., & Guan, X. (2020).

Multi-agent deep reinforcement learning for HVAC control in

commercial buildings. IEEE Transactions on Smart Grid, 12(1), 407-419.

19. Wang, C., Yao, T., Fan, T., Peng, S., Xu, C., & Yu, S. (2023). Modeling

on Resource Allocation for Age-Sensitive Mobile Edge Computing Using

Federated Multi-Agent Reinforcement Learning. IEEE Internet of Things

Journal.

20. Jain, V., & Kumar, B. (2023). QoS-aware task offloading in fog

environment using multi-agent deep reinforcement learning. Journal of

Network and Systems Management, 31(1), 7.

21. He, B., Wang, J., Qi, Q., Sun, H., Liao, J., Du, C., ... & Han, Z. (2021).

DeepCC: Multi-agent deep reinforcement learning congestion control for

multi-path TCP based on self-attention. IEEE Transactions on Network

and Service Management, 18(4), 4770-4788.

22. Diogo, A., Fernandes, B., Silva, A., Faria, J. C., Neves, J., & Analide, C.

(2018). A Multi-Agent System Blockchain for a Smart City. In The Third

International Conference on Cyber-Technologies and Cyber-Systems

(CYBER). IARIA, Athens (pp. 68-73).

23. Al-Qarafi, A., Alrowais, F., S. Alotaibi, S., Nemri, N., Al-Wesabi, F. N.,

Al Duhayyim, M., ... & Al-Shabi, M. (2022). Optimal machine learning

based privacy preserving blockchain assisted internet of things with smart

cities environment. Applied Sciences, 12(12), 5893.

24. Frikha, M. S., Gammar, S. M., Lahmadi, A., & Andrey, L. (2021).

Reinforcement and deep reinforcement learning for wireless Internet of

Things: A survey. Computer Communications, 178, 98-113.

25. Kasi, M. K., Abu Ghazalah, S., Akram, R. N., & Sauveron, D. (2021).

Secure mobile edge server placement using multi-agent reinforcement

learning. Electronics, 10(17), 2098.

26. Tang, X., Lan, X., Li, L., Zhang, Y., & Han, Z. (2022). Incentivizing

Proof-of-Stake Blockchain for Secured Data Collection in UAV-Assisted

IoT: A Multi-Agent Reinforcement Learning Approach. IEEE Journal on

Selected Areas in Communications, 40(12), 3470-3484.

27. Feriani, A., & Hossain, E. (2021). Single and multi-agent deep

reinforcement learning for AI-enabled wireless networks: A tutorial. IEEE

Communications Surveys & Tutorials, 23(2), 1226-1252.

28. Guleng, S., Wu, C., Chen, X., Wang, X., Yoshinaga, T., & Ji, Y. (2019).

Decentralized trust evaluation in vehicular Internet of Things. IEEE

Access, 7, 15980-15988.

29. Niu, L., Chen, X., Zhang, N., Zhu, Y., Yin, R., Wu, C., & Cao, Y. (2023).

Multi-Agent Meta-Reinforcement Learning for Optimized Task

Scheduling in Heterogeneous Edge Computing Systems. IEEE Internet of

Things Journal.

30. Lin, C., Han, G., Zhang, T., Shah, S. B. H., & Peng, Y. (2022). Smart

underwater pollution detection based on graph-based multi-agent

reinforcement learning towards AUV-based network ITS. IEEE

Transactions on Intelligent Transportation Systems.

31. May, R. (2023). On the Feasibility of Reinforcement Learning in Single-

and Multi-Agent Systems: The Cases of Indoor Climate and Prosumer

Electricity Trading Communities.

32. Anagnostopoulos, M.; Spathoulas, G.; Viaño, B.; Augusto-Gonzalez, J.

Tracing Your Smart-Home Devices Conversations: A Real World IoT

Traffic Data-Set. Sensors 2020, 20, 6600. [PubMed]

33. Crawford, M.; Khoshgoftaar, T.M.; Prusa, J.D.; Richter, A.N.; Al Najada,

H. Survey of review spam detection using machine learning techniques. J.

Big Data 2015, 2, 23.

34. Sugeng, W.; Istiyanto, J.E.; Mustofa, K.; Ashari, A. The impact of QoS

changes towards network performance. Int. J. Comput. Netw. Commun.

Secur. 2015, 3, 48–53.

35. Zach. Normailzation in Statology 2021; Statology: Torrance, CA, USA,

2021.

36. Oktavianti, E.; Komala, N.; Nugrahani, F. Simple multi attribute rating

technique (SMART) method on employee promotions. J. Phys. Conf. Ser.

2019, 1193, 012028.

37. Risawandi, R.R.; Rahim, R. Study of the simple multi-attribute rating

technique for decision support. Decis. -Mak. 2016, 4, C4.

38. I¸sık, A.T.; Adalı, E.A. The Decision-Making Approach Based on the

Combination of Entropy and Rov Methods for the Apple Selection

Problem. Eur. J. Interdiscip. Stud. 2017, 8, 80–86.

39. Jati, H.; Dominic, D.D. A New Approach of Indonesian University

Webometrics Ranking Using Entropy and PROMETHEE II. Procedia

Comput. Sci. 2017, 124, 444–451.

40. Lotfi, F.H.; Fallahnejad, R. Imprecise Shannon’s Entropy and Multi

Attribute Decision Making. Entropy 2010, 12, 53–62.

41. Reich, N.G.; Lessler, J.; Sakrejda, K.; Lauer, S.A.; Iamsirithaworn, S.;

Cummings, D.A.T. Case Study in Evaluating Time Series Prediction

Models Using the Relative Mean Absolute Error. Am. Stat. 2016, 70,

285–292.

42. Khani, M.; Wang, Y.; Orgun, M.A.; Zhu, F. Context-aware trustworthy

service evaluation in social internet of things. In Proceedings of the

International Conference on Service-Oriented Computing, Hangzhou,

China, 12–15 November 2018.

43. Chen, Z.; Ling, R.; Huang, C.-M.; Zhu, X. A scheme of access service

recommendation for the Social Internet of Things. Int. J. Commun. Syst.

2016, 29, 694–706.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7

Article Received: 12 May 2023 Revised: 22 June 2023 Accepted: 20 July 2023

 497

IJRITCC | July 2023, Available @ http://www.ijritcc.org

44. Mekruksavanich, S.; Jitpattanakul, A. Biometric User Identification Based

on Human Activity Recognition Using Wearable Sensors: An Experiment

Using Deep Learning Models. Electronics 2021, 10, 308.

45. Alghofaili, Y.; Albattah, A.; Rassam, M.A. A Financial Fraud Detection

Model Based on LSTM Deep Learning Technique. J. Appl. Secur. Res.

2020, 15, 498–516.

46. Zhao, Z.; Xu, C.; Li, B. A LSTM-Based Anomaly Detection Model for

Log Analysis. J. Signal Process. Syst. 2021, 93, 745–751.

47. Kim, T.-Y.; Cho, S.-B. Web traffic anomaly detection using C-LSTM

neural networks. Expert Syst. Appl. 2018, 106, 66–76.

http://www.ijritcc.org/

